Patients with severe low back pain exhibit a low level of physical activity before lumbar fusion surgery: a cross-sectional study

Hanna Lotzke, Max Jakobsson, Annelie Gutke, Maria Hagströmer, Helena Brisby, Olle Hägg, Rob Smeets, Mari Lundberg, Hanna Lotzke, Max Jakobsson, Annelie Gutke, Maria Hagströmer, Helena Brisby, Olle Hägg, Rob Smeets, Mari Lundberg

Abstract

Background: People with severe low back pain are at higher risk of poor health. Patients scheduled for lumbar fusion surgery are assumed to have low levels of physical activity, but few data exist. The aim of the study was firstly to investigate preoperative levels of objectively measured physical activity in patients with severe low back pain waiting for lumbar fusion surgery, and secondly to investigate whether factors in the fear-avoidance model were associated with these levels.

Methods: We included 118 patients waiting for lumbar fusion surgery (63 women and 55 men; mean age 46 years). Physical activity expressed as steps per day and total time spent in at least moderate-intensity physical activity was assessed with ActiGraph GT3X+ accelerometers. The data were compared to the WHO recommendations on physical activity for health. Whether factors in the fear-avoidance model were associated with physical activity was evaluated by two different multiple linear regression models.

Results: Ninety-six patients (83%) did not reach the WHO recommendations on physical activity for health, and 19 (16%) patients took fewer than 5000 steps per day, which indicates a sedentary lifestyle. On a group level, higher scores for fear of movement and disability were associated with lower numbers of steps per day.

Conclusion: A high proportion of the patients did not reach the WHO recommendations on physical activity and are therefore at risk of poor health due to insufficient physical activity. We also found a negative association between both fear of movement and disability, and the number of steps per day. Action needs to be taken to motivate patients to be more physically active before surgery, to improve health postoperatively. There is a need for interventions aimed at increasing physical activity levels and reducing barriers to physical activity in the prehabilitation phase of this patient group.

Trial registration: Current Controlled Trials ISCRTN 17115599 , retrospectively Registered 18 may 2015.

Keywords: Accelerometer; Chronic low back pain; Kinesiophobia; Lumbar surgery; Steps per day.

Conflict of interest statement

Ethics approval and consent to participate

The study has been approved by the Regional Ethical Review Board in Gothenburg (Dnr. 586–11, Dnr 7527–15).

All patients that agreed to participate signed an informed consent form provided with the independent observer.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Revised fear-avoidance model. VAS, Visual Analogue Scale; PCS, Pain Catastrophizing Scale; TSK, Tampa Scale for Kinesiophobia; SEES, Self-Efficacy for Exercise Scale; ODI, Oswestry Disability Index; HADS, Hospital Anxiety and Depression Scale; GT3X+, physical activity of least moderate-intensity, steps per day
Fig. 2
Fig. 2
Overview of the variables in the regression models. PCS, Pain Catastrophizing Scale; TSK, Tampa Scale for Kinesiophobia; SEES, Self-Efficacy for Exercise Scale; HADS, Hospital Anxiety and Depression Scale; ODI, Oswestry Disability Index; VAS, Visual Analogue Scale
Fig. 3
Fig. 3
Histogram of at least moderate- intensity physical activity per week (10-min bouts)
Fig. 4
Fig. 4
Histogram of steps per day

References

    1. Hoy D, Bain C, Williams G, March L, Brooks P, Blyth F, et al. A systematic review of the global prevalence of low back pain. Arthritis Rheumatism. 2012;64(6):2028–2037. doi: 10.1002/art.34347.
    1. McGirt MJ, Bydon M, Archer KR, Devin CJ, Chotai S, Parker SL, et al. An analysis from the Quality Outcomes Database, Part 1. Disability, quality of life, and pain outcomes following lumbar spine surgery: predicting likely individual patient outcomes for shared decision-making. J Neurosurg Spine. 2017:1–13.
    1. Strömqvist B, Fritzell P, Hägg O, Knutsson B, Sandén B. SweSpine, the Swedish spine register – 2014 report. Stockholm: Swedish Society of Spinal Surgeons; 2014. p. 113.
    1. Strömqvist B, Fritzell P, Hagg O, Jonsson B, Sanden B. Swespine: the Swedish spine register: the 2012 report. Eur Spine J. 2013;22(4):953–974. doi: 10.1007/s00586-013-2758-9.
    1. Chotai S, Sivaganesan A, Parker SL, McGirt MJ, Devin CJ. Patient-specific factors associated with dissatisfaction after elective surgery for degenerative spine diseases. Neurosurgery. 2015;77(2):157–163. doi: 10.1227/NEU.0000000000000768.
    1. Wilmot EG, Edwardson CL, Achana FA, Davies MJ, Gorely T, Gray LJ, et al. Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. Diabetologia. 2012;55(11):2895–2905. doi: 10.1007/s00125-012-2677-z.
    1. Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219–229. doi: 10.1016/S0140-6736(12)61031-9.
    1. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1545–1602. doi: 10.1016/S0140-6736(16)31678-6.
    1. Hoy D, Brooks P, Blyth F, Buchbinder R. The epidemiology of low back pain. Best Pract Res Clin Rheumatol. 2010;24(6):769–781. doi: 10.1016/j.berh.2010.10.002.
    1. Steffens D, Maher CG, Pereira LS, Stevens ML, Oliveira VC, Chapple M, et al. Prevention of low Back pain: a systematic review and meta-analysis. JAMA Intern Med. 2016;176(2):199–208. doi: 10.1001/jamainternmed.2015.7431.
    1. Buchbinder R, van Tulder M, Oberg B, Costa LM, Woolf A, Schoene M, et al. Low back pain: a call for action. Lancet. 2018;391(10137):2384–2388. doi: 10.1016/S0140-6736(18)30488-4.
    1. WHO . Global health risks – Mortality and burden of disease attributable to selected major risks. Geneva: World Health Organization; 2009. p. 62.
    1. Tudor-Locke C, Craig C, Brown W, Clemes S, De Cocker K, Giles-Corti B, et al. How many steps/day are enough? For adults. Int J Behav Nutr Phys Act. 2011;8(1):79. doi: 10.1186/1479-5868-8-79.
    1. Pinto RZ, Ferreira PH, Kongsted A, Ferreira ML, Maher CG, Kent P. Self-reported moderate-to-vigorous leisure time physical activity predicts less pain and disability over 12 months in chronic and persistent low back pain. Eur J Pain. 2014;18(8):1190–1198. doi: 10.1002/j.1532-2149.2014.00468.x.
    1. Lin CW, McAuley JH, Macedo L, Barnett DC, Smeets RJ, Verbunt JA. Relationship between physical activity and disability in low back pain: a systematic review and meta-analysis. Pain. 2011;152(3):607–613. doi: 10.1016/j.pain.2010.11.034.
    1. Mobbs RJ, Phan K, Maharaj M, Rao PJ. Physical activity measured with accelerometer and self-rated disability in lumbar spine surgery: a prospective study. Global Spine J. 2016;6(5):459–464. doi: 10.1055/s-0035-1565259.
    1. Mancuso CA, Duculan R, Girardi FP. Healthy physical activity levels below recommended thresholds two years after lumbar spine surgery. Spine (Phila Pa 1976) 2017;42(4):E241–E2e7. doi: 10.1097/BRS.0000000000001757.
    1. Lindback Y, Tropp H, Enthoven P, Abbott A, Oberg B. PREPARE: presurgery physiotherapy for patients with degenerative lumbar spine disorder: a randomized controlled trial. Spine J. 2017.
    1. Rolving N, Obling KH, Christensen FB, Fonager K. Physical activity level, leisure activities and related quality of life 1 year after lumbar decompression or total hip arthroplasty. Eur Spine J. 2013;22(4):802–808. doi: 10.1007/s00586-012-2535-1.
    1. Smuck M, Muaremi A, Zheng P, Norden J, Sinha A, Hu R, et al. Objective measurement of function following lumbar spinal stenosis decompression reveals improved functional capacity with stagnant real-life physical activity. Spine J. 2018;18(1):15–21. doi: 10.1016/j.spinee.2017.08.262.
    1. Norden J, Smuck M, Sinha A, Hu R, Tomkins-Lane C. Objective measurement of free-living physical activity (performance) in lumbar spinal stenosis: are physical activity guidelines being met? Spine J. 2017;17(1):26–33. doi: 10.1016/j.spinee.2016.10.016.
    1. Slootmaker SM, Schuit AJ, Chinapaw MJ, Seidell JC, van Mechelen W. Disagreement in physical activity assessed by accelerometer and self-report in subgroups of age, gender, education and weight status. Int J Behav Nutr Phys Act. 2009;6:17. doi: 10.1186/1479-5868-6-17.
    1. Bauman AE, Reis RS, Sallis JF, Wells JC, Loos RJ, Martin BW. Correlates of physical activity: why are some people physically active and others not? Lancet. 2012;380(9838):258–271. doi: 10.1016/S0140-6736(12)60735-1.
    1. Woby SR, Roach NK, Urmston M, Watson PJ. The relation between cognitive factors and levels of pain and disability in chronic low back pain patients presenting for physiotherapy. Eur J Pain. 2007;11(8):869–877. doi: 10.1016/j.ejpain.2007.01.005.
    1. Lundberg M, Frennered K, Hagg O, Styf J. The impact of fear-avoidance model variables on disability in patients with specific or nonspecific chronic low back pain. Spine (Phila Pa 1976) 2011;36(19):1547–1553. doi: 10.1097/BRS.0b013e3181f61660.
    1. Mannion AF, Elfering A, Staerkle R, Junge A, Grob D, Dvorak J, et al. Predictors of multidimensional outcome after spinal surgery. Eur Spine J. 2007;16(6):777–786. doi: 10.1007/s00586-006-0255-0.
    1. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Int J Surg. 2014;12(12):1495–1499. doi: 10.1016/j.ijsu.2014.07.013.
    1. Lotzke H, Jakobsson M, Brisby H, Gutke A, Hagg O, Smeets R, et al. Use of the PREPARE (PREhabilitation, physical activity and exeRcisE) program to improve outcomes after lumbar fusion surgery for severe low back pain: a study protocol of a person-centred randomised controlled trial. BMC Musculoskelet Disord. 2016;17(1):349. doi: 10.1186/s12891-016-1203-8.
    1. Trost SG, McIver KL, Pate RR. Conducting accelerometer-based activity assessments in field-based research. Med Sci Sports Exerc. 2005;37(11 Suppl):S531–S543. doi: 10.1249/01.mss.0000185657.86065.98.
    1. Sokka T. Assessment of pain in rheumatic diseases. Clin Exp Rheumatol. 2005;23(5 Suppl 39):S77–S84.
    1. Sullivan MJ, Adams H, Rhodenizer T, Stanish WD. A psychosocial risk factor--targeted intervention for the prevention of chronic pain and disability following whiplash injury. Phys Ther. 2006;86(1):8–18. doi: 10.1093/ptj/86.1.8.
    1. Lundberg MKE, Styf J, Carlsson SG. A psychometric evaluation of the Tampa scale for Kinesiophobia - from a physiotherapeutic perspective. Physiother Theory Pract. 2004;20(2):121–133. doi: 10.1080/09593980490453002.
    1. Rydwik E, Hovmoller F, Bostrom C. Aspects of reliability and validity of the Swedish version of the self-efficacy for exercise scale for older people. Physiother Theory Pract. 2014;30(2):131–137. doi: 10.3109/09593985.2013.838614.
    1. Breeman S, Cotton S, Fielding S, Jones GT. Normative data for the hospital anxiety and depression scale. Qual Life Res. 2015;24(2):391–398. doi: 10.1007/s11136-014-0763-z.
    1. Fairbank JCT, Pynsent PB. The Oswestry disability index. Spine (Phila Pa 1976) 2000;25(22):2940–2953. doi: 10.1097/00007632-200011150-00017.
    1. EuroQol Group EuroQol--a new facility for the measurement of health-related quality of life. Health Policy. 1990;16(3):199–208. doi: 10.1016/0168-8510(90)90421-9.
    1. Choi L, Liu Z, Matthews CE, Buchowski MS. Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc. 2011;43(2):357–364. doi: 10.1249/MSS.0b013e3181ed61a3.
    1. Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–188. doi: 10.1249/mss.0b013e31815a51b3.
    1. Tudor-Locke C, Schuna JM, Jr, Barreira TV, Mire EF, Broyles ST, Katzmarzyk PT, et al. Normative steps/day values for older adults: NHANES 2005-2006. J Gerontol A Biol Sci Med Sci. 2013;68(11):1426–1432. doi: 10.1093/gerona/glt116.
    1. Bursac Z, Gauss CH, Williams DK, Hosmer DW. Purposeful selection of variables in logistic regression. Source Code Biol Med. 2008;3:17. doi: 10.1186/1751-0473-3-17.
    1. Cohen J. Applied multiple regression/correlation analysis for the behavioral sciences. Mahwah: L. Erlbaum Associates; 2003.
    1. Tudor-Locke C, Craig CL, Thyfault JP, Spence JC. A step-defined sedentary lifestyle index: <5000 steps/day. Appl Physiol Nutr Metab. 2013;38(2):100–114. doi: 10.1139/apnm-2012-0235.
    1. Hagstromer M, Troiano RP, Sjostrom M, Berrigan D. Levels and patterns of objectively assessed physical activity--a comparison between Sweden and the United States. Am J Epidemiol. 2010;171(10):1055–1064. doi: 10.1093/aje/kwq069.
    1. Luzak A, Heier M, Thorand B, Laxy M, Nowak D, Peters A, et al. Physical activity levels, duration pattern and adherence to WHO recommendations in German adults. PLoS One. 2017;12(2):e0172503. doi: 10.1371/journal.pone.0172503.
    1. Koenders N, Rushton A, Verra ML, Willems PC, Hoogeboom TJ, Staal JB. Pain and disability after first-time spinal fusion for lumbar degenerative disorders: a systematic review and meta-analysis. Eur Spine J. 2018.
    1. Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation. 2007;116(9):1081–1093. doi: 10.1161/CIRCULATIONAHA.107.185649.
    1. Donnarumma P, Presaghi F, Tarantino R, Fragale M, Rullo M, Delfini R. The impact of pelvic balance, physical activity, and fear-avoidance on the outcome after decompression and instrumented fusion for degenerative lumbar stenosis. Eur Spine J. 2017;26(2):428–433. doi: 10.1007/s00586-016-4644-8.
    1. Abbott AD, Tyni-Lenne R, Hedlund R. The influence of psychological factors on pre-operative levels of pain intensity, disability and health-related quality of life in lumbar spinal fusion surgery patients. Physiotherapy. 2010;96(3):213–221. doi: 10.1016/j.physio.2009.11.013.
    1. Kass NE, Maman S, Atkinson J. Motivations, understanding, and voluntariness in international randomized trials. IRB. 2005;27(6):1–8. doi: 10.2307/3563534.
    1. Prince SA, Adamo KB, Hamel ME, Hardt J, Connor Gorber S, Tremblay M. A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phys Act. 2008;5:56. doi: 10.1186/1479-5868-5-56.
    1. Ham SA, Reis JP, Strath SJ, Dubose KD, Ainsworth BE. Discrepancies between methods of identifying objectively determined physical activity. Med Sci Sports Exerc. 2007;39(1):52–58. doi: 10.1249/01.mss.0000235886.17229.42.

Source: PubMed

Подписаться