Detailed statistical analysis plan for the SafeBoosC III trial: a multinational randomised clinical trial assessing treatment guided by cerebral oxygenation monitoring versus treatment as usual in extremely preterm infants

Mathias Lühr Hansen, Adelina Pellicer, Christian Gluud, Eugene Dempsey, Jonathan Mintzer, Simon Hyttel-Sorensen, Anne Marie Heuchan, Cornelia Hagmann, Gabriel Dimitriou, Gerhard Pichler, Gunnar Naulaers, Guoqiang Cheng, Ana Vilan, Jakub Tkaczyk, Karen B Kreutzer, Monica Fumagalli, Olivier Claris, Siv Fredly, Tomasz Szczapa, Theis Lange, Janus Christian Jakobsen, Gorm Greisen, Mathias Lühr Hansen, Adelina Pellicer, Christian Gluud, Eugene Dempsey, Jonathan Mintzer, Simon Hyttel-Sorensen, Anne Marie Heuchan, Cornelia Hagmann, Gabriel Dimitriou, Gerhard Pichler, Gunnar Naulaers, Guoqiang Cheng, Ana Vilan, Jakub Tkaczyk, Karen B Kreutzer, Monica Fumagalli, Olivier Claris, Siv Fredly, Tomasz Szczapa, Theis Lange, Janus Christian Jakobsen, Gorm Greisen

Abstract

Background: Infants born extremely preterm are at high risk of dying or suffering from severe brain injuries. Treatment guided by monitoring of cerebral oxygenation may reduce the risk of death and neurologic complications. The SafeBoosC III trial evaluates the effects of treatment guided by cerebral oxygenation monitoring versus treatment as usual. This article describes the detailed statistical analysis plan for the main publication, with the aim to prevent outcome reporting bias and data-driven analyses.

Methods/design: The SafeBoosC III trial is an investigator-initiated, randomised, multinational, pragmatic phase III trial with a parallel group structure, designed to investigate the benefits and harms of treatment based on cerebral near-infrared spectroscopy monitoring compared with treatment as usual. Randomisation will be 1:1 stratified for neonatal intensive care unit and gestational age (lower gestational age (< 26 weeks) compared to higher gestational age (≥ 26 weeks)). The primary outcome is a composite of death or severe brain injury at 36 weeks postmenstrual age. Primary analysis will be made on the intention-to-treat population for all outcomes, using mixed-model logistic regression adjusting for stratification variables. In the primary analysis, the twin intra-class correlation coefficient will not be considered. However, we will perform sensitivity analyses to address this. Our simulation study suggests that the inclusion of multiple births is unlikely to significantly affect our assessment of intervention effects, and therefore we have chosen the analysis where the twin intra-class correlation coefficient will not be considered as the primary analysis.

Discussion: In line with the Declaration of Helsinki and the International Conference on Harmonization Good Clinical Practice guidelines, we have developed and published this statistical analysis plan for the SafeBoosC III trial, prior to any data analysis.

Trial registration: ClinicalTrials.org, NCT03770741. Registered on 10 December 2018.

Keywords: Cerebral oximetry; Extremely preterm; Near-infrared spectroscopy; Randomised clinical trial; Statistical analysis plan.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Trial flow diagram. BPD bronchopulmonary dysplasia, NEC necrotising enterocolitis, NICU neonatal intensive care unit, ROP retinopathy of prematurity

References

    1. Stoll BJ, Hansen NI, Bell EF, Shankaran S, Laptook AR, Walsh MC, et al. Neonatal outcomes of extremely preterm infants from the NICHD neonatal research network. Pediatrics. 2010;126:443–456. doi: 10.1542/peds.2009-2959.
    1. Volpe JJ. Brain injury in the premature infant: overview of clinical aspects, neuropathology, and pathogenesis. Semin Pediatr Neurol. 1998;5:135–151. doi: 10.1016/S1071-9091(98)80030-2.
    1. Adams-Chapman I, Heyne RJ, DeMauro SB, Duncan AF, Hintz SR, Pappas A, et al. Neurodevelopmental impairment among extremely preterm infants in the neonatal research network. Pediatrics. 2018;141:e20173091. doi: 10.1542/peds.2017-3091.
    1. Behrman R, Butler AS. Preterm birth: causes, consequences and prevention. Institute of Medicine. Washington, DC: National Academies Press; 2007.
    1. Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009;8:110–124. doi: 10.1016/S1474-4422(08)70294-1.
    1. Hyttel-Sørensen S, Pellicer A, Alderliesten T, Austin T, Van Bel F, Benders M, et al. Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase II randomised clinical trial. BMJ. 2015;350:1–11. doi: 10.1136/bmj.g7635.
    1. Hyttel-Sørensen S, Greisen G, Als-Nielsen B, Gluud C. Cerebral near-infrared spectroscopy monitoring for prevention of brain injury in very preterm infants. Cochrane Database Syst Rev. 2017;9:CD011506.
    1. Guideline on Good Clinical Practice E6(R2). London: European Medicines Agency, Committee for Human Medicinal Products. 2017.
    1. World Health Organization. Preterm birth. . 2018. Accessed 24 Nov 2019.
    1. Hansen ML, Pellicer A, Gluud C, Dempsey E, Mintzer J, Hyttel-Sørensen S, et al. Cerebral near-infrared spectroscopy monitoring versus treatment as usual for extremely preterm infants. A protocol for the SafeBoosC phase III randomized clinical trial. Manuscript accepted for publication in Trials. 2019
    1. Pellicer A, Greisen G, Benders M, Claris O, Dempsey E, Fumagally M, et al. The SafeBoosC phase II randomised clinical trial: a treatment guideline for targeted near-infrared-derived cerebral tissue oxygenation versus standard treatment in extremely preterm infants. Neonatology. 2013;104:171–178. doi: 10.1159/000351346.
    1. Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr. 1978;92:529–534. doi: 10.1016/S0022-3476(78)80282-0.
    1. Holsti A, Serenius F, Farooqi A. Impact of major neonatal morbidities on adolescents born at 23–25 weeks of gestation. Acta Paediatr. 2018;107:1893–1901. doi: 10.1111/apa.14445.
    1. Bell MJ, Ternberg JL, Feigin RD, Keating JP, Marshall R, Barton L, et al. Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging. Ann Surg. 1978;187:1–7. doi: 10.1097/00000658-197801000-00001.
    1. Valls-I-Soler A, Carnielli V, Claris O, de la Cruz BJ, Halliday HL, Hallman M, Hummler H. Weindling M; Scientific Steering Committee von EuroNeoStat (siehe Anhang). [EuroNeoStat: a European information system on the outcomes of care for very-low-birth-weight infants (< 1500 g)] Z Geburtshilfe Neonatol. 2008;212(3):116–8. doi: 10.1055/s-2008-1076802.German.
    1. Hintz SR, Barnes PD, Bulas D, Slovis TL, Finer NN, Wrage LA, et al. Neuroimaging and neurodevelopmental outcome in extremely preterm infants. Pediatrics. 2015;135:e32–e42. doi: 10.1542/peds.2014-0898.
    1. Schmidt B, Roberts RS, Davis PG, Doyle LW, Asztalos EV, Opie G, et al. Prediction of late death or disability at age 5 years using a count of 3 neonatal morbidities in very low birth weight infants. J Pediatr. 2015;167:982–986.e2. doi: 10.1016/j.jpeds.2015.07.067.
    1. Davidson L, Berkelhamer S. Bronchopulmonary dysplasia: chronic lung disease of infancy and long-term pulmonary outcomes. J Clin Med. 2017;6:4. doi: 10.3390/jcm6010004.
    1. Vermont Oxford Network. Vermont Oxford Network. 2019. . Accessed 24 Nov 2019.
    1. Jakobsen JC, Gluud C, Winkel P, Lange T, Wetterslev J. The thresholds for statistical and clinical significance – a five-step procedure for evaluation of intervention effects in randomised clinical trials. BMC Med Res Methodol. 2014;14:34. doi: 10.1186/1471-2288-14-34.
    1. Amrhein V, Greenland S, McShane B. Scientists rise up against statistical significance. Nature. 2019;567:305–307. doi: 10.1038/d41586-019-00857-9.
    1. Zhang J, Quan H, Ng J, Stepanavage ME. Some statistical methods for multiple endpoints in clinical trials. Control Clin Trials. 1997;18:204–221. doi: 10.1016/S0197-2456(96)00129-8.
    1. Goodman SN. Introduction to Bayesian methods I: measuring the strength of evidence. Clin Trials J Soc Clin Trials. 2005;2:282–290. doi: 10.1191/1740774505cn098oa.
    1. Wasserstein RL, Schirm AL, Lazar NA. Moving to a world beyond “p < 0.05”. Am Stat. 2019;73:1–19. doi: 10.1080/00031305.2019.1583913.
    1. DeMets DL, Lan KKG. Interim analysis: the alpha spending function approach. Stat Med. 1994;13:1341–1352. doi: 10.1002/sim.4780131308.
    1. Guyatt GH, Briel M, Glasziou P, Bassler D, Montori VM. Problems of stopping trials early. BMJ. 2012;344:e3863. doi: 10.1136/bmj.e3863.
    1. Jakobsen JC, Gluud C, Wetterslev J, Winkel P. When and how should multiple imputation be used for handling missing data in randomised clinical trials – a practical guide with flowcharts. BMC Med Res Methodol. 2017;17:162. doi: 10.1186/s12874-017-0442-1.
    1. Little RJ, D’Agostino R, Cohen ML, Dickersin K, Emerson SS, Farrar JT, et al. The prevention and treatment of missing data in clinical trials. N Engl J Med. 2012;367:1355–1360. doi: 10.1056/NEJMsr1203730.
    1. Groenwold RHH, Moons KGM, Vandenbroucke JP. Randomized trials with missing outcome data: how to analyze and what to report. Can Med Assoc J. 2014;186:1153–1157. doi: 10.1503/cmaj.131353.
    1. Gates S, Brocklehurst P. How should randomised trials including multiple pregnancies be analysed? BJOG An Int J Obstet Gynaecol. 2004;111:213–219. doi: 10.1111/j.1471-0528.2004.00059.x.
    1. Yelland LN, Sullivan TR, Collins CT, Price DJ, McPhee AJ, Lee KJ. Accounting for twin births in sample size calculations for randomised trials. Paediatr Perinat Epidemiol. 2018;32:380–387. doi: 10.1111/ppe.12471.
    1. Shaffer ML, Hiriote S. Analysis of time-to-event and duration outcomes in neonatal clinical trials with twin births. Contemp Clin Trials. 2009;30:150–154. doi: 10.1016/j.cct.2008.11.001.
    1. Kahan BC, Morris TP. Reporting and analysis of trials using stratified randomisation in leading medical journals: review and reanalysis. BMJ. 2012;345:e5840. doi: 10.1136/bmj.e5840.
    1. Kahan BC, Morris TP. Improper analysis of trials randomised using stratified blocks or minimisation. Stat Med. 2012;31:328–340. doi: 10.1002/sim.4431.
    1. Brennan KC. Accounting for centre-effects in multicentre trials with a binary outcome – when, why, and how? BMC Med Res Methodol. 2014;14:1–11. doi: 10.1186/1471-2288-14-1.
    1. Deeks JJ, Higgins JPT, Altman DG. Chapter 10: analysing data and undertaking meta-analyses. Draft version (29 January 2019) for inclusion. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editors. Cochrane handbook for systematic reviews of interventions. London: Cochrane. In Press.
    1. Moher D, Hopewell S, Schulz KF, Montori V, Gotzsche PC, Devereaux PJ, et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c869. doi: 10.1136/bmj.c869.
    1. Li G, Taljaard M, Van den Heuvel ER, Levine MA, Cook DJ, Wells GA, et al. An introduction to multiplicity issues in clinical trials: the what, why, when and how. Int J Epidemiol. 2017;46:746–755. doi: 10.1093/ije/dyx211.
    1. Abdi H. The Bonferonni and Šidák corrections for multiple comparisons. In: Salkind N, editor. Encyclopedia of measurement and statistics. Thousand Oaks: Sage; 2007. pp. 1–9.
    1. Akobeng AK. Understanding type I and type II errors, statistical power and sample size. Acta Paediatr. 2016;105:605–660. doi: 10.1111/apa.13384.
    1. Yu Y, Zhang K, Zhang L, Zong H, Meng L, Han R. Cerebral near-infrared spectroscopy (NIRS) for perioperative monitoring of brain oxygenation in children and adults. Cochrane Database Syst Rev. 2018;1:CD010947.
    1. Taillefer MC, Denault AY. Cerebral near-infrared spectroscopy in adult heart surgery: systematic review of its clinical efficacy. Can J Anaesth. 2005;52:79–87. doi: 10.1007/BF03018586.
    1. Rothwell PM. External validity of randomised controlled trials: “To whom do the results of this trial apply?”. Lancet. 2005;365:82–93. doi: 10.1016/S0140-6736(04)17670-8.
    1. Ward RM, Beachy JC. Neonatal complications following preterm birth. BJOG An Int J Obstet Gynaecol. 2003;110:8–16. doi: 10.1046/j.1471-0528.2003.00012.x.
    1. Savović J, Turner RM, Mawdsley D, Jones HE, Beynon R, Higgins JPT, et al. Association between risk-of-bias assessments and results of randomized trials in Cochrane Reviews: the ROBES Meta-Epidemiologic Study. Am J Epidemiol. 2018;187:1113–1122. doi: 10.1093/aje/kwx344.
    1. Hrobjartsson A, Thomsen ASS, Emanuelsson F, Tendal B, Hilden J, Boutron I, et al. Observer bias in randomized clinical trials with measurement scale outcomes: a systematic review of trials with both blinded and nonblinded assessors. Can Med Assoc J. 2013;185:E201–E211. doi: 10.1503/cmaj.120744.
    1. Hróbjartsson A, Thomsen ASS, Emanuelsson F, Tendal B, Rasmussen JV, Hilden J, et al. Observer bias in randomized clinical trials with time-to-event outcomes: systematic review of trials with both blinded and non-blinded outcome assessors. Int J Epidemiol. 2014;43:937–948. doi: 10.1093/ije/dyt270.
    1. Hróbjartsson A, Emanuelsson F, Skou Thomsen AS, Hilden J, Brorson S. Bias due to lack of patient blinding in clinical trials. A systematic review of trials randomizing patients to blind and nonblind sub-studies. Int J Epidemiol. 2014;43:1272–1283. doi: 10.1093/ije/dyu115.
    1. EMA (European Medicines Agency). Guideline on multiplicity issues in clinical trials. 2017.

Source: PubMed

Подписаться