Early Post-Operative Intervention of Whole-Body Vibration in Patients After Total Knee Arthroplasty: A Pilot Study

Yu-Hsuan Hsiao, Song-Hsiung Chien, Hung-Pin Tu, Jimmy Chun-Ming Fu, Shih-Ting Tsai, Ying-Shan Chen, Yi-Jen Chen, Chia-Hsin Chen, Yu-Hsuan Hsiao, Song-Hsiung Chien, Hung-Pin Tu, Jimmy Chun-Ming Fu, Shih-Ting Tsai, Ying-Shan Chen, Yi-Jen Chen, Chia-Hsin Chen

Abstract

(1) Background: Knee osteoarthritis causes pain, weakness, muscle atrophy, and disability. The application of whole-body vibration in patients with knee osteoarthritis can improve strength, balance, and functional activities. The purpose of the study is to evaluate the effects of early whole-body vibration intervention in patients after total knee arthroplasty. (2) Method: A single-blinded randomized control trial. Fifty-two patients with knee osteoarthritis post total knee replacement from a medical center in southern Taiwan were randomly assigned to either a whole-body vibration group or control group. Main outcome measures included pain severity, leg circumference, knee range of motion, knee extensor strength, a five-times sit to stand test, and a timed up and go test. (3) Results: Immediately post treatment, the patients in the vibration group showed a significant increase in knee extensor strength and improvement in calf swelling compared to the control group. A trend toward decrease in pain severity and improvement in functional performance were observed in both groups without a significant difference between the groups. There was no significant difference in knee range of motion (ROM) and functional performance between the groups. (4) Conclusions: The whole-body vibration intervention in patients early post total knee arthroplasty showed significant immediate effect in increasing knee extensor strength and decreasing calf swelling.

Keywords: strength; swelling; total knee arthroplasty; whole-body vibration.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
(A) Flowchart of the study. WBV, whole body vibration, OP, operation. (B) Test sequence. OP, operation; T1, pre-intervention assessment on post-operative day 2; T2, post-intervention assessment on post-operative day 2; T3, pre-intervention assessment on post-operative day 3; T4, post-intervention assessment on post-operative day 3.
Figure 2
Figure 2
Time course of mean change in knee extensor strength from baseline by time of treatment. Both groups showed improvement in knee extensor strength with time. The knee extensor strength is significant higher in the whole body vibration (WBV) group. T1, pre-intervention assessment on post-operative day 2; T2, post-intervention assessment on post-operative day 2; T3, pre-intervention assessment on post-operative day 3; T4, post-intervention assessment on post-operative day 3 (T4). * p < 0.05, ** p < 0.01.

References

    1. Leech R.D., Eyles J., Batt M.E., Hunter D.J. Lower extremity osteoarthritis: Optimising musculoskeletal health is a growing global concern: A narrative review. Br. J. Sports Med. 2019;53:806–811. doi: 10.1136/bjsports-2017-098051.
    1. Fransen M., Bridgett L., March L., Hoy D., Penserga E., Brooks P. The epidemiology of osteoarthritis in Asia. Int. J. Rheum. Dis. 2011;14:113–121. doi: 10.1111/j.1756-185X.2011.01608.x.
    1. Mora J.C., Przkora R., Cruz-Almeida Y. Knee osteoarthritis: Pathophysiology and current treatment modalities. J. Pain Res. 2018;11:2189–2196. doi: 10.2147/JPR.S154002.
    1. Gourdine J. Review of Nonsurgical Treatment Guidelines for Lower Extremity Osteoarthritis. Orthop. Nurs. 2019;38:303–308. doi: 10.1097/NOR.0000000000000591.
    1. Van Manen M.D., Nace J., Mont M.A. Management of primary knee osteoarthritis and indications for total knee arthroplasty for general practitioners. J. Am. Osteopath. Assoc. 2012;112:709–715.
    1. Ferket B.S., Feldman Z., Zhou J., Oei E.H., Bierma-Zeinstra S.M., Mazumdar M. Impact of total knee replacement practice: Cost effectiveness analysis of data from the Osteoarthritis Initiative. BMJ. 2017;356:j1131. doi: 10.1136/bmj.j1131.
    1. Noble P.C., Gordon M.J., Weiss J.M., Reddix R.N., Conditt M.A., Mathis K.B. Does total knee replacement restore normal knee function? Clin. Orthop. Relat. Res. 2005:157–165. doi: 10.1097/01.blo.0000150130.03519.fb.
    1. Bade M.J., Kohrt W.M., Stevens-Lapsley J.E. Outcomes before and after total knee arthroplasty compared to healthy adults. J. Orthop. Sports Phys. Ther. 2010;40:559–567. doi: 10.2519/jospt.2010.3317.
    1. Mizner R.L., Petterson S.C., Stevens J.E., Vandenborne K., Snyder-Mackler L. Early quadriceps strength loss after total knee arthroplasty. The contributions of muscle atrophy and failure of voluntary muscle activation. J. Bone Jt. Surg. Am. 2005;87:1047–1053. doi: 10.2106/00004623-200505000-00016.
    1. Holm B., Kristensen M.T., Bencke J., Husted H., Kehlet H., Bandholm T. Loss of knee-extension strength is related to knee swelling after total knee arthroplasty. Arch. Phys. Med. Rehabil. 2010;91:1770–1776. doi: 10.1016/j.apmr.2010.07.229.
    1. Stevens J.E., Mizner R.L., Snyder-Mackler L. Quadriceps strength and volitional activation before and after total knee arthroplasty for osteoarthritis. J. Orthop. Res. 2003;21:775–779. doi: 10.1016/S0736-0266(03)00052-4.
    1. Mizner R.L., Petterson S.C., Snyder-Mackler L. Quadriceps strength and the time course of functional recovery after total knee arthroplasty. J. Orthop. Sports Phys. Ther. 2005;35:424–436. doi: 10.2519/jospt.2005.35.7.424.
    1. Chughtai M., Elmallah R.D., Mistry J.B., Bhave A., Cherian J.J., McGinn T.L., Harwin S.F., Mont M.A. Nonpharmacologic Pain Management and Muscle Strengthening following Total Knee Arthroplasty. J. Knee Surg. 2016;29:194–200. doi: 10.1055/s-0035-1569147.
    1. Mistry J.B., Elmallah R.D., Bhave A., Chughtai M., Cherian J.J., McGinn T., Harwin S.F., Mont M.A. Rehabilitative Guidelines after Total Knee Arthroplasty: A Review. J. Knee Surg. 2016;29:201–217. doi: 10.1055/s-0036-1579670.
    1. Abercromby A.F., Amonette W.E., Layne C.S., McFarlin B.K., Hinman M.R., Paloski W.H. Vibration exposure and biodynamic responses during whole-body vibration training. Med. Sci. Sports Exerc. 2007;39:1794–1800. doi: 10.1249/mss.0b013e3181238a0f.
    1. Sitja-Rabert M., Rigau D., Fort Vanmeerghaeghe A., Romero-Rodriguez D., Bonastre Subirana M., Bonfill X. Efficacy of whole body vibration exercise in older people: A systematic review. Disabil. Rehabil. 2012;34:883–893. doi: 10.3109/09638288.2011.626486.
    1. Bemben D., Stark C., Taiar R., Bernardo-Filho M. Relevance of Whole-Body Vibration Exercises on Muscle Strength/Power and Bone of Elderly Individuals. Dose-Response. 2018;16:1559325818813066. doi: 10.1177/1559325818813066.
    1. Jepsen D.B., Thomsen K., Hansen S., Jorgensen N.R., Masud T., Ryg J. Effect of whole-body vibration exercise in preventing falls and fractures: A systematic review and meta-analysis. BMJ Open. 2017;7:e018342. doi: 10.1136/bmjopen-2017-018342.
    1. Tseng S.Y., Lai C.L., Chang K.L., Hsu P.S., Lee M.C., Wang C.H. Influence of Whole-Body Vibration Training Without Visual Feedback on Balance and Lower-Extremity Muscle Strength of the Elderly: A Randomized Controlled Trial. Medicine. 2016;95:e2709. doi: 10.1097/MD.0000000000002709.
    1. Anwer S., Alghadir A., Zafar H., Al-Eisa E. Effect of whole body vibration training on quadriceps muscle strength in individuals with knee osteoarthritis: A systematic review and meta-analysis. Physiotherapy. 2016;102:145–151. doi: 10.1016/j.physio.2015.10.004.
    1. Li X., Wang X.Q., Chen B.L., Huang L.Y., Liu Y. Whole-Body Vibration Exercise for Knee Osteoarthritis: A Systematic Review and Meta-Analysis. Evid. Based Complement. Altern. Med. 2015;2015:758147. doi: 10.1155/2015/758147.
    1. Lai Z., Lee S., Hu X., Wang L. Effect of adding whole-body vibration training to squat training on physical function and muscle strength in individuals with knee osteoarthritis. J. Musculoskelet. Neuronal Interact. 2019;19:333–341.
    1. Wang P., Yang L., Liu C., Wei X., Yang X., Zhou Y., Jiang H., Lei Z., Reinhardt J.D., He C. Effects of Whole Body Vibration Exercise associated with Quadriceps Resistance Exercise on functioning and quality of life in patients with knee osteoarthritis: A randomized controlled trial. Clin. Rehabil. 2016;30:1074–1087. doi: 10.1177/0269215515607970.
    1. Bokaeian H.R., Bakhtiary A.H., Mirmohammadkhani M., Moghimi J. The effect of adding whole body vibration training to strengthening training in the treatment of knee osteoarthritis: A randomized clinical trial. J. Bodyw. Mov. Ther. 2016;20:334–340. doi: 10.1016/j.jbmt.2015.08.005.
    1. Johnson A.W., Myrer J.W., Hunter I., Feland J.B., Hopkins J.T., Draper D.O., Eggett D. Whole-body vibration strengthening compared to traditional strengthening during physical therapy in individuals with total knee arthroplasty. Physiother. Theory Pract. 2010;26:215–225. doi: 10.3109/09593980902967196.
    1. Dos Santos R.A., Derhon V., Brandalize M., Brandalize D., Rossi L.P. Evaluation of knee range of motion: Correlation between measurements using a universal goniometer and a smartphone goniometric application. J. Bodyw. Mov. Ther. 2017;21:699–703. doi: 10.1016/j.jbmt.2016.11.008.
    1. Chamorro C., Armijo-Olivo S., De la Fuente C., Fuentes J., Javier Chirosa L. Absolute Reliability and Concurrent Validity of Hand Held Dynamometry and Isokinetic Dynamometry in the Hip, Knee and Ankle Joint: Systematic Review and Meta-analysis. Open Med. 2017;12:359–375. doi: 10.1515/med-2017-0052.
    1. Kim W.K., Kim D.K., Seo K.M., Kang S.H. Reliability and validity of isometric knee extensor strength test with hand-held dynamometer depending on its fixation: A pilot study. Ann. Rehabil. Med. 2014;38:84–93. doi: 10.5535/arm.2014.38.1.84.
    1. Pincivero D.M., Salfetnikov Y., Campy R.M., Coelho A.J. Angle- and gender-specific quadriceps femoris muscle recruitment and knee extensor torque. J. Biomech. 2004;37:1689–1697. doi: 10.1016/j.jbiomech.2004.02.005.
    1. Applebaum E.V., Breton D., Feng Z.W., Ta A.T., Walsh K., Chasse K., Robbins S.M. Modified 30-second Sit to Stand test predicts falls in a cohort of institutionalized older veterans. PLoS ONE. 2017;12:e0176946. doi: 10.1371/journal.pone.0176946.
    1. Kang L., Han P., Wang J., Ma Y., Jia L., Fu L., Yu H., Chen X., Niu K., Guo Q. Timed Up and Go Test can predict recurrent falls: A longitudinal study of the community-dwelling elderly in China. Clin. Interv. Aging. 2017;12:2009–2016. doi: 10.2147/CIA.S138287.
    1. Baczkowicz D., Skiba G., Czerner M., Majorczyk E. Gait and functional status analysis before and after total knee arthroplasty. Knee. 2018;25:888–896. doi: 10.1016/j.knee.2018.06.004.
    1. Stevens-Lapsley J.E., Balter J.E., Kohrt W.M., Eckhoff D.G. Quadriceps and hamstrings muscle dysfunction after total knee arthroplasty. Clin. Orthop. Relat. Res. 2010;468:2460–2468. doi: 10.1007/s11999-009-1219-6.
    1. Park Y.G., Kwon B.S., Park J.W., Cha D.Y., Nam K.Y., Sim K.B., Chang J., Lee H.J. Therapeutic effect of whole body vibration on chronic knee osteoarthritis. Ann. Rehabil. Med. 2013;37:505–515. doi: 10.5535/arm.2013.37.4.505.
    1. Avelar N.C., Simao A.P., Tossige-Gomes R., Neves C.D., Rocha-Vieira E., Coimbra C.C., Lacerda A.C. The effect of adding whole-body vibration to squat training on the functional performance and self-report of disease status in elderly patients with knee osteoarthritis: A randomized, controlled clinical study. J. Altern. Complement. Med. 2011;17:1149–1155. doi: 10.1089/acm.2010.0782.
    1. Lam F.M., Liao L.R., Kwok T.C., Pang M.Y. The effect of vertical whole-body vibration on lower limb muscle activation in elderly adults: Influence of vibration frequency, amplitude and exercise. Maturitas. 2016;88:59–64. doi: 10.1016/j.maturitas.2016.03.011.
    1. Corum M., Basoglu C., Yakal S., Sahinkaya T., Aksoy C. Effects of whole body vibration training on isokinetic muscular performance, pain, function, and quality of life in female patients with patellofemoral pain: A randomized controlled trial. J. Musculoskelet. Neuronal Interact. 2018;18:473–484.
    1. Kiiski J., Heinonen A., Jarvinen T.L., Kannus P., Sievanen H. Transmission of vertical whole body vibration to the human body. J. Bone Miner. Res. 2008;23:1318–1325. doi: 10.1359/jbmr.080315.
    1. Rhea M.R., Bunker D., Marin P.J., Lunt K. Effect of iTonic whole-body vibration on delayed-onset muscle soreness among untrained individuals. J. Strength Cond. Res. 2009;23:1677–1682. doi: 10.1519/JSC.0b013e3181b3f6cd.
    1. Bosco C., Iacovelli M., Tsarpela O., Cardinale M., Bonifazi M., Tihanyi J., Viru M., De Lorenzo A., Viru A. Hormonal responses to whole-body vibration in men. Eur. J. Appl. Physiol. 2000;81:449–454. doi: 10.1007/s004210050067.
    1. Ritzmann R., Kramer A., Gruber M., Gollhofer A., Taube W. EMG activity during whole body vibration: Motion artifacts or stretch reflexes? Eur. J. Appl. Physiol. 2010;110:143–151. doi: 10.1007/s00421-010-1483-x.
    1. Abbasi E., Kahrizi S., Razi M., Faghihzadeh S. The effect of whole-body vibration training on the lower extremity muscles’ electromyographic activities in patients with knee osteoarthritis. Med. J. Islamic Repub. Iran. 2017;31:107. doi: 10.14196/mjiri.31.107.
    1. Rice D.A., McNair P.J. Quadriceps arthrogenic muscle inhibition: Neural mechanisms and treatment perspectives. Semin. Arthritis Rheum. 2010;40:250–266. doi: 10.1016/j.semarthrit.2009.10.001.
    1. Dinoff A., Herrmann N., Swardfager W., Lanctot K.L. The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: A meta-analysis. Eur. J. Neurosci. 2017;46:1635–1646. doi: 10.1111/ejn.13603.
    1. Simao A.P., Mendonca V.A., Avelar N.C.P., da Fonseca S.F., Santos J.M., de Oliveira A.C.C., Tossige-Gomes R., Ribeiro V.G.C., Neves C.D.C., Balthazar C.H., et al. Whole Body Vibration Training on Muscle Strength and Brain-Derived Neurotrophic Factor Levels in Elderly Woman with Knee Osteoarthritis: A Randomized Clinical Trial Study. Front. Physiol. 2019;10:756. doi: 10.3389/fphys.2019.00756.
    1. Lythgo N., Eser P., de Groot P., Galea M. Whole-body vibration dosage alters leg blood flow. Clin. Physiol. Funct. Imaging. 2009;29:53–59. doi: 10.1111/j.1475-097X.2008.00834.x.
    1. Mahbub M.H., Hiroshige K., Yamaguchi N., Hase R., Harada N., Tanabe T. A systematic review of studies investigating the effects of controlled whole-body vibration intervention on peripheral circulation. Clin. Physiol. Funct. Imaging. 2019;39:363–377. doi: 10.1111/cpf.12589.
    1. Games K.E., Sefton J.M., Wilson A.E. Whole-body vibration and blood flow and muscle oxygenation: A meta-analysis. J. Athl. Train. 2015;50:542–549. doi: 10.4085/1062-6050-50.2.09.
    1. Ritzmann R., Krause A., Freyler K., Gollhofer A. Acute whole-body vibration increases reciprocal inhibition. Hum. Mov. Sci. 2018;60:191–201. doi: 10.1016/j.humov.2018.06.011.
    1. Ko M.C., Wu L.S., Lee S., Wang C.C., Lee P.F., Tseng C.Y., Ho C.C. Whole-body vibration training improves balance control and sit-to-stand performance among middle-aged and older adults: A pilot randomized controlled trial. Eur. Rev. Aging Phys. Act. 2017;14:11. doi: 10.1186/s11556-017-0180-8.

Source: PubMed

Подписаться