Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo

Ying Jin, Stanca A Birlea, Pamela R Fain, Tracey M Ferrara, Songtao Ben, Sheri L Riccardi, Joanne B Cole, Katherine Gowan, Paulene J Holland, Dorothy C Bennett, Rosalie M Luiten, Albert Wolkerstorfer, J P Wietze van der Veen, Anke Hartmann, Saskia Eichner, Gerold Schuler, Nanja van Geel, Jo Lambert, E Helen Kemp, David J Gawkrodger, Anthony P Weetman, Alain Taïeb, Thomas Jouary, Khaled Ezzedine, Margaret R Wallace, Wayne T McCormack, Mauro Picardo, Giovanni Leone, Andreas Overbeck, Nanette B Silverberg, Richard A Spritz, Ying Jin, Stanca A Birlea, Pamela R Fain, Tracey M Ferrara, Songtao Ben, Sheri L Riccardi, Joanne B Cole, Katherine Gowan, Paulene J Holland, Dorothy C Bennett, Rosalie M Luiten, Albert Wolkerstorfer, J P Wietze van der Veen, Anke Hartmann, Saskia Eichner, Gerold Schuler, Nanja van Geel, Jo Lambert, E Helen Kemp, David J Gawkrodger, Anthony P Weetman, Alain Taïeb, Thomas Jouary, Khaled Ezzedine, Margaret R Wallace, Wayne T McCormack, Mauro Picardo, Giovanni Leone, Andreas Overbeck, Nanette B Silverberg, Richard A Spritz

Abstract

We previously reported a genome-wide association study (GWAS) identifying 14 susceptibility loci for generalized vitiligo. We report here a second GWAS (450 individuals with vitiligo (cases) and 3,182 controls), an independent replication study (1,440 cases and 1,316 controls) and a meta-analysis (3,187 cases and 6,723 controls) identifying 13 additional vitiligo-associated loci. These include OCA2-HERC2 (combined P = 3.80 × 10(-8)), MC1R (P = 1.82 × 10(-13)), a region near TYR (P = 1.57 × 10(-13)), IFIH1 (P = 4.91 × 10(-15)), CD80 (P = 3.78 × 10(-10)), CLNK (P = 1.56 × 10(-8)), BACH2 (P = 2.53 × 10(-8)), SLA (P = 1.58 × 10(-8)), CASP7 (P = 3.56 × 10(-8)), CD44 (P = 1.78 × 10(-9)), IKZF4 (P = 2.75 × 10(-14)), SH2B3 (P = 3.54 × 10(-18)) and TOB2 (P = 6.81 × 10(-10)). Most vitiligo susceptibility loci encode immunoregulatory proteins or melanocyte components that likely mediate immune targeting and the relationships among vitiligo, melanoma, and eye, skin and hair coloration.

Figures

Figure 1
Figure 1
Association of generalized vitiligo with SNPs in the OCA2-HERC2 region of chromosome 15q12–q13.1. Results of Cochran-Mantel-Haenszel meta-analysis of GWAS1 and GWAS2 data (GWAS-MA) for genotyped (black) and imputed (blue) SNPs on the y axis versus chromosomal nucleotide position (GRCh37/hg19) on the x axis. Red circles indicate the Cochran-Mantel-Haenszel P values from the GWAS1, GWAS2, and replication studies for rs12913832 and rs1129038 (see Table 1). Arrows indicate gene positions and transcriptional orientation.

References

    1. Picardo M, Taïeb A, editors. Vitiligo. Springer; Heidelberg & New York: 2010.
    1. Alkhateeb A, et al. Epidemiology of vitiligo and associated autoimmune diseases in Caucasian probands and their families. Pigment Cell Res. 2003;16:208–214.
    1. Jin Y, et al. Variant of TYR and autoimmunity susceptibility loci in generalized vitiligo. New Engl. J. Med. 2010;362:1686–1697.
    1. Jin Y, et al. Common variants in FOXP1 are associated with generalized vitiligo. Nat. Genet. 2010;42:576–578.
    1. Birlea SA, et al. Comprehensive association analysis of candidate genes for generalized vitiligo supports XBP1, FOXP3, and TSLP. J. Invest. Dermatol. 2011;131:371–381.
    1. Jin Y, et al. Next-generation DNA re-sequencing identifies common variants of TYR and HLA-A that modulate the risk of generalized vitiligo via antigen presentation. J. Investig. Dermatol. 2012 advance online publication 8 March 2012; doi: 10.1038/jid.2012.37.
    1. Spritz RA. The genetics of generalized vitiligo: autoimmune pathways and an inverse relationship with malignant melanoma. Genome Med. 2010;19(2(10)):78.
    1. Rinchik EM, et al. A gene for the mouse pink-eyed dilution locus and for human type II oculocutaneous albinism. Nature. 1993;361:72–76.
    1. Kayser M, et al. Three genome-wide association studies and a linkage analysis identify HERC2 as a human iris color gene. Am J. Hum. Genet. 2008;82:411–423.
    1. Sturm RA, et al. A single SNP in an evolutionary conserved region within intron 86 of the HERC2 gene determines human blue-brown eye color. Am. J. Hum. Genet. 2008;82:424–431.
    1. Eiberg H, et al. Blue eye color in humans may be caused by a perfectly associated founder mutation in a regulatory element located within the HERC2 gene inhibiting OCA2 expression. Hum. Genet. 2008;123:177–187.
    1. Jannot A-S, et al. Allele variations in the OCA2 gene (pink-eyed-dilution locus) are associated with genetic susceptibility to melanoma. Eur. J. Hum. Genet. 2005;13:913–920.
    1. Amos CI, et al. Genome-wide association study identifies novel loci predisposing to cutaneous melanoma. Hum. Molec. Genet. 2011;20:5012–5023.
    1. Cook AL, et al. Analysis of cultured human melanocytes based on polymorphisms within the SLC45A2/MATP,SLC24A5/NCKX5, and OCA2/P loci. J. Investig. Dermatol. 2009;129:392–405.
    1. Skipper JC. An HLA-A2-restricted tyrosinase antigen on melanoma cells results from posttranslational modification and suggests a novel pathway for processing of membrane proteins. J. Exp. Med. 1996;183:527–534.
    1. Touloukian CE, Leitner WW, Robbins PF, Rosenberg S, Restifo NP. Mining the melanosome for tumor vaccine targets: P.polypeptide is a novel tumor-associated antigen. Canc. Res. 2001;61:8100–8104.
    1. Tomany SC, Klein R, Klein BEK. The relationship between iris color, hair color, and skin sun sensitivity and the 10-year incidence of age-related maculopathy: the Beaver Dam Eye Study. Ophthalmology. 2003;110:1526–1533.
    1. Duffy DL, et al. A three-single-nucleotide polymorphism haplotype in intron 1 of OCA2 explains most human eye-color variation. Am. J. Hum. Genet. 2007;80:241–252.
    1. Sulem P. Genetic determinants of hair, eye, and skin pigmentation in Europeans. Nat. Genet. 2007;39:1443–1452.
    1. Dessinioti C, Antoniou C, Katsambas A, Stratigos AJ. Melanocortin 1 receptor variants: functional role and pigmentary associations. Photochem. Photobiol. 2011;87:978–987.
    1. Kato H, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006;441:101–105.
    1. Smyth DJ, et al. A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat. Genet. 2006;38:617–619.
    1. Sutherland A, et al. Genomic polymorphism at the interferon-induced helicase (IFIH1) locus contributes to Graves' disease susceptibility. J. Clin. Endocrinol. Metab. 2007;92:3338–3341.
    1. Martínez A, et al. IFIH1-GCA-KCNH7 locus: influence on multiple sclerosis risk. Eur. J. Hum. Genet. 2008;16:861–864.
    1. Li Y, et al. Carriers of rare missense variants in IFIH1 are protected from psoriasis. J. Invest. Dermatol. 2010;130:2768–2772.
    1. Gateva V, et al. A large-scale replication study identifies TNIP1,PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet. 2009;41:1228–1233.
    1. Peach RJ, et al. Both extracellular immunoglobin-like domains of CD80 contain residues critical for binding T cell surface receptors CTLA-4 and CD28. J. Biol. Chem. 1995;270:21181–21187.
    1. Stamper CC, et al. Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses. Nature. 2001;410:608–611.
    1. Wu JN, Koretzky GA. The SLP-76 family of adapter proteins. Semin. Immunol. 2004;16:379–393.
    1. Sasaki S, et al. Cloning and expression of human B cell-specific transcription factor BACH2 mapped to chromosome 6q15”. Oncogene. 2000;19:3739–3749.
    1. Cooper JD, et al. Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nat. Genet. 2008;40:1399–1401.
    1. Grant SF, et al. Follow-up analysis of genome-wide association data identifies novel loci for type 1 diabetes. Diabetes. 2009;58:290–295.
    1. Dubois PC, et al. Multiple common variants for celiac disease influencing immune gene expression. Nat. Genet. 2010;42:295–302.
    1. Franke A, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat Genet. 2010;42:1118–1125.
    1. Dragone LL, Shaw LA, Myers MD, Weiss A. SLAP, a regulator of immunoreceptor ubiquitination, signaling, and trafficking. Immunol. Rev. 2009;232:218–228.
    1. Tomer Y, Greenberg D. The thyroglobulin gene as the first thyroid-specific susceptibility gene for autoimmune thyroid disease. Trends Mol. Med. 2004;10:306–308.
    1. Lamkanfi M, Kanneganti TD. Caspase-7: a protease involved in apoptosis and inflammation. Int. J. Biochem. Cell. Biol. 2010;42:21–24.
    1. García-Lozano JR, et al. Caspase 7 influences susceptibility to rheumatoid arthritis. Rheumatology (Oxford) 2007;46:1243–1247.
    1. Babu SR, et al. Caspase 7 is a positional candidate gene for IDDM 17 in a Bedouin Arab family. Ann. N.Y. Acad. Sci. 2003;1005:340–343.
    1. Baaten BJ, Li CR, Bradley LM. Multifaceted regulation of T cells by CD44. Commun. Integr. Biol. 2010;3:508–512.
    1. Ramos PS, et al. Genetic analyses of interferon pathway-related genes reveal multiple new loci associated with systemic lupus erythematosus. Arthritis Rheum. 2011;63:2049–2057.
    1. Pan F, et al. Eos mediates Foxp3-dependent gene silencing in CD4+ regulatory T cells. Science. 2009;325:1142–1146.
    1. Hakonarson H, et al. A novel susceptibility locus for type 1 diabetes on Chr12q13 identified by a genome-wide association study. Diabetes. 2008;57:1143–6.
    1. Petukhova L, et al. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature. 2010;466:113–117.
    1. Devallière J, Charreau B. The adaptor Lnk (SH2B3): an emerging regulator in vascular cells and a link between immune and inflammatory signaling. Biochem. Pharmacol. 2011;82:1391–402.
    1. Smyth DJ, et al. Shared and distinct genetic variants in type 1 diabetes and celiac disease. N. Engl. J. Med. 2008;359:2767–77.
    1. Hunt KA, et al. Newly identified genetic risk variants for celiac disease related to the immune response. Nat. Genet. 2008;40:395–402.
    1. Coenen MJ, et al. Common and different genetic background for rheumatoid arthritis and coeliac disease. Hum. Mol. Genet. 2009;18:4195–4203.
    1. Alcina A, et al. The autoimmune disease-associated KIF5A, CD226 and SH2B3 gene variants confer susceptibility for multiple sclerosis. Genes Immun. 2010;11:439–445.
    1. Jia S, Meng A. Tob genes in development and homeostasis. Dev. Dyn. 2007;236:913–921.
    1. Seya T, Matsumoto M, Ebihara T, Oshiumi H. Functional evolution of the TICAM-1 pathway for extrinsic RNA sensing. Immunol. Rev. 2009;227:44–53.
    1. Taïeb A, Picardo M. The definition and assessment of vitiligo: a consensus report of the Vitiligo European Task Force. Pigment Cell Res. 2007;20:27–35.
    1. Purcell S, et al. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am. J. Hum. Genet. 2007;81:559–575.
    1. Price AL, et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006;38:904–909.
    1. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 2010;34:816–834.
    1. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–265.
    1. Yang J, et al. GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011;88:76–82.
    1. Falconer DS. The inheritance of liability to certain diseases, estimated from the incidence among relatives. Ann. Hum. Genet. 1965;29:51–76.
    1. Risch N. Assessing the role of HLA-linked and unlinked determinants of disease. Am. J. Hum. Genet. 1987;40:1–14.
    1. Howitz J, Brodthagen H, Schwartz M, Thompsen K. Arch. Dermatol. 1977;113:47–52.
    1. Szklarczyk D, et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucl. Acids Res. 2011;39(Database Issue):D561–D568.

Source: PubMed

Подписаться