Changes in brain connectivity related to the treatment of depression measured through fMRI: a systematic review

Esteve Gudayol-Ferré, Maribel Peró-Cebollero, Andrés A González-Garrido, Joan Guàrdia-Olmos, Esteve Gudayol-Ferré, Maribel Peró-Cebollero, Andrés A González-Garrido, Joan Guàrdia-Olmos

Abstract

Depression is a mental illness that presents alterations in brain connectivity in the Default Mode Network (DMN), the Affective Network (AN) and other cortical-limbic networks, and the Cognitive Control Network (CCN), among others. In recent years the interest in the possible effect of the different antidepressant treatments on functional connectivity has increased substantially. The goal of this paper is to conduct a systematic review of the studies on the relationship between the treatment of depression and brain connectivity. Nineteen studies were found in a systematic review on this topic. In all of them, there was improvement of the clinical symptoms after antidepressant treatment. In 18 out of the 19 studies, clinical improvement was associated to changes in brain connectivity. It seems that both DMN and the connectivity between cortical and limbic structures consistently changes after antidepressant treatment. However, the current evidence does not allow us to assure that the treatment of depression leads to changes in the CCN. In this regard, some papers report a positive correlation between changes in brain connectivity and improvement of depressive symptomatology, particularly when they measure cortical-limbic connectivity, whereas the changes in DMN do not significantly correlate with clinical improvement. Finally, some papers suggest that changes in connectivity after antidepressant treatment might be partly related to the mechanisms of action of the treatment administered. This effect has been observed in two studies with stimulation treatment (one with rTMS and one with ECT), and in two papers that administered three different pharmacological treatments. Our review allows us to make a series of recommendations that might guide future researchers exploring the effect of anti-depression treatments on brain connectivity.

Keywords: antidepressants; brain connectivity; depression; depression treatment; fMRI.

Figures

Figure 1
Figure 1
Flow chart of the paper selection process.

References

    1. *. Abbott C. C., Jones T., Lemke N. T., Gallegos P., McClintock S. M., Mayer A. R., et al. . (2014). Hippoccampal structural and functional changes associated with electroconvulsive theraphy response. Transl. Psychiatry 4, 1–7. 10.1038./tp.2014.124
    1. *. Abbott C. C., Lemke N. T., Gopal S., Thoma R. J., Bustillo J., Calhoun V. D., et al. . (2013). Electroconvulsive therapy response in major depressive disorder: a pilot functional network connectivity resting state FMRI investigation. Front. Psychiatry 4:10. 10.3389/fpsyt.2013.00010
    1. *. Aizenstein H. J., Butters M. A., Wu M., Mazurkewicz L. M., Stenger V. A., Gianaros P. J., et al. . (2009). Altered functioning of the executive control circuit in late-life depression: episodic and persistent phenomena. Am. J. Geriatr. Psychiatry 17, 30–42. 10.1097/JGP.0b013e31817b60af
    1. Anand A., Li Y., Wang Y., Gardner K., Lowe M. J. (2007). Reciprocal effects of antidepressant treatment on activity and connectivity of the mood regulating circuit: and FMRI study. J. Neuropsychiatry Clin. Neurosci. 19, 274–282. 10.1176/appi.neuropsych.19.3.274
    1. *. Anand A., Li Y., Wang Y., Wu J., Gao S., Bukhari L., et al. . (2005). Antidepressant effect on connectivity of the mood-regulating circuit: an FMRi study. Neuropsychopharmacology 30, 1334–1334. 10.1038/sj.npp.1300725
    1. *. Andreescu C., Tudorascu D. L., Butters M. A., Tamburo E., Patel M., Price J., et al. . (2013). Resting-state functional connectivity and treatment-response in late-life depression. Psychiatry Res. 214, 313–321. 10.1016/j.pscychresns.2013.08.007
    1. *. Baeken C., Marinazzo D., Wu G. R., Van Schuerbeek P., De Mey J., Marchetti I., et al. . (2014). Accelerated HF-rTMS in treatment -resistant unipolar depression: insights from subgenual anterior cingulate functional connectivity. World J. Biol. Psychiatry 15, 286–297. 10.3109/15622975.2013.872295
    1. *. Beall E. B., Malone D. A., Dale R. M., Muzina D. J., Koenig K. A., Bhattacharrya P. K., et al. . (2012). Effeects of electroconvulsive therapy on brain functional activation and connectivity in depression. J. ECT 28, 234–241. 10.1097/YCT.0b013e31825ebcc7
    1. Belleau E. L. L., Taubitz L. E., Larson C. L. (2014). Imbalance of default mode and regulatory networks during externally focused processing in depression. Soc. Cogn. Affect. Neurosci. 10, 744–751. 10.1093/scan/nsu117
    1. Broyd S. J., Demanuele C., Debener S., Helps S. K., James C. J., Sonuga-Barke E. J. (2009). Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci. Biobehav. Rev. 33, 279–296. 10.1016/j.neubiorev.2008.09.002
    1. *. Chen C. H., Suckling J. O. C., Fu C. H., Williams S. C. R., Walsh N. D., Mitterschiffthaler M. T., et al. . (2008). Functional coupling of the amygdale in depressed patients treated with antidepressant medication. Neuropsychopharmacology 33, 1909–1918. 10.1038/sj.npp.1301593
    1. Corbetta M., Shulman G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–2015. 10.1038/nrn755
    1. Delaveau P., Jabourian M., Lemogne C., Guionnet S., Bergouignan L., Fossati P. (2011). Brain effects of antidepressants in major depression: a meta-analysis of emotional processing studies. J. Affect. Disord. 130, 66–74. 10.1016/jad.2010.09.032
    1. Dutta A., McKie S., Deakin J. F. W. (2014). Resting-state networks in major depressive disorder. Psychiatry Res. 224, 139–151. 10.1016/j.pscychresns.2014.10.003
    1. Fales C. L., Barch D. M., Rundle M. M., Mintun M. A., Snyder A. Z., Cohen J. D., et al. . (2008). Altered emotional interference processing in affective and cognitive-control brain circuitry in major depression. Biol. Psychiatry 63, 377–384. 10.1016/j.biopsych.2007.06.012
    1. Fitzgerald P. B., Laird A. R., Maller J., Daskalakis Z. J. (2014). A meta-analytic study of changes I brain activation in depression. Hum. Brain. Mapp. 29, 683–695. 10.1002/hbm.20426
    1. Friston K. J. (2011). Functional and effective connectivity. A review. Brain Connect. 1, 13–30. 10.1089/brain.2011.0008
    1. Furman D. J., Hamilton J. P., Gotlib I. H. (2011). Frontostriatal functional connectivity in major depressive disorder. Biol. Mood Anxiety Disord. 1:11. 10.1186/2045-5380-1-11
    1. Gallardo G., González-Garrido A. A., Gudayol-Ferré E., Guàrdia-Olmos J. (2015). Type 1 Diabetes modifies brain activation in young patients while performing visuospatial working memory tasks. J. Diabetes Res. 2015:703512. 10.1155/2015/703512
    1. Greicius M. D., Flores B. H., Menon V., Glover G. H., Solvason H. B., Kenna H., et al. . (2007). Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. psychiatry 62, 429–437. 10.1016/j.biopsych.2006.09.020
    1. Greicius M. D., Krasnow B., Reiss A. L., Menod V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. U.S.A. 100, 253–258. 10.1073/pnas.0135058100
    1. Greicius M. D., Supekar K., Menon V., Dougherty R. F. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. cortex 19, 72–78. 10.1093/cercor/bhn059
    1. Guo W., Liu F., Xue Z., Gao K., Liu Z., Xiao C., et al. . (2013). Abnormal resting-state cerebellar-cerebral functional connectivity in treatment-resistant depression and treatment sensitive depression. Progr. Neuropsychopharmacol. Biol. Psychiatry 44, 51–57. 10.1016/j.pnpbp.2013.01.010
    1. Heller A. S., Johnstone T., Light S. N., Peterson M. J., Kolden G. G., Kalin N. H., et al. . (2013). Relationships between changes in sustained fronto-striatal connectivity and positive affect in major depression resulting from antidepressant treatment. Am. J. Psychiatry 170, 197–206. 10.1176/appi.ajp.2012.12010014
    1. *. Heller A. S., Johnstone T., Shackman A. J., Light S. N., Peterson M. J., Kolden G. G., et al. (2009). Reduced capacity to sustain positive emotion in major depression reflects diminished maintenance of front o-striatal brain activation. Proc. Natl. Acad. Sci. U.S.A. 106, 22445–22245. 10.1073/pnas.0910651106
    1. Jacobs R. H., Jenkins L. M., Gabriel L. B., Barba A., Ryan K. A., Weisenbach S. L., et al. . (2014). Increased coupling of intrinsic networks in remitted depressed youth predicts rumination and cognitive control. PLoS ONE 9:e104366. 10.1371/journal.pone.0104366
    1. Jennings R. G., Van Horn J. D. (2012). Publication bias in neuroimaging research: implications for meta-analyses. Neuroinformatics 10, 67–80. 10.1007/s12021-011-9125-y
    1. Kaiser R. H., Andrews-Hanna J. R., Wager T. D., Pizzagalli D. A. (2015). Large-scale network dysfunction in major depressive disorder. JAMA Psychiatry 72, 603–611. 10.1001/jamapsychiatry.2015.0071
    1. *. Li B., Liu L., Friston K. J., Shen H., Wang L., Zeng L. L., et al. . (2013). A treatment- resistant default mode subnetwork in major depression. Biol. Psychiatry 74, 48–54. 10.1016/j.biopsych.2012.11.007
    1. *. Lisiecka D., Meisenzahl E., Scheurecker J., Schoepf V., Withhy P., Chaney A., et al. . (2011). Neural correlates of treatment outcome in masjor depression. Int. J. Neuropsychopharmacol. 14, 521–534. 10.1017/S1461145710001513
    1. *. Liston C., Chen A. C., Zebley B. D., Drysdale A. T., Gordon R., Leuchter B., et al. . (2014). Default mode network mechanisms of transcranial magnetic stimulation in depression. Biol. Psychiatry 7, 517–526. 10.1016/j.biopsych.2014.01.023
    1. Ma Y. (2014). Neuropsychological mechanism underlying antidepressant effect: a systematic meta-analysis. Mol. Psychiatry 20, 311–319. 10.1038/mp.2014.24
    1. *. Perrin J. S., Merz S., Bennett D. M., Currie J., Steele D. J., Reid I. C., et al. . (2012). Electroconvulsive therapy reduces frontal cortical connectivity in severe depressive disorder. Proc. Natl. Accad. Sci. U.S.A. 109, 5464–5468. 10.1073/pnas.1117206109
    1. *. Posner J., Hellerstein D. J., Gat I., Mechling A., Klahr K., Wang Z., et al. . (2013). Antidepressants normalize the default mode network in patients with dysthymia. JAMA Psychiatry 70, 373–382. 10.1001/jamapsychiatry.2013.455
    1. Raichle M. E., McLeod A. M., Snyder A. Z., Powers W. J., Gusnard D. A., Shulman G. L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci. U.S.A. 98, 676–682. 10.1073/pnas.98.2.676
    1. Rogers M. A., Kasa I. K., Matsuo K., Fukuda R., Iwanami A., Nakagome K., et al. . (2004). Executive and prefrontal dysfunction in unipolar depression: a review of neuropsychological and imaging evidence. Neurosci. Res. 50, 1–11. 10.1016/j.neures.2004.05.003
    1. Rose E. J., Simonotto E., Ebmeier K. P. (2006). Limbic over-activity in depression during preserved performance on the n-back task. Neuroimage 29, 203–215. 10.1016/j.neuroimage.2005.07.002
    1. *. Salomons T. V., Dunlop K., Kennedy S. H., Flint A., Geraci J., Giacobbe P., et al. . (2014). Resting-state cortico-thalamic-striatal connectivity predicts response to dorsomedial prefrontal rTMS in major depressive disorder. Neuropsychophamacology 39, 488–498. 10.1038/npp.2013.222
    1. Sheline Y. I., Price J. L., Yan Z., Mintun M. A. (2010). Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc. Natl. Acad. Sci. U.S.A. 107, 11020–11025. 10.1073/pnas.1000446107
    1. Siegle G. J., Thompson W., Carter C. S., Steinhauer S. R., Thase M. E. (2007). Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: related and independent features. Biol. Psychiatry 61, 198–209. 10.1016/j.biopsych.2006.05.048
    1. Thomas E. J., Elliott R. (2009). Brain imaging correlates of cognitive impairment in depression. Front. Hum. Neurosci. 3:30. 10.3389/neuro.09.030.2009
    1. Veer I. M., Beckmann C. F., van Tol M. J., Ferrarini L., Milles J., Veltman D. J., et al. . (2010). Whole brain resting-state analysis reveals decreased functional connectivity in major depression. Front. Syst. Neurosci. 4:41. 10.3389/fnsys.2010.00041
    1. *. Wang L., Hermens D. F., Hickie I. B., Lagopoulos J. (2012). A systematic review of resting-state functional-MRI studies in major depresion. J. Affect. Disord. 142, 6–12. 10.1016/j.jad.2012.04.013
    1. Wang L., Xia M., Li K., Zeng Y., Su Y., Dai W., et al. . (2014). The effects of antidepressant treatment on resting-state functional brain networks in patients with major depressive disorder. Hum. Brain Mapp. 36, 768–778. 10.1002./hbm.22663
    1. *. Wei Q., Tian Y., Yu Y., Zhang F., Hu X., Dong Y., et al. . (2014). Modulation of interhemisferic functional coordination in electroconvulsive therapy. Transl. Psychiatry 4, 1–8. 10.1038/tp.2014.101
    1. Wise T., Cleare A. J., Herane A., Young A. H., Arnone D. (2014). Diagnostic and therapeutic utility of neuroimaging in depression: an overview. Neuropsychiatr. Dis. Trat. 10, 1509–1518. 10.2147/NDT.S50156
    1. *. Wu M., Andreescu C., Butters M. A., Tamburo R., Reynolds C. F., III, Aizenstein H. (2011). Default-mode network connectivity and with matter burden in late-life depression. Psychiatry Res. 194, 39–46. 10.1016/j.pscychresns.2011.04.003
    1. *. Yang R., Zhang H., Wu X., Yang J., Ma M., Gao Y., et al. . (2014). Hypothalamus-anchored resting brain network changes before and after sertraline treatment in major depression. Biomed. Res. Int. 2014:915026. 10.1155/2014/915026

Source: PubMed

Подписаться