Short-Course Induction Treatment with Intrathecal Amphotericin B Lipid Emulsion for HIV Infected Patients with Cryptococcal Meningitis

Gerardo Alvarez-Uria, Manoranjan Midde, Raghavakalyan Pakam, Pradeep Sukumar Yalla, Praveen Kumar Naik, Raghuprakash Reddy, Gerardo Alvarez-Uria, Manoranjan Midde, Raghavakalyan Pakam, Pradeep Sukumar Yalla, Praveen Kumar Naik, Raghuprakash Reddy

Abstract

Cryptococcal meningitis (CM) is a common cause of death among HIV infected patients in developing countries, especially in sub-Saharan Africa. In this observational HIV cohort study in a resource-limited setting in India, we compared the standard two-week intravenous amphotericin B deoxycholate (AmBd) (Regimen I) with one week of intravenous AmBd along with daily therapeutic lumbar punctures and intrathecal AmB lipid emulsion (Regimen II) during the intensive phase of CM treatment. 78 patients received Regimen I and 45 patients received Regimen II. After adjustment for baseline characteristics (gender, age, altered mental status or seizures at presentation, CD4 cell count, white blood cells, cerebrospinal fluid white cells, and haemoglobin), the use of Regimen II was associated with a significant relative risk reduction in mortality (adjusted hazard ratio 0.4, 95% confidence interval, 0.22-0.76) and 26.7% absolute risk reduction (95% confidence interval, 9.9-43.5) at 12 weeks. The use of Regimen II resulted in lower costs of drugs and hospital admission days. Since the study is observational in nature, we should be cautious about our results. However, the good tolerability of intrathecal administration of AmB lipid emulsion and the clinically important mortality reduction observed with the short-course induction treatment warrant further research, ideally through a randomized clinical trial.

Figures

Figure 1
Figure 1
Kaplan-Meier survival estimates by treatment group. IV AmBd, intravenous amphotericin B deoxycholate. IT AmBle, intrathecal amphotericin B lipid emulsion.
Figure 2
Figure 2
Adjusted risk difference and number needed to treat using flexible parametric survival methods. NNT: number needed to treat.

References

    1. Park B. J., Wannemuehler K. A., Marston B. J., Govender N., Pappas P. G., Chiller T. M. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS. 2009;23(4):525–530. doi: 10.1097/qad.0b013e328322ffac.
    1. Sloan D. J., Parris V. Cryptococcal meningitis: epidemiology and therapeutic options. Clinical Epidemiology. 2014;6(1):169–182. doi: 10.2147/clep.s38850.
    1. World Health Organization. Diagnosis, prevention and management of cryptococcal disease in HIV-infected adults, adolescents and children. December 2011,
    1. Rajasingham R., Rolfes M. A., Birkenkamp K. E., Meya D. B., Boulware D. R. Cryptococcal meningitis treatment strategies in resource-limited settings: a cost-effectiveness analysis. PLoS Medicine. 2012;9(9) doi: 10.1371/journal.pmed.1001316.e1001316
    1. Bicanic T., Wood R., Meintjes G., et al. High-dose amphotericin B with flucytosine for the treatment of cryptococcal meningitis in HIV-infected patients: a randomized trial. Clinical Infectious Diseases. 2008;47(1):123–130. doi: 10.1086/588792.
    1. Bicanic T., Meintjes G., Wood R., et al. Fungal burden, early fungicidal activity, and outcome in cryptococcal meningitis in antiretroviral-naive or antiretroviral-experienced patients treated with amphotericin B or fluconazole. Clinical Infectious Diseases. 2007;45(1):76–80. doi: 10.1086/518607.
    1. Jackson A. T., Nussbaum J. C., Phulusa J., et al. A phase II randomized controlled trial adding oral flucytosine to high-dose fluconazole, with short-course amphotericin B, for cryptococcal meningitis. AIDS. 2012;26(11):1363–1370. doi: 10.1097/qad.0b013e328354b419.
    1. Strenger V., Meinitzer A., Donnerer J., et al. Amphotericin B transfer to CSF following intravenous administration of liposomal amphotericin B. Journal of Antimicrobial Chemotherapy. 2014;69(9):2522–2526. doi: 10.1093/jac/dku148.
    1. Kethireddy S., Andes D. CNS pharmacokinetics of antifungal agents. Expert Opinion on Drug Metabolism and Toxicology. 2007;3(4):573–581. doi: 10.1517/17425225.3.4.573.
    1. Fang W., Fa Z., Liao W. Epidemiology of Cryptococcus and cryptococcosis in China. Fungal Genetics and Biology. 2015;78:7–15. doi: 10.1016/j.fgb.2014.10.017.
    1. Yuchong C., Jianghan C., Hai W., Julin G. Lumbar puncture drainage with intrathecal injection of amphotericin B for control of cryptococcal meningitis. Mycoses. 2011;54(4):e248–e251. doi: 10.1111/j.1439-0507.2009.01847.x.
    1. Galgiani J. N., Ampel N. M., Blair J. E., et al. Coccidioidomycosis. Clinical Infectious Diseases. 2005;41(9):1217–1223. doi: 10.1086/496991.
    1. Clemons K. V., Sobel R. A., Williams P. L., Stevens D. A. Comparative toxicities and pharmacokinetics of intrathecal lipid (amphotericin B colloidal dispersion) and conventional deoxycholate formulations of amphotericin B in rabbits. Antimicrobial Agents and Chemotherapy. 2001;45(2):612–615. doi: 10.1128/aac.45.2.612-615.2001.
    1. Mete B., Saltoglu N., Vanli E., et al. Simultaneous cryptococcal and tuberculous meningitis in a patient with systemic lupus erythematosus. Journal of Microbiology, Immunology and Infection. 2013 doi: 10.1016/j.jmii.2013.04.009.
    1. Grannan B. L., Yanamadala V., Venteicher A. S., Walcott B. P., Barr J. C. Use of external ventriculostomy and intrathecal anti-fungal treatment in cerebral mucormycotic abscess. Journal of Clinical Neuroscience. 2014;21(10):1819–1821. doi: 10.1016/j.jocn.2014.01.008.
    1. Capilla J., Flavia A., Mayayo E., Guarro J. Efficacy of intrathecal liposomal amphotericin B plus oral posaconazole in the treatment of acute meningeal cryptococcosis in a murine model. International Journal of Antimicrobial Agents. 2013;42(3):282–283. doi: 10.1016/j.ijantimicag.2013.04.032.
    1. Gazzoni A. F., Capilla J., Mayayo E., Guarro J. Efficacy of intrathecal administration of liposomal amphotericin B combined with voriconazole in a murine model of cryptococcal meningitis. International Journal of Antimicrobial Agents. 2012;39(3):223–227. doi: 10.1016/j.ijantimicag.2011.10.014.
    1. Office of the Registrar General & Census Commissioner. New Delhi, India: Census of India; 2011.
    1. Alvarez-Uria G., Midde M., Pakam R., Naik P. K. Gender differences, routes of transmission, socio-demographic characteristics and prevalence of HIV related infections of adults and children in an HIV cohort from a rural district of India. Infectious Disease Reports. 2012;4(1, article e19) doi: 10.4081/idr.2012.e19.
    1. Alvarez-Uria G., Pakam R., Midde M., Naik P. K. Entry, retention, and virological suppression in an HIV cohort study in India: description of the cascade of care and implications for reducing HIV-related mortality in low- and middle-income countries. Interdisciplinary Perspectives on Infectious Diseases. 2013;2013:8. doi: 10.1155/2013/384805.384805
    1. Alvarez-Uria G., Naik P. K., Pakam R., Bachu L., Midde M. Natural history and factors associated with early and delayed mortality in HIV-infected patients treated of tuberculosis under directly observed treatment short-course strategy: a prospective cohort study in India. Interdisciplinary Perspectives on Infectious Diseases. 2012;2012:9. doi: 10.1155/2012/502012.502012
    1. Sundar S., Pandey K., Thakur C. P., et al. Efficacy and safety of amphotericin B emulsion versus liposomal formulation in Indian patients with visceral leishmaniasis: a randomized, open-label study. PLoS Neglected Tropical Diseases. 2014;8(9, article e3169) doi: 10.1371/journal.pntd.0003169.
    1. Sundar S., Chakravarty J., Agarwal D., Shah A., Agrawal N., Rai M. Safety of a pre-formulated amphotericin B lipid emulsion for the treatment of Indian Kala-azar. Tropical Medicine & International Health. 2008;13(9):1208–1212. doi: 10.1111/j.1365-3156.2008.02128.x.
    1. Kleinbaum D. G., Klein M. Survival Analysis, a Self-Learning Text. 2nd. Springer; 2005.
    1. Royston P., Lambert P. C. Flexible Parametric Survival Analysis Using Stata: Beyond the Cox Model. StataCorp; 2011. .
    1. Jarvis J. N., Bicanic T., Loyse A., et al. Determinants of mortality in a combined cohort of 501 patients with HIV-associated cryptococcal meningitis: implications for improving outcomes. Clinical Infectious Diseases. 2014;58(5):736–745. doi: 10.1093/cid/cit794.
    1. Muzoora C. K., Kabanda T., Ortu G., et al. Short course amphotericin B with high dose fluconazole for HIV-associated cryptococcal meningitis. Journal of Infection. 2012;64(1):76–81. doi: 10.1016/j.jinf.2011.10.014.
    1. Perfect J. R., Dismukes W. E., Dromer F., et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of America. Clinical Infectious Diseases. 2010;50(3):291–322. doi: 10.1086/649858.
    1. Rolfes M. A., Hullsiek K. H., Rhein J., et al. The effect of therapeutic lumbar punctures on acute mortality from cryptococcal meningitis. Clinical Infectious Diseases. 2014;59(11):1607–1614. doi: 10.1093/cid/ciu596.
    1. Thakur K. T., Mateyo K., Hachaambwa L., et al. Lumbar puncture refusal in sub-Saharan Africa: a call for further understanding and intervention. Neurology. 2015;84(19):1988–1990. doi: 10.1212/wnl.0000000000001561.
    1. Kambugu A., Meya D. B., Rhein J., et al. Outcomes of cryptococcal meningitis in Uganda before and after the availability of highly active antiretroviral therapy. Clinical Infectious Diseases. 2008;46(11):1694–1701. doi: 10.1086/587667.

Source: PubMed

Подписаться