Test-retest reproducibility of [11C]-L-deprenyl-D2 binding to MAO-B in the human brain

Ryosuke Arakawa, Per Stenkrona, Akihiro Takano, Sangram Nag, Rafael S Maior, Christer Halldin, Ryosuke Arakawa, Per Stenkrona, Akihiro Takano, Sangram Nag, Rafael S Maior, Christer Halldin

Abstract

Background: [11C]-L-deprenyl-D2 is a positron emission tomography (PET) radioligand for measurement of the monoamine oxidase B (MAO-B) activity in vivo brain. The estimation of the test-retest reproducibility is important for accurate interpretation of PET studies.

Results: We performed two [11C]-L-deprenyl-D2 scans for six healthy subjects and evaluated the test-retest variability of this radioligand. MAO-B binding was quantified by two tissue compartment model (2TCM) with three rate constants (K 1, k 2, k 3) using metabolite-corrected plasma radioactivity. The λk 3 defined as (K 1/k 2) × k 3 was also calculated. The correlation between MAO-B binding and age, and the effect of partial volume effect correction (PVEc) for the reproducibility were also estimated. %difference of k 3 was 2.6% (medial frontal cortex) to 10.3% (hippocampus), and that of λk 3 was 5.0% (thalamus) to 9.2% (cerebellum). Mean %difference of all regions were 5.3 and 7.0% in k 3 and λk 3, respectively. All regions showed below 10% variabilities except the hippocampus in k 3 (10.3%). Intraclass correlation coefficient (ICC) of k 3 was 0.78 (hippocampus) to 0.98 (medial frontal cortex), and that of λk 3 was 0.78 (hippocampus) to 0.95 (thalamus). Mean ICC were 0.94 and 0.89 in k 3 and λk 3, respectively. The highest positive correlation with age was observed in the hippocampus, as r = 0.75 in k 3 and 0.76 in λk 3. After PVEc, mean %difference were 5.6 and 7.2% in k 3 and λk 3, respectively. Mean ICC were 0.92 and 0.90 for k 3 and λk 3, respectively. These values were almost the same as those before PVEc.

Conclusions: The present results indicate that k 3 and λk 3 of [11C]-L-deprenyl-D2 are reliable parameters for test-retest reproducibility with healthy subjects both before and after PVEc. The studies with patients of larger sample size are required for further clinical applications.

Keywords: Age effect; Monoamine oxidase B; Partial volume effect correction; Positron emission tomography; Test-retest variability; [11C]-L-deprenyl-D2.

Figures

Fig. 1
Fig. 1
The relationship between age and ak3 or bλk3 of six subjects
Fig. 2
Fig. 2
The relationship between age and %change of parameters (K1, k2, k3, and λk3) after PVEc of six subjects

References

    1. Finberg JPM. Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: focus on modulation of CNS monoamine neurotransmitter release. Pharmacol Ther. 2014;143:133–52. doi: 10.1016/j.pharmthera.2014.02.010.
    1. Gulyás B, Pavlova E, Kása P, Gulya K, Bakota L, Várszegi S, et al. Activated MAO-B in the brain of Alzheimer patients, demonstrated by [11C]-L-deprenyl using whole hemisphere autoradiography. Neurochem Int. 2011;58:60–8. doi: 10.1016/j.neuint.2010.10.013.
    1. Emilsson L, Saetre P, Balciuniene J, Castensson A, Cairns N, Jazin EE. Increased monoamine oxidase messenger RNA expression levels in frontal cortex of Alzheimer’s disease patients. Neurosci Lett. 2002;326:56–60. doi: 10.1016/S0304-3940(02)00307-5.
    1. Saura J, Luque JM, Cesura AM, Da Prada M, Chan-Palay V, Huber G, et al. Increased monoamine oxidase B activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience. 1994;62:15–30. doi: 10.1016/0306-4522(94)90311-5.
    1. Jossan SS, Gillberg PG, Gottfries CG, Karlsson I, Oreland L. Monoamine oxidase B in brains from patients with Alzheimer’s disease: a biochemical and autoradiographical study. Neuroscience. 1991;45:1–12. doi: 10.1016/0306-4522(91)90098-9.
    1. Nakamura S, Kawamata T, Akiguchi I, Kameyama M, Nakamura N, Kimura H. Expression of monoamine oxidase B activity in astrocytes of senile plaques. Acta Neuropathol. 1990;80:419–25. doi: 10.1007/BF00307697.
    1. Fowler JS, Wang GJ, Logan J, Xie S, Volkow ND, MacGregor RR, et al. Selective reduction of radiotracer trapping by deuterium substitution: comparison of carbon-11-L-deprenyl and carbon-11-deprenyl-D2 for MAO B mapping. J Nucl Med. 1995;36:1255–62.
    1. Hirvonen J, Kailajärvi M, Haltia T, Koskimies S, Någren K, Virsu P, et al. Assessment of MAO-B occupancy in the brain with PET and [11C]-L-deprenyl-D2: a dose-finding study with a novel MAO-B inhibitor, EVT 301. Clin Pharmacol Ther. 2009;85:506–12. doi: 10.1038/clpt.2008.241.
    1. Sturm S, Forsberg A, Nave S, Stenkrona P, Seneca N, Varrone A, et al. Positron emission tomography measurement of brain MAO-B inhibition in patients with Alzheimer’s disease and elderly controls after oral administration of sembragiline. Eur J Nucl Med Mol Imaging. 2017;44(3):382–91.
    1. Carter SF, Schöll M, Almkvist O, Wall A, Engler H, Långström B, et al. Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J Nucl Med. 2012;53:37–46. doi: 10.2967/jnumed.110.087031.
    1. Choo ILH, Carter SF, Schöll ML, Nordberg A. Astrocytosis measured by 11C-deprenyl PET correlates with decrease in gray matter density in the parahippocampus of prodromal Alzheimer’s patients. Eur J Nucl Med Mol Imaging. 2014;41:2120–6. doi: 10.1007/s00259-014-2859-7.
    1. Santillo AF, Gambini JP, Lannfelt L, Långström B, Ulla-Marja L, Kilander L, et al. In vivo imaging of astrocytosis in Alzheimer’s disease: an 11C-L-deuteriodeprenyl and PIB PET study. Eur J Nucl Med Mol Imaging. 2011;38:2202–8. doi: 10.1007/s00259-011-1895-9.
    1. Johansson A, Engler H, Blomquist G, Scott B, Wall A, Aquilonius S-M, et al. Evidence for astrocytosis in ALS demonstrated by [11C](L)-deprenyl-D2 PET. J Neurol Sci. 2007;255:17–22. doi: 10.1016/j.jns.2007.01.057.
    1. Fowler JS, Volkow ND, Cilento R, Wang GJ, Felder C, Logan J. Comparison of brain glucose metabolism and monoamine oxidase B (MAO B) in traumatic brain injury. Clin Positron Imaging. 1999;2:71–9. doi: 10.1016/S1095-0397(99)00010-2.
    1. Bergström M, Kumlien E, Lilja A, Tyrefors N, Westerberg G, Långström B. Temporal lobe epilepsy visualized with PET with 11C-L-deuterium-deprenyl—analysis of kinetic data. Acta Neurol Scand. 1998;98:224–31. doi: 10.1111/j.1600-0404.1998.tb07300.x.
    1. Kumlien E, Bergström M, Lilja A, Andersson J, Szekeres V, Westerberg CE, et al. Positron emission tomography with [11C]deuterium-deprenyl in temporal lobe epilepsy. Epilepsia. 1995;36:712–21. doi: 10.1111/j.1528-1157.1995.tb01051.x.
    1. Kumlien E, Nilsson A, Hagberg G, Långström B, Bergström M. PET with 11C-deuterium-deprenyl and 18F-FDG in focal epilepsy. Acta Neurol Scand. 2001;103:360–6. doi: 10.1034/j.1600-0404.2001.103006360.x.
    1. Logan J, Fowler JS, Volkow ND, Wang GJ, MacGregor RR, Shea C. Reproducibility of repeated measures of deuterium substituted [11C]L-deprenyl ([11C]L-deprenyl-D2) binding in the human brain. Nucl Med Biol. 2000;27:43–9. doi: 10.1016/S0969-8051(99)00088-8.
    1. Tong J, Meyer JH, Furukawa Y, Boileau I, Chang L-J, Wilson AA, et al. Distribution of monoamine oxidase proteins in human brain: implications for brain imaging studies. J Cereb Blood Flow Metab. 2013;33:863–71. doi: 10.1038/jcbfm.2013.19.
    1. Fowler JS, Volkow ND, Wang GJ, Logan J, Pappas N, Shea C, et al. Age-related increases in brain monoamine oxidase B in living healthy human subjects. Neurobiol Aging. 1997;18:431–5. doi: 10.1016/S0197-4580(97)00037-7.
    1. Müller-Gärtner HW, Links JM, Prince JL, Bryan RN, McVeigh E, Leal JP, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab. 1992;12:571–83. doi: 10.1038/jcbfm.1992.81.
    1. Schain M, Tóth M, Cselényi Z, Stenkrona P, Halldin C, Farde L, et al. Quantification of serotonin transporter availability with [11C]MADAM—a comparison between the ECAT HRRT and HR systems. Neuroimage. 2012;60:800–7. doi: 10.1016/j.neuroimage.2011.12.047.
    1. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–89. doi: 10.1006/nimg.2001.0978.
    1. Collste K, Forsberg A, Varrone A, Amini N, Aeinehband S, Yakushev I, et al. Test–retest reproducibility of [11C]PBR28 binding to TSPO in healthy control subjects. Eur J Nucl Med Mol Imaging. 2016;43:173–83. doi: 10.1007/s00259-015-3149-8.
    1. Nord M, Finnema SJ, Schain M, Halldin C, Farde L. Test–retest reliability of [11C]AZ10419369 binding to 5-HT1B receptors in human brain. Eur J Nucl Med Mol Imaging. 2014;41:301–7. doi: 10.1007/s00259-013-2529-1.
    1. Cervenka S, Halldin C, Farde L. Age-related diurnal effect on D2 receptor binding: a preliminary PET study. Int J Neuropsychopharmacol. 2008;11:671–8. doi: 10.1017/S1461145707008358.
    1. Minton GO, Young AH, McQuade R, Fairchild G, Ingram CD, Gartside SE. Profound changes in dopaminergic neurotransmission in the prefrontal cortex in response to flattening of the diurnal glucocorticoid rhythm: implications for bipolar disorder. Neuropsychopharmacology. 2009;34:2265–74. doi: 10.1038/npp.2009.53.
    1. Huang J, Zhong Z, Wang M, Chen X, Tan Y, Zhang S, et al. Circadian modulation of dopamine levels and dopaminergic neuron development contributes to attention deficiency and hyperactive behavior. J Neurosci. 2015;35:2572–87. doi: 10.1523/JNEUROSCI.2551-14.2015.
    1. Hampp G, Ripperger JA, Houben T, Schmutz I, Blex C, Perreau-Lenz S, et al. Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood. Curr Biol. 2008;18:678–83. doi: 10.1016/j.cub.2008.04.012.
    1. Braskie MN, Thompson PM. A focus on structural brain imaging in the Alzheimer’s disease neuroimaging initiative. Biol Psychiatry. 2014;75:527–33. doi: 10.1016/j.biopsych.2013.11.020.
    1. de Flores R, La Joie R, Chételat G. Structural imaging of hippocampal subfields in healthy aging and Alzheimer’s disease. Neuroscience. 2015;309:29–50. doi: 10.1016/j.neuroscience.2015.08.033.
    1. Varrone A, Sjöholm N, Eriksson L, Gulyás B, Halldin C, Farde L. Advancement in PET quantification using 3D-OP-OSEM point spread function reconstruction with the HRRT. Eur J Nucl Med Mol Imaging. 2009;36:1639–50. doi: 10.1007/s00259-009-1156-3.
    1. Jučaite A, Cselényi Z, Arvidsson A, Ahlberg G, Julin P, Varnäs K, et al. Kinetic analysis and test-retest variability of the radioligand [11C](R)-PK11195 binding to TSPO in the human brain—a PET study in control subjects. EJNMMI Res. 2012;2:15. doi: 10.1186/2191-219X-2-15.
    1. Fazio P, Schain M, Mrzljak L, Amini N, Nag S, Al-Tawil N, et al. Patterns of age related changes for phosphodiesterase type-10A in comparison with dopamine D 2/3 receptors and sub-cortical volumes in the human basal ganglia: a PET study with 18 F-MNI-659 and 11 C-raclopride with correction for partial volume effect. Neuroimage. 2017;152:330–9. doi: 10.1016/j.neuroimage.2017.02.047.
    1. Matuskey D, Worhunksy P, Correa E, Pittman B, Gallezot J-D, Nabulsi N, et al. Age-related changes in binding of the D2/3 receptor radioligand [11C](+)PHNO in healthy volunteers. Neuroimage. 2016;130:241–7. doi: 10.1016/j.neuroimage.2016.02.002.

Source: PubMed

Подписаться