Association of breast and gut microbiota dysbiosis and the risk of breast cancer: a case-control clinical study

Julio Plaza-Díaz, Ana I Álvarez-Mercado, Carmen M Ruiz-Marín, Iris Reina-Pérez, Alejandro J Pérez-Alonso, María Belén Sánchez-Andujar, Pablo Torné, Tania Gallart-Aragón, María Teresa Sánchez-Barrón, Saturnino Reyes Lartategui, Federico García, Natalia Chueca, Ana Moreno-Delgado, Katia Torres-Martínez, María José Sáez-Lara, Cándido Robles-Sánchez, Mariana F Fernández, Luis Fontana, Julio Plaza-Díaz, Ana I Álvarez-Mercado, Carmen M Ruiz-Marín, Iris Reina-Pérez, Alejandro J Pérez-Alonso, María Belén Sánchez-Andujar, Pablo Torné, Tania Gallart-Aragón, María Teresa Sánchez-Barrón, Saturnino Reyes Lartategui, Federico García, Natalia Chueca, Ana Moreno-Delgado, Katia Torres-Martínez, María José Sáez-Lara, Cándido Robles-Sánchez, Mariana F Fernández, Luis Fontana

Abstract

Background: Breast cancer ranks first in women, and is the second cause of death in this gender. In addition to genetics, the environment contributes to the development of the disease, although the factors involved are not well known. Among the latter is the influence of microorganisms and, therefore, attention is recently being paid to the mammary microbiota. We hypothesize that the risk of breast cancer could be associated with the composition and functionality of the mammary/gut microbiota, and that exposure to environmental contaminants (endocrine disruptors, EDCs) might contribute to alter these microbiota.

Methods: We describe a case-control clinical study that will be performed in women between 25 and 70 years of age. Cases will be women diagnosed and surgically intervened of breast cancer (stages I and II). Women with antecedents of cancer or advanced tumor stage (metastasis), or who have received antibiotic treatment within a period of 3 months prior to recruitment, or any neoadjuvant therapy, will be excluded. Controls will be women surgically intervened of breast augmentation or reduction. Women with oncological, gynecological or endocrine history, and those who have received antibiotic treatment within a period of 3 months prior to recruitment will also be excluded. Blood, urine, breast tissue and stool samples will be collected. Data regarding anthropometric, sociodemographic, reproductive history, tumor features and dietary habits will be gathered. Metabolomic studies will be carried out in stool and breast tissue samples. Metagenomic studies will also be performed in stool and breast tissue samples to ascertain the viral, fungal, bacterial and archaea populations of the microbiota. Quantitation of estrogens, estrogen metabolites and EDCs in samples of serum, urine and breast tissue will also be performed.

Discussion: This is the first time that the contribution of bacteria, archaea, viruses and fungi together with their alteration by environmental contaminants to the risk of breast cancer will be evaluated in the same study. Results obtained could contribute to elucidate risk factors, improve the prognosis, as well as to propose novel intervention studies in this disease.

Trial registration: ClinicalTrials.gov NCT03885648 , 03/25/2019. Retrospectively registered.

Keywords: Archaea; Bacteria; Breast cancer; Breast microbiota; Endocrine disruptors; Environmental pollutants; Fungi; Gut microbiota; Virus.

Conflict of interest statement

The authors declare that they have no competing interests.

References

    1. Rossi P, Difrancia R, Quagliariello V, Savino E, Tralongo P, Randazzo CL, Berretta M. B-glucans from Grifola frondosa and Ganoderma lucidum in breast cancer: an example of complementary and integrative medicine. Oncotarget. 2018;9(37):24837–24856. doi: 10.18632/oncotarget.24984.
    1. Rea D, Coppola G, Palma G, Barbieri A, Luciano A, Del Prete P, Rossetti S, Berretta M, Facchini G, Perdona S, et al. Microbiota effects on cancer: from risks to therapies. Oncotarget. 2018;9(25):17915–17927. doi: 10.18632/oncotarget.24681.
    1. Paul B, Barnes S, Demark-Wahnefried W, Morrow C, Salvador C, Skibola C, Tollefsbol TO. Influences of diet and the gut microbiome on epigenetic modulation in cancer and other diseases. Clin Epigenetics. 2015;7:112. doi: 10.1186/s13148-015-0144-7.
    1. Xue M, Ji X, Liang H, Liu Y, Wang B, Sun L, Li W. The effect of fucoidan on intestinal flora and intestinal barrier function in rats with breast cancer. Food Funct. 2018;9(2):1214–1223. doi: 10.1039/C7FO01677H.
    1. Lazar V, Ditu LM, Pircalabioru GG, Gheorghe I, Curutiu C, Holban AM, Picu A, Petcu L, Chifiriuc MC. Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Front Immunol. 2018;9:1830. doi: 10.3389/fimmu.2018.01830.
    1. Argolo DF, Hudis CA, Iyengar NM. Obesity and cancer—opportunities to break the link. Curr Breast Cancer Rep. 2016;8(1):22–31. doi: 10.1007/s12609-016-0200-0.
    1. Meng S, Chen B, Yang J, Wang J, Zhu D, Meng Q, Zhang L. Study of microbiomes in aseptically collected samples of human breast tissue using needle biopsy and the potential role of in situ tissue microbiomes for promoting malignancy. Front Oncol. 2018;8:318. doi: 10.3389/fonc.2018.00318.
    1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi: 10.3322/caac.21492.
    1. Gray JM, Rasanayagam S, Engel C, Rizzo J. State of the evidence 2017: an update on the connection between breast cancer and the environment. Environ Health. 2017;16(1):94. doi: 10.1186/s12940-017-0287-4.
    1. Wang J, Huang Y, Guan Z, Zhang JL, Su HK, Zhang W, Yue CF, Yan M, Guan S, Liu QQ. E3-ligase Skp2 predicts poor prognosis and maintains cancer stem cell pool in nasopharyngeal carcinoma. Oncotarget. 2014;5(14):5591–5601.
    1. McCall SA, Lichy JH, Bijwaard KE, Aguilera NS, Chu WS, Taubenberger JK. Epstein-Barr virus detection in ductal carcinoma of the breast. J Natl Cancer Inst. 2001;93(2):148–150. doi: 10.1093/jnci/93.2.148.
    1. Heng B, Glenn WK, Ye Y, Tran B, Delprado W, Lutze-Mann L, Whitaker NJ, Lawson JS. Human papilloma virus is associated with breast cancer. Br J Cancer. 2009;101(8):1345–1350. doi: 10.1038/sj.bjc.6605282.
    1. Goedert JJ, Hua X, Bielecka A, Okayasu I, Milne GL, Jones GS, Fujiwara M, Sinha R, Wan Y, Xu X, et al. Postmenopausal breast cancer and oestrogen associations with the IgA-coated and IgA-noncoated faecal microbiota. Br J Cancer. 2018;118(4):471–479. doi: 10.1038/bjc.2017.435.
    1. Armstrong H, Bording-Jorgensen M, Dijk S, Wine E. The complex interplay between chronic inflammation, the microbiome, and cancer: understanding disease progression and what we can do to prevent it. Cancers. 2018;10:3. doi: 10.3390/cancers10030083.
    1. Fernandez MF, Reina-Perez I, Astorga JM, Rodriguez-Carrillo A, Plaza-Diaz J, Fontana L. Breast cancer and its relationship with the microbiota. Int J Environ Res Public Health. 2018;15:8.
    1. Safe S, Li X. Endocrine disruption: relevance of experimental studies in female animals to human studies. Curr Opin Toxicol. 2017;3:12–19. doi: 10.1016/j.cotox.2017.04.003.
    1. Reid G. Can breast microbiota provide protective effects against cancer? Future Microbiol. 2016;11:987–989. doi: 10.2217/fmb-2016-0138.
    1. Aguilar-Barojas S. Fórmulas para el cálculo de la muestra en investigaciones de salud. Salud en Tabasco. 2005;11(1–2):333–338.
    1. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170.
    1. Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27(6):863–864. doi: 10.1093/bioinformatics/btr026.
    1. Bengtsson-Palme J, Hartmann M, Eriksson KM, Pal C, Thorell K, Larsson DG, Nilsson RH. METAXA2: improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data. Mol Ecol Resour. 2015;15(6):1403–1414. doi: 10.1111/1755-0998.12399.
    1. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–7541. doi: 10.1128/AEM.01541-09.
    1. Huson DH, Auch AF, Qi J, Schuster SC. MEGAN analysis of metagenomic data. Genome Res. 2007;17(3):377–386. doi: 10.1101/gr.5969107.
    1. Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem. 2009;81(16):6656–6667. doi: 10.1021/ac901536h.
    1. DeHaven CD, Evans AM, Dai H, Lawton KA. Organization of GC/MS and LC/MS metabolomics data into chemical libraries. J Cheminform. 2010;2(1):9. doi: 10.1186/1758-2946-2-9.
    1. Evans AM, Bridgewater BR, Liu Q, Mitchell MW, Robinson RJ, Dai H, Stewart SJ, DeHaven CD, Miller LAD. High resolution mass spectrometry improves data quantity and quality as compared to unit mass resolution mass spectrometry in high-throughput profiling metabolomics. Metabolomics. 2014;4:132.
    1. Urbaniak C, Gloor GB, Brackstone M, Scott L, Tangney M, Reid G. The microbiota of breast tissue and its association with breast cancer. Appl Environ Microbiol. 2016;82(16):5039–5048. doi: 10.1128/AEM.01235-16.
    1. Vela-Soria F, Ballesteros O, Zafra-Gomez A, Ballesteros L, Navalon A. UHPLC-MS/MS method for the determination of bisphenol a and its chlorinated derivatives, bisphenol S, parabens, and benzophenones in human urine samples. Anal Bioanal Chem. 2014;406(15):3773–3785. doi: 10.1007/s00216-014-7785-9.
    1. Jimenez-Diaz I, Artacho-Cordon F, Vela-Soria F, Belhassen H, Arrebola JP, Fernandez MF, Ghali R, Hedhili A, Olea N. Urinary levels of bisphenol a, benzophenones and parabens in Tunisian women: a pilot study. Sci Total Environ. 2016;562:81–88. doi: 10.1016/j.scitotenv.2016.03.203.
    1. Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL. Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect. 2005;113(2):192–200. doi: 10.1289/ehp.7337.
    1. Trasande L, Attina TM, Blustein J. Association between urinary bisphenol a concentration and obesity prevalence in children and adolescents. JAMA. 2012;308(11):1113–1121. doi: 10.1001/2012.jama.11461.
    1. Wang N, Zhou Y, Fu C, Wang H, Huang P, Wang B, Su M, Jiang F, Fang H, Zhao Q, et al. Influence of bisphenol a on thyroid volume and structure independent of iodine in school children. PLoS One. 2015;10(10):e0141248. doi: 10.1371/journal.pone.0141248.
    1. Fuhrman BJ, Feigelson HS, Flores R, Gail MH, Xu X, Ravel J, Goedert JJ. Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women. J Clin Endocrinol Metab. 2014;99(12):4632–4640. doi: 10.1210/jc.2014-2222.
    1. Robles J, Marcos J, Renau N, Garrostas L, Segura J, Ventura R, Barcelo B, Barcelo A, Pozo OJ. Quantifying endogenous androgens, estrogens, pregnenolone and progesterone metabolites in human urine by gas chromatography tandem mass spectrometry. Talanta. 2017;169:20–29. doi: 10.1016/j.talanta.2017.03.032.
    1. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. doi: 10.1023/A:1010933404324.
    1. Li Y. Epigenetic mechanisms link maternal diets and gut microbiome to obesity in the offspring. Front Genet. 2018;9:342. doi: 10.3389/fgene.2018.00342.
    1. Urbaniak C, Cummins J, Brackstone M, Macklaim JM, Gloor GB, Baban CK, Scott L, O'Hanlon DM, Burton JP, Francis KP, et al. Microbiota of human breast tissue. Appl Environ Microbiol. 2014;80(10):3007–3014. doi: 10.1128/AEM.00242-14.
    1. Xuan C, Shamonki JM, Chung A, Dinome ML, Chung M, Sieling PA, Lee DJ. Microbial dysbiosis is associated with human breast cancer. PLoS One. 2014;9(1):e83744. doi: 10.1371/journal.pone.0083744.
    1. Chan AA, Bashir M, Rivas MN, Duvall K, Sieling PA, Pieber TR, Vaishampayan PA, Love SM, Lee DJ. Characterization of the microbiome of nipple aspirate fluid of breast cancer survivors. Sci Rep. 2016;6:28061. doi: 10.1038/srep28061.
    1. Javurek AB, Spollen WG, Johnson SA, Bivens NJ, Bromert KH, Givan SA, Rosenfeld CS. Effects of exposure to bisphenol a and ethinyl estradiol on the gut microbiota of parents and their offspring in a rodent model. Gut Microbes. 2016;7(6):471–485. doi: 10.1080/19490976.2016.1234657.
    1. Lai KP, Chung YT, Li R, Wan HT, Wong CK. Bisphenol a alters gut microbiome: comparative metagenomics analysis. Environ Pollution. 2016;218:923–930. doi: 10.1016/j.envpol.2016.08.039.
    1. Elkrief A, Derosa L, Zitvogel L, Kroemer G, Routy B. The intimate relationship between gut microbiota and cancer immunotherapy. Gut Microbes. 2018:1–5.
    1. York A. Microbiome: gut microbiota sways response to cancer immunotherapy. Nat Rev Microbiol. 2018;16(3):121. doi: 10.1038/nrmicro.2018.12.

Source: PubMed

Подписаться