Connecting the Dots Between Inflammatory Bowel Disease and Metabolic Syndrome: A Focus on Gut-Derived Metabolites

Andrea Verdugo-Meza, Jiayu Ye, Hansika Dadlani, Sanjoy Ghosh, Deanna L Gibson, Andrea Verdugo-Meza, Jiayu Ye, Hansika Dadlani, Sanjoy Ghosh, Deanna L Gibson

Abstract

The role of the microbiome in health and disease has gained considerable attention and shed light on the etiology of complex diseases like inflammatory bowel disease (IBD) and metabolic syndrome (MetS). Since the microorganisms inhabiting the gut can confer either protective or harmful signals, understanding the functional network between the gut microbes and the host provides a comprehensive picture of health and disease status. In IBD, disruption of the gut barrier enhances microbe infiltration into the submucosae, which enhances the probability that gut-derived metabolites are translocated from the gut to the liver and pancreas. Considering inflammation and the gut microbiome can trigger intestinal barrier dysfunction, risk factors of metabolic diseases such as insulin resistance may have common roots with IBD. In this review, we focus on the overlap between IBD and MetS, and we explore the role of common metabolites in each disease in an attempt to connect a common origin, the gut microbiome and derived metabolites that affect the gut, liver and pancreas.

Keywords: gut microbiome; immunometabolism; inflammatory bowel disease; insulin resistance; metabolism; microbiomics.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The host–microbial metabolites interplay in health and chronic inflammatory disorders. Gut microbes produce metabolites that act either at local tissue or remotely in the liver and pancreas (A). In inflammatory bowel disease (IBD), damage to intestinal permeability is associated with changes in microbiota composition (dysbiosis). Consequently, this disrupts the homeostasis of microbial-derived metabolites, leading to increased inflammatory potential locally and systematically (B). Ultimately, protective metabolites (SCFA, SBA and indoles) are decreased, whereas pre-disorder metabolites such as BCAA are increased. This further disrupts the energy metabolism by impairing the insulin signaling pathway and accumulating fat droplets in the liver, as a result of developing hepatic (NAFLD) and pancreatic disorders (AP, T1D and T2D). The production of two energy regulating hormones, GLP-1 and PYY, is triggered by the secretion of SCFA (butyrate). With decreased SCFA in disease state, production of GLP-1 and PYY is also limited, therefore worsening the disrupted energy metabolism. AP: acute pancreatitis; BA: bile acid; BCAA: branched-chain amino acid; GLP-1: glucagon-like peptide 1; NAFLD: non-alcoholic fatty liver disease; ROS: reactive oxygen species; PYY: peptide YY; SBA: secondary bile acid; SCFA: short-chain fatty acids; T1D: type 1 diabetes; T2D: type 2 diabetes.

References

    1. O’neill S., O’driscoll L. Metabolic syndrome: A closer look at the growing epidemic and its associated pathologies. Obes. Rev. 2015;16:1–12. doi: 10.1111/obr.12229.
    1. Saklayen M.G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 2018;20:12. doi: 10.1007/s11906-018-0812-z.
    1. Morgan X.C., Tickle T.L., Sokol H., Gevers D., Devaney K.L., Ward D.V., Reyes J.A., Shah S.A., LeLeiko N., Snapper S.B. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13:R79. doi: 10.1186/gb-2012-13-9-r79.
    1. Abbas A.K., Lichtman A.H., Pillai S. Cellular and Molecular Immunology E-Book. Elsevier Health Sciences; Amsterdam, The Netherlands: 2011.
    1. Jairath V., Feagan B.G. Global burden of inflammatory bowel disease. Lancet Gastroenterol. Hepatol. 2020;5:2–3. doi: 10.1016/S2468-1253(19)30358-9.
    1. Kaplan G.G., Ng S.C. Understanding and preventing the global increase of inflammatory bowel disease. Gastroenterology. 2017;152:313–321. e312. doi: 10.1053/j.gastro.2016.10.020.
    1. World Health Organization The Top 10 Causes of Death: Major Causes of Death. World Health Organization. [(accessed on 15 July 2014)];2016 Available online: .
    1. Alatab S., Sepanlou S.G., Ikuta K., Vahedi H., Bisignano C., Safiri S., Sadeghi A., Nixon M.R., Abdoli A., Abolhassani H. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020;5:17–30. doi: 10.1016/S2468-1253(19)30333-4.
    1. Benchimol E.I., Mack D.R., Guttmann A., Nguyen G.C., To T., Mojaverian N., Quach P., Manuel D.G. Inflammatory bowel disease in immigrants to Canada and their children: A population-based cohort study. Am. J. Gastroenterol. 2015;110:553–563. doi: 10.1038/ajg.2015.52.
    1. Jurjus A., Eid A., Al Kattar S., Zeenny M.N., Gerges-Geagea A., Haydar H., Hilal A., Oueidat D., Matar M., Tawilah J. Inflammatory bowel disease, colorectal cancer and type 2 diabetes mellitus: The links. Bba Clin. 2016;5:16–24. doi: 10.1016/j.bbacli.2015.11.002.
    1. Maloy K.J., Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature. 2011;474:298–306. doi: 10.1038/nature10208.
    1. Maachi M., Pieroni L., Bruckert E., Jardel C., Fellahi S., Hainque B., Capeau J., Bastard J. Systemic low-grade inflammation is related to both circulating and adipose tissue TNF α, leptin and IL-6 levels in obese women. Int. J. Obes. 2004;28:993–997. doi: 10.1038/sj.ijo.0802718.
    1. Marti A., Morell-Azanza L., Rendo-Urteaga T., García-Calzón S., Ojeda-Rodríguez A., Martín-Calvo N., Moreno-Aliaga M., Martínez J., Azcona-San Julián M. Serum and gene expression levels of CT-1, IL-6, and TNF-α after a lifestyle intervention in obese children. Pediatric Diabetes. 2018;19:217–222. doi: 10.1111/pedi.12561.
    1. Furet J.-P., Kong L.-C., Tap J., Poitou C., Basdevant A., Bouillot J.-L., Mariat D., Corthier G., Doré J., Henegar C. Differential adaptation of human gut microbiota to bariatric surgery–induced weight loss: Links with metabolic and low-grade inflammation markers. Diabetes. 2010;59:3049–3057. doi: 10.2337/db10-0253.
    1. Argollo M., Gilardi D., Peyrin-Biroulet C., Chabot J.-F., Peyrin-Biroulet L., Danese S. Comorbidities in inflammatory bowel disease: A call for action. Lancet Gastroenterol. Hepatol. 2019;4:643–654. doi: 10.1016/S2468-1253(19)30173-6.
    1. Aloi M., Tromba L., Di Nardo G., Dilillo A., Del Giudice E., Marocchi E., Viola F., Civitelli F., Berni A., Cucchiara S. Premature subclinical atherosclerosis in pediatric inflammatory bowel disease. J. Pediatrics. 2012;161:589–594. e581. doi: 10.1016/j.jpeds.2012.03.043.
    1. Gonzalez-Gay M., De Matias J., Gonzalez-Juanatey C., Garcia-Porrua C., Sanchez-Andrade A., Martin J., Llorca J. Anti-tumor necrosis factor-alpha blockade improves insulin resistance in patients with rheumatoid arthritis. Clin. Exp. Rheumatol. 2006;24:83.
    1. Younossi Z., Anstee Q.M., Marietti M., Hardy T., Henry L., Eslam M., George J., Bugianesi E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2018;15:11. doi: 10.1038/nrgastro.2017.109.
    1. Koutroubakis I.E., Oustamanolakis P., Malliaraki N., Karmiris K., Chalkiadakis I., Ganotakis E., Karkavitsas N., Kouroumalis E.A. Effects of tumor necrosis factor alpha inhibition with infliximab on lipid levels and insulin resistance in patients with inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol. 2009;21:283–288. doi: 10.1097/MEG.0b013e328325d42b.
    1. He C., Shi Y., Wu R., Sun M., Fang L., Wu W., Liu C., Tang M., Li Z., Wang P. miR-301a promotes intestinal mucosal inflammation through induction of IL-17A and TNF-α in IBD. Gut. 2016;65:1938–1950. doi: 10.1136/gutjnl-2015-309389.
    1. Dorfman L., Ghersin I., Khateeb N., Daher S., Shamir R., Assa A. Cardiovascular risk factors are not present in adolescents with inflammatory bowel disease. Acta Paediatr. 2020 doi: 10.1111/apa.15237.
    1. Saroli Palumbo C., Bessissow T., Sebastiani G. Reply to “Transient Elastography in IBD Patients”. Inflamm. Bowel Dis. 2019;25:e95. doi: 10.1093/ibd/izz048.
    1. Singh S., Dulai P.S., Zarrinpar A., Ramamoorthy S., Sandborn W.J. Obesity in IBD: Epidemiology, pathogenesis, disease course and treatment outcomes. Nat. Rev. Gastroenterol. Hepatol. 2017;14:110. doi: 10.1038/nrgastro.2016.181.
    1. Jess T., Jensen B.W., Andersson M., Villumsen M., Allin K.H. Inflammatory bowel disease increases risk of type 2 diabetes in a nationwide cohort study. Clin. Gastroenterol. Hepatol. 2019 doi: 10.1016/j.cgh.2019.07.052.
    1. Kang E., Han K., Chun J., Soh H., Park S., Im J.P., Kim J.S. Increased risk of diabetes in inflammatory bowel disease patients: A nationwide population-based study in korea. J. Clin. Med. 2019;8:343. doi: 10.3390/jcm8030343.
    1. Bregenzer N., Hartmann A., Strauch U., Schölmerich J., Andus T., Bollheimer C.L. Increased insulin resistance and β cell activity in patients with Crohn’s disease. Inflamm. Bowel Dis. 2006;12:53–56. doi: 10.1097/01.MIB.0000195975.97673.f5.
    1. Saroli Palumbo C., Restellini S., Chao C.-Y., Aruljothy A., Lemieux C., Wild G., Afif W., Lakatos P.L., Bitton A., Cocciolillo S. Screening for nonalcoholic fatty liver disease in inflammatory bowel diseases: A cohort study using transient elastography. Inflamm. Bowel Dis. 2019;25:124–133. doi: 10.1093/ibd/izy200.
    1. Dagli N., Poyrazoglu O.K., Ferda Dagli A., Sahbaz F., Karaca I., Ali Kobat M., Bahcecioglu I.H. Is inflammatory bowel disease a risk factor for early atherosclerosis? Angiology. 2010;61:198–204. doi: 10.1177/0003319709333869.
    1. Kayahan H., Sari I., Cullu N., Yuksel F., Demir S., Akarsu M., Goktay Y., Unsal B., Akpinar H. Evaluation of early atherosclerosis in patients with inflammatory bowel disease. Dig. Dis. Sci. 2012;57:2137–2143. doi: 10.1007/s10620-012-2148-x.
    1. Stevens C., Walz G., Singaram C., Lipman M.L., Zanker B., Muggia A., Antonioli D., Peppercorn M.A., Strom T.B. Tumor necrosis factor-α, interleukin-1β, and interleukin-6 expression in inflammatory bowel disease. Dig. Dis. Sci. 1992;37:818–826. doi: 10.1007/BF01300378.
    1. Dijkstra G., Moshage H., Van Dullemen H.M., de Jager-Krikken A., Tiebosch A.T., Kleibeuker J.H., Jansen P.L., Van Goor H. Expression of nitric oxide synthases and formation of nitrotyrosine and reactive oxygen species in inflammatory bowel disease. J. Pathol. 1998;186:416–421. doi: 10.1002/(SICI)1096-9896(199812)186:4<416::AID-PATH201>;2-U.
    1. Guan Q. A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease. J. Immunol. Res. 2019;2019 doi: 10.1155/2019/7247238.
    1. Brown K., Godovannyi A., Ma C., Zhang Y., Ahmadi-Vand Z., Dai C., Gorzelak M.A., Chan Y., Chan J.M., Lochner A. Prolonged antibiotic treatment induces a diabetogenic intestinal microbiome that accelerates diabetes in NOD mice. Isme J. 2016;10:321–332. doi: 10.1038/ismej.2015.114.
    1. Walter J., Armet A.M., Finlay B.B., Shanahan F. Establishing or exaggerating causality for the gut microbiome: Lessons from human microbiota-associated rodents. Cell. 2020;180:221–232. doi: 10.1016/j.cell.2019.12.025.
    1. Tajalizadekhoob Y., Sharifi F., Fakhrzadeh H., Mirarefin M., Ghaderpanahi M., Badamchizade Z., Azimipour S. The effect of low-dose omega 3 fatty acids on the treatment of mild to moderate depression in the elderly: A double-blind, randomized, placebo-controlled study. Eur. Arch. Psychiatry Clin. Neurosci. 2011;261:539–549. doi: 10.1007/s00406-011-0191-9.
    1. Sellon R.K., Tonkonogy S., Schultz M., Dieleman L.A., Grenther W., Balish E., Rennick D.M., Sartor R.B. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect. Immun. 1998;66:5224–5231. doi: 10.1128/IAI.66.11.5224-5231.1998.
    1. Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027. doi: 10.1038/nature05414.
    1. Cani P.D., Amar J., Iglesias M.A., Poggi M., Knauf C., Bastelica D., Neyrinck A.M., Fava F., Tuohy K.M., Chabo C. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–1772. doi: 10.2337/db06-1491.
    1. Lynch S.V., Pedersen O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 2016;375:2369–2379. doi: 10.1056/NEJMra1600266.
    1. Sharon G., Garg N., Debelius J., Knight R., Dorrestein P.C., Mazmanian S.K. Specialized metabolites from the microbiome in health and disease. Cell Metab. 2014;20:719–730. doi: 10.1016/j.cmet.2014.10.016.
    1. Kostic A.D., Xavier R.J., Gevers D. The microbiome in inflammatory bowel disease: Current status and the future ahead. Gastroenterology. 2014;146:1489–1499. doi: 10.1053/j.gastro.2014.02.009.
    1. Le Chatelier E., Nielsen T., Qin J., Prifti E., Hildebrand F., Falony G., Almeida M., Arumugam M., Batto J.-M., Kennedy S. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–546. doi: 10.1038/nature12506.
    1. Larsen N., Vogensen F.K., Van Den Berg F.W., Nielsen D.S., Andreasen A.S., Pedersen B.K., Al-Soud W.A., Sørensen S.J., Hansen L.H., Jakobsen M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE. 2010;5 doi: 10.1371/journal.pone.0009085.
    1. Loomba R., Seguritan V., Li W., Long T., Klitgord N., Bhatt A., Dulai P.S., Caussy C., Bettencourt R., Highlander S.K. Gut Microbiome-Based Metagenomic Signature for Non-invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease. Cell Metab. 2019;30:607. doi: 10.1016/j.cmet.2019.08.002.
    1. Jie Z., Xia H., Zhong S.-L., Feng Q., Li S., Liang S., Zhong H., Liu Z., Gao Y., Zhao H. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 2017;8:1–12. doi: 10.1038/s41467-017-00900-1.
    1. Jiang W., Wu N., Wang X., Chi Y., Zhang Y., Qiu X., Hu Y., Li J., Liu Y. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci. Rep. 2015;5:8096. doi: 10.1038/srep08096.
    1. Ren S., Mei L., Huang H., Cao S., Zhao R., Zheng P. Correlation analysis of gut microbiota and biochemical indexes in patients with non-alcoholic fatty liver disease. Zhonghua Gan Zang Bing Za Zhi = Zhonghua Ganzangbing Zazhi= Chin. J. Hepatol. 2019;27:369–375.
    1. Haro C., Garcia-Carpintero S., Alcala-Diaz J.F., Gomez-Delgado F., Delgado-Lista J., Perez-Martinez P., Zuñiga O.A.R., Quintana-Navarro G.M., Landa B.B., Clemente J.C. The gut microbial community in metabolic syndrome patients is modified by diet. J. Nutr. Biochem. 2016;27:27–31. doi: 10.1016/j.jnutbio.2015.08.011.
    1. Dheer R., Davies J.M., Quintero M.A., Damas O.M., Deshpande A.R., Kerman D.H., Sawyer W.P., Pignac-Kobinger J., Ban Y., Fernandez I. Microbial signatures and innate immune gene expression in lamina propria phagocytes of inflammatory bowel disease patients. Cell. Mol. Gastroenterol. Hepatol. 2020;9:387–402. doi: 10.1016/j.jcmgh.2019.10.013.
    1. Lennon G., Balfe A., Earley H., Devane L.A., Lavelle A., Winter D.C., Coffey J.C., O’Connell P.R. Influences of the colonic microbiome on the mucous gel layer in ulcerative colitis. Gut Microbes. 2014;5:277–476. doi: 10.4161/gmic.28793.
    1. Li L.-L., Wang Y.-T., Zhu L.-M., Liu Z.-Y., Ye C.-Q., Qin S. Inulin with different degrees of polymerization protects against diet-induced endotoxemia and inflammation in association with gut microbiota regulation in mice. Sci. Rep. 2020;10:1–12. doi: 10.1038/s41598-020-58048-w.
    1. Blander J.M., Longman R.S., Iliev I.D., Sonnenberg G.F., Artis D. Regulation of inflammation by microbiota interactions with the host. Nat. Immunol. 2017;18:851. doi: 10.1038/ni.3780.
    1. Brown K., DeCoffe D., Molcan E., Gibson D.L. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients. 2012;4:1095–1119. doi: 10.3390/nu4081095.
    1. Santoro N., Caprio S., Feldstein A.E. Oxidized metabolites of linoleic acid as biomarkers of liver injury in nonalcoholic steatohepatitis. Clin. Lipidol. 2013;8:411–418. doi: 10.2217/clp.13.39.
    1. Ding S., Chi M.M., Scull B.P., Rigby R., Schwerbrock N.M., Magness S., Jobin C., Lund P.K. High-fat diet: Bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS ONE. 2010;5 doi: 10.1371/journal.pone.0012191.
    1. Cronstein B.N., Weissmann G. Targets for antiinflammatory drugs. Annu. Rev. Pharm.. Toxicol. 1995;35:449–462. doi: 10.1146/annurev.pa.35.040195.002313.
    1. Ochroch E.A., Mardini I.A., Gottschalk A. What is the role of NSAIDs in pre-emptive analgesia? Drugs. 2003;63:2709–2723. doi: 10.2165/00003495-200363240-00002.
    1. Wang Z., Klipfell E., Bennett B.J., Koeth R., Levison B.S., DuGar B., Feldstein A.E., Britt E.B., Fu X., Chung Y.-M. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63. doi: 10.1038/nature09922.
    1. Seldin M.M., Meng Y., Qi H., Zhu W., Wang Z., Hazen S.L., Lusis A.J., Shih D.M. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB. J. Am. Heart Assoc. 2016;5:e002767. doi: 10.1161/JAHA.115.002767.
    1. Cario E., Podolsky D.K. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect. Immun. 2000;68:7010–7017. doi: 10.1128/IAI.68.12.7010-7017.2000.
    1. Ishizuka K., Usui I., Kanatani Y., Bukhari A., He J., Fujisaka S., Yamazaki Y., Suzuki H., Hiratani K., Ishiki M. Chronic tumor necrosis factor-α treatment causes insulin resistance via insulin receptor substrate-1 serine phosphorylation and suppressor of cytokine signaling-3 induction in 3T3-L1 adipocytes. Endocrinology. 2007;148:2994–3003. doi: 10.1210/en.2006-1702.
    1. Hotamisligil G.S., Peraldi P., Budavari A., Ellis R., White M.F., Spiegelman B.M. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α-and obesity-induced insulin resistance. Science. 1996;271:665–670. doi: 10.1126/science.271.5249.665.
    1. Kanety H., Feinstein R., Papa M.Z., Hemi R., Karasik A. Tumor necrosis factor α-induced phosphorylation of insulin receptor substrate-1 (IRS-1) Possible mechanism for suppression of insulin-stimulated tyrosine phosphorylation of IRS-1. J. Biol. Chem. 1995;270:23780–23784. doi: 10.1074/jbc.270.40.23780.
    1. Senn J.J., Klover P.J., Nowak I.A., Mooney R.A. Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes. 2002;51:3391–3399. doi: 10.2337/diabetes.51.12.3391.
    1. Sugita H., Kaneki M., Tokunaga E., Sugita M., Koike C., Yasuhara S., Tompkins R.G., Martyn J.J. Inducible nitric oxide synthase plays a role in LPS-induced hyperglycemia and insulin resistance. Am. J. Physiol. -Endocrinol. Metab. 2002;282:E386–E394. doi: 10.1152/ajpendo.00087.2001.
    1. Yasukawa T., Tokunaga E., Ota H., Sugita H., Martyn J.J., Kaneki M. S-nitrosylation-dependent inactivation of Akt/protein kinase B in insulin resistance. J. Biol. Chem. 2005;280:7511–7518. doi: 10.1074/jbc.M411871200.
    1. Fujimoto M., Shimizu N., Kunii K., Martyn J.J., Ueki K., Kaneki M. A role for iNOS in fasting hyperglycemia and impaired insulin signaling in the liver of obese diabetic mice. Diabetes. 2005;54:1340–1348. doi: 10.2337/diabetes.54.5.1340.
    1. Muhammed S.J., Lundquist I., Salehi A. Pancreatic β-cell dysfunction, expression of iNOS and the effect of phosphodiesterase inhibitors in human pancreatic islets of type 2 diabetes. Diabetes Obes. Metab. 2012;14:1010–1019. doi: 10.1111/j.1463-1326.2012.01632.x.
    1. Dijkstra G., Zandvoort A.J., Kobold A.M., Jager-Krikken Ad Heeringa P., Goor Hv Dullemen Hv Tervaert J.C., Loosdrecht Avd Moshage H. Increased expression of inducible nitric oxide synthase in circulating monocytes from patients with active inflammatory bowel disease. Scand. J. Gastroenterol. 2002;37:546–554. doi: 10.1080/00365520252903099.
    1. Tjonneland A., Overvad K., Bergmann M., Nagel G., Linseisen J., Hallmans G., Palmqvist R., Sjodin H., Hagglund G., Berglund G. Linoleic acid, a dietary n-6 polyunsaturated fatty acid, and the aetiology of ulcerative colitis: A nested case-control study within a European prospective cohort study. Gut. 2009;58:1606–1611.
    1. Ghosh S., DeCoffe D., Brown K., Rajendiran E., Estaki M., Dai C., Yip A., Gibson D.L. Fish Oil Attenuates Omega-6 Polyunsaturated Fatty Acid-Induced Dysbiosis and Infectious Colitis but Impairs LPS Dephosphorylation Activity Causing Sepsis. PLoS ONE. 2013;8:e55468. doi: 10.1371/journal.pone.0055468.
    1. Ghosh S., Dai C., Brown K., Rajendiran E., Makarenko S., Baker J., Ma C., Halder S., Montero M., Ionescu V.A., et al. Colonic microbiota alters host susceptibility to infectious colitis by modulating inflammation, redox status, and ion transporter gene expression. Am. J. Physiol. Gastrointest Liver Physiol. 2011;301:G39–G49. doi: 10.1152/ajpgi.00509.2010.
    1. DeCoffe D., Quin C., Gill S.K., Tasnim N., Brown K., Godovannyi A., Dai C., Abulizi N., Chan Y.K., Ghosh S., et al. Dietary Lipid Type, Rather Than Total Number of Calories, Alters Outcomes of Enteric Infection in Mice. J. Infect. Dis. 2016;213:1846–1856. doi: 10.1093/infdis/jiw084.
    1. Ghosh S., Molcan E., DeCoffe D., Dai C., Gibson D.L. Diets rich in n-6 PUFA induce intestinal microbial dysbiosis in aged mice. Br. J. Nutr. 2013;110:515–523. doi: 10.1017/S0007114512005326.
    1. Wong C.K., Botta A., Pither J., Dai C., Gibson W.T., Ghosh S. A high-fat diet rich in corn oil reduces spontaneous locomotor activity and induces insulin resistance in mice. J. Nutr. Biochem. 2015;26:319–326. doi: 10.1016/j.jnutbio.2014.11.004.
    1. Gibson D.L., Gill S.K., Brown K., Tasnim N., Ghosh S., Innis S., Jacobson K. Maternal exposure to fish oil primes offspring to harbor intestinal pathobionts associated with altered immune cell balance. Gut Microbes. 2015;6:24–32. doi: 10.1080/19490976.2014.997610.
    1. Abulizi N., Quin C., Brown K., Chan Y.K., Gill S.K., Gibson D.L. Gut Mucosal Proteins and Bacteriome Are Shaped by the Saturation Index of Dietary Lipids. Nutrients. 2019;11:418. doi: 10.3390/nu11020418.
    1. Gäbele E., Dostert K., Hofmann C., Wiest R., Schölmerich J., Hellerbrand C., Obermeier F. DSS induced colitis increases portal LPS levels and enhances hepatic inflammation and fibrogenesis in experimental NASH. J. Hepatol. 2011;55:1391–1399.
    1. Jang S.-E., Jeong J.-J., Kim J.-K., Han M.J., Kim D.-H. Simultaneous amelioratation of colitis and liver injury in mice by Bifidobacterium longum LC67 and Lactobacillus plantarum LC27. Sci. Rep. 2018;8:1–14. doi: 10.1038/s41598-018-25775-0.
    1. Pini M., Gove M.E., Fayad R., Cabay R.J., Fantuzzi G. Adiponectin deficiency does not affect development and progression of spontaneous colitis in IL-10 knockout mice. Am. J. Physiol. -Gastrointest. Liver Physiol. 2009;296:G382–G387. doi: 10.1152/ajpgi.90593.2008.
    1. Paik J., Fierce Y., Treuting P.M., Brabb T., Maggio-Price L. High-fat diet-induced obesity exacerbates inflammatory bowel disease in genetically susceptible Mdr1a−/− male mice. J. Nutr. 2013;143:1240–1247. doi: 10.3945/jn.113.174615.
    1. Hartmann P., Seebauer C.T., Mazagova M., Horvath A., Wang L., Llorente C., Varki N.M., Brandl K., Ho S.B., Schnabl B. Deficiency of intestinal mucin-2 protects mice from diet-induced fatty liver disease and obesity. Am. J. Physiol. -Gastrointest. Liver Physiol. 2016;310:G310–G322. doi: 10.1152/ajpgi.00094.2015.
    1. Noureldein M.H., Dia B.A., Nabbouh A.I., Eid A.A. Promising anti-diabetic effect of dextran sulfate sodium: Is it its clinical come back? Diabetes Res. Clin. Pr. 2020;159:107661. doi: 10.1016/j.diabres.2019.03.016.
    1. Cheng C., Tan J., Qian W., Zhang L., Hou X. Gut inflammation exacerbates hepatic injury in the high-fat diet induced NAFLD mouse: Attention to the gut-vascular barrier dysfunction. Life Sci. 2018;209:157–166. doi: 10.1016/j.lfs.2018.08.017.
    1. Mencarelli A., Cipriani S., Renga B., Bruno A., D’Amore C., Distrutti E., Fiorucci S. VSL# 3 resets insulin signaling and protects against NASH and atherosclerosis in a model of genetic dyslipidemia and intestinal inflammation. PLoS ONE. 2012;7:e45425.
    1. Mao J.-W., Tang H.-Y., Zhao T., Tan X.-Y., Bi J., Wang B.-Y., Wang Y.-D. Intestinal mucosal barrier dysfunction participates in the progress of nonalcoholic fatty liver disease. Int. J. Clin. Exp. Pathol. 2015;8:3648.
    1. Wen J., Khan I., Li A., Chen X., Yang P., Song P., Jing Y., Wei J., Che T., Zhang C. Alpha-linolenic acid given as an anti-inflammatory agent in a mouse model of colonic inflammation. Food Sci. Nutr. 2019;7:3873–3882. doi: 10.1002/fsn3.1225.
    1. Sideri A., Stavrakis D., Bowe C., Shih D.Q., Fleshner P., Arsenescu V., Arsenescu R., Turner J.R., Pothoulakis C., Karagiannides I. Effects of obesity on severity of colitis and cytokine expression in mouse mesenteric fat. Potential role of adiponectin receptor 1. Am. J. Physiol. -Gastrointest. Liver Physiol. 2015;308:G591–G604. doi: 10.1152/ajpgi.00269.2014.
    1. Fallingborg J. Intraluminal pH of the human gastrointestinal tract. Dan. Med. Bull. 1999;46:183–196.
    1. Schirmer M., Franzosa E.A., Lloyd-Price J., McIver L.J., Schwager R., Poon T.W., Ananthakrishnan A.N., Andrews E., Barron G., Lake K. Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat. Microbiol. 2018;3:337–346. doi: 10.1038/s41564-017-0089-z.
    1. Smith E.A., Macfarlane A.G.T. Enumeration of amino acid fermenting bacteria in the human large intestine: Effects of pH and starch on peptide metabolism and dissimilation of amino acids. Fems Microbiol. Ecol. 1998;25:355–368. doi: 10.1111/j.1574-6941.1998.tb00487.x.
    1. Fallingborg J., Pedersen P., Jacobsen B.A. Small intestinal transit time and intraluminal pH in ileocecal resected patients with Crohn’s disease. Dig. Dis. Sci. 1998;43:702–705. doi: 10.1023/A:1018893409596.
    1. Nugent S., Kumar D., Rampton D., Evans D. Intestinal luminal pH in inflammatory bowel disease: Possible determinants and implications for therapy with aminosalicylates and other drugs. Gut. 2001;48:571–577. doi: 10.1136/gut.48.4.571.
    1. Alam M.T., Amos G.C., Murphy A.R., Murch S., Wellington E.M., Arasaradnam R.P. Microbial imbalance in inflammatory bowel disease patients at different taxonomic levels. Gut Pathog. 2020;12:1–8. doi: 10.1186/s13099-019-0341-6.
    1. Solomon L., Mansor S., Mallon P., Donnelly E., Hoper M., Loughrey M., Kirk S., Gardiner K. The dextran sulphate sodium (DSS) model of colitis: An overview. Comp. Clin. Pathol. 2010;19:235–239. doi: 10.1007/s00580-010-0979-4.
    1. Dong F., Zhang L., Hao F., Tang H., Wang Y. Systemic responses of mice to dextran sulfate sodium-induced acute ulcerative colitis using 1H NMR spectroscopy. J. Proteome Res. 2013;12:2958–2966. doi: 10.1021/pr4002383.
    1. Schicho R., Storr M. Targeting the endocannabinoid system for gastrointestinal diseases: Future therapeutic strategies. Expert Rev. Clin. Pharmacol. 2010;3:193–207. doi: 10.1586/ecp.09.62.
    1. Mercier S., Breuille D., Mosoni L., Obled C., Patureau Mirand P. Chronic inflammation alters protein metabolism in several organs of adult rats. J. Nutr. 2002;132:1921–1928. doi: 10.1093/jn/132.7.1921.
    1. Achiwa K., Ishigami M., Ishizu Y., Kuzuya T., Honda T., Hayashi K., Hirooka Y., Katano Y., Goto H. DSS colitis promotes tumorigenesis and fibrogenesis in a choline-deficient high-fat diet-induced NASH mouse model. Biochem. Biophys. Res. Commun. 2016;470:15–21. doi: 10.1016/j.bbrc.2015.12.012.
    1. Gul M., Kayhan B., Elbe H., Dogan Z., Otlu A. Histological and biochemical effects of dexmedetomidine on liver during an inflammatory bowel disease. Ultrastruct. Pathol. 2015;39:6–12. doi: 10.3109/01913123.2013.829150.
    1. Zhou X., Xie Y., Qi Q., Cheng X., Liu F., Liao K., Wang G., Hao H. Disturbance of hepatic and intestinal UDP-glucuronosyltransferase in rats with trinitrobenzene sulfonic acid-induced colitis. Drug Metab. Pharm. 2012 doi: 10.2133/dmpk.DMPK-12-RG-097.
    1. Murdoch T.B., Fu H., MacFarlane S., Sydora B.C., Fedorak R.N., Slupsky C.M. Urinary metabolic profiles of inflammatory bowel disease in interleukin-10 gene-deficient mice. Anal. Chem. 2008;80:5524–5531. doi: 10.1021/ac8005236.
    1. Martin F.-P.J., Rezzi S., Philippe D., Tornier L., Messlik A., Hölzlwimmer G., Baur P., Quintanilla-Fend L., Loh G., Blaut M. Metabolic assessment of gradual development of moderate experimental colitis in IL-10 deficient mice. J. Proteome Res. 2009;8:2376–2387. doi: 10.1021/pr801006e.
    1. Collett A., Higgs N.B., Gironella M., Zeef L.A.H., Hayes A., Salmo E., Haboubi N., Iovanna J.L., Carlson G.L., Warhurst G. Early molecular and functional changes in colonic epithelium that precede increased gut permeability during colitis development in mdr1a (−/−) mice. Inflamm. Bowel Dis. 2008;14:620–631. doi: 10.1002/ibd.20375.
    1. Compare D., Coccoli P., Rocco A., Nardone O., De Maria S., Cartenì M., Nardone G. Gut–liver axis: The impact of gut microbiota on non alcoholic fatty liver disease. Nutr. Metab. Cardiovasc. Dis. 2012;22:471–476. doi: 10.1016/j.numecd.2012.02.007.
    1. Wikoff W.R., Anfora A.T., Liu J., Schultz P.G., Lesley S.A., Peters E.C., Siuzdak G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA. 2009;106:3698–3703. doi: 10.1073/pnas.0812874106.
    1. Sekirov I., Russell S.L., Antunes L.C.M., Finlay B.B. Gut microbiota in health and disease. Physiol. Rev. 2010;90:859–904. doi: 10.1152/physrev.00045.2009.
    1. Faith J.J., Ahern P.P., Ridaura V.K., Cheng J., Gordon J.I. Identifying gut microbe–host phenotype relationships using combinatorial communities in gnotobiotic mice. Sci. Transl. Med. 2014;6:220ra211. doi: 10.1126/scitranslmed.3008051.
    1. Mokhtari Z., Gibson D.L., Hekmatdoost A. Nonalcoholic fatty liver disease, the gut microbiome, and diet. Adv. Nutr. 2017;8:240–252. doi: 10.3945/an.116.013151.
    1. Monirujjaman M., Ferdouse A.A. Metabolic and physiological roles of branched-chain amino acids. Adv. Mol. Biol. 2014;2014 doi: 10.1155/2014/364976.
    1. Bifari F., Ruocco C., Decimo I., Fumagalli G., Valerio A., Nisoli E. Amino acid supplements and metabolic health: A potential interplay between intestinal microbiota and systems control. Genes Nutr. 2017;12:27. doi: 10.1186/s12263-017-0582-2.
    1. Ren M., Zhang S., Zeng X., Liu H., Qiao S. Branched-chain amino acids are beneficial to maintain growth performance and intestinal immune-related function in weaned piglets fed protein restricted diet. Asian-Australas. J. Anim. Sci. 2015;28:1742. doi: 10.5713/ajas.14.0131.
    1. Nie C., He T., Zhang W., Zhang G., Ma X. Branched chain amino acids: Beyond nutrition metabolism. Int. J. Mol. Sci. 2018;19:954. doi: 10.3390/ijms19040954.
    1. Zhenyukh O., Civantos E., Ruiz-Ortega M., Sánchez M.S., Vázquez C., Peiró C., Egido J., Mas S. High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation. Free Radic. Biol. Med. 2017;104:165–177. doi: 10.1016/j.freeradbiomed.2017.01.009.
    1. Kostovcikova K., Coufal S., Galanova N., Fajstova A., Hudcovic T., Kostovcik M., Prochazkova P., Jiraskova Zakostelska Z., Cermakova M., Sediva B. Diet rich in animal protein promotes pro-inflammatory macrophage response and exacerbates colitis in mice. Front. Immunol. 2019;10:919. doi: 10.3389/fimmu.2019.00919.
    1. Wuggenig P., Kaya B., Melhem H., Ayata C.K., Hruz P., Sayan A.E., Tsumura H., Ito M., Roux J., Niess J.H. Loss of the branched-chain amino acid transporter CD98hc alters the development of colonic macrophages in mice. Commun. Biol. 2020;3:1–19. doi: 10.1038/s42003-020-0842-3.
    1. Ravindran R., Loebbermann J., Nakaya H.I., Khan N., Ma H., Gama L., Machiah D.K., Lawson B., Hakimpour P., Wang Y.-C. The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation. Nature. 2016;531:523–527. doi: 10.1038/nature17186.
    1. Tobias D.K., Lawler P.R., Harada P.H., Demler O.V., Ridker P.M., Manson J.E., Cheng S., Mora S. Circulating branched-chain amino acids and incident cardiovascular disease in a prospective cohort of US women. Circ. Genom. Precis. Med. 2018;11:e002157. doi: 10.1161/CIRCGEN.118.002157.
    1. Ruiz-Canela M., Toledo E., Clish C.B., Hruby A., Liang L., Salas-Salvadó J., Razquin C., Corella D., Estruch R., Ros E. Plasma branched-chain amino acids and incident cardiovascular disease in the PREDIMED trial. Clin. Chem. 2016;62:582–592. doi: 10.1373/clinchem.2015.251710.
    1. Le A., Ottosson F., Brunkwall L., Ericson U., Nilsson P.M., Almgren P. Connection Between BMI-Related Plasma Metabolite Profile and Gut Microbiota. J. Clin. Endocrinol. Metab. 2018;103:1491–1501.
    1. Hoyles L., Fernandez-Real J.-M., Federici M., Serino M., Abbott J., Charpentier J., Heymes C., Luque J.L., Anthony E., Barton R.H. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat. Med. 2018;24:1070–1080. doi: 10.1038/s41591-018-0061-3.
    1. Boulet M.M., Chevrier G., Grenier-Larouche T., Pelletier M., Nadeau M., Scarpa J., Prehn C., Marette A., Adamski J., Tchernof A. Alterations of plasma metabolite profiles related to adipose tissue distribution and cardiometabolic risk. Am. J. Physiol. -Endocrinol. Metab. 2015;309:E736–E746. doi: 10.1152/ajpendo.00231.2015.
    1. Newgard C.B., An J., Bain J.R., Muehlbauer M.J., Stevens R.D., Lien L.F., Haqq A.M., Shah S.H., Arlotto M., Slentz C.A. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311–326. doi: 10.1016/j.cmet.2009.02.002.
    1. Kaikkonen J.E., Würtz P., Suomela E., Lehtovirta M., Kangas A.J., Jula A., Mikkilä V., Viikari J.S., Juonala M., Rönnemaa T. Metabolic profiling of fatty liver in young and middle-aged adults: Cross-sectional and prospective analyses of the Young Finns Study. Hepatology. 2017;65:491–500. doi: 10.1002/hep.28899.
    1. Cummings N.E., Williams E.M., Kasza I., Konon E.N., Schaid M.D., Schmidt B.A., Poudel C., Sherman D.S., Yu D., Arriola Apelo S.I. Restoration of metabolic health by decreased consumption of branched-chain amino acids. J. Physiol. 2018;596:623–645. doi: 10.1113/JP275075.
    1. Uddin G.M., Zhang L., Shah S., Fukushima A., Wagg C.S., Gopal K., Al Batran R., Pherwani S., Ho K.L., Boisvenue J. Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure. Cardiovasc. Diabetol. 2019;18:86. doi: 10.1186/s12933-019-0892-3.
    1. Agus A., Planchais J., Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018;23:716–724. doi: 10.1016/j.chom.2018.05.003.
    1. Nikolaus S., Schulte B., Al-Massad N., Thieme F., Schulte D.M., Bethge J., Rehman A., Tran F., Aden K., Häsler R. Increased tryptophan metabolism is associated with activity of inflammatory bowel diseases. Gastroenterology. 2017;153:1504–1516.e1502. doi: 10.1053/j.gastro.2017.08.028.
    1. Murgia A., Hinz C., Liggi S., Denes J., Hall Z., West J., Santoru M.L., Piras C., Manis C., Usai P. Italian cohort of patients affected by inflammatory bowel disease is characterised by variation in glycerophospholipid, free fatty acids and amino acid levels. Metabolomics. 2018;14:140. doi: 10.1007/s11306-018-1439-4.
    1. Lai Y., Xue J., Liu C.-W., Gao B., Chi L., Tu P., Lu K., Ru H. Serum metabolomics identifies altered bioenergetics, signaling cascades in parallel with exposome markers in Crohn’s disease. Molecules. 2019;24:449. doi: 10.3390/molecules24030449.
    1. Kim C.J., Kovacs-Nolan J.A., Yang C., Archbold T., Fan M.Z., Mine Y. L-Tryptophan exhibits therapeutic function in a porcine model of dextran sodium sulfate (DSS)-induced colitis. J. Nutr. Biochem. 2010;21:468–475. doi: 10.1016/j.jnutbio.2009.01.019.
    1. Islam J., Sato S., Watanabe K., Watanabe T., Hirahara K., Aoyama Y., Tomita S., Aso H., Komai M., Shirakawa H. Dietary tryptophan alleviates dextran sodium sulfate-induced colitis through aryl hydrocarbon receptor in mice. J. Nutr. Biochem. 2017;42:43–50. doi: 10.1016/j.jnutbio.2016.12.019.
    1. Alexeev E.E., Lanis J.M., Kao D.J., Campbell E.L., Kelly C.J., Battista K.D., Gerich M.E., Jenkins B.R., Walk S.T., Kominsky D.J. Microbiota-derived indole metabolites promote human and murine intestinal homeostasis through regulation of interleukin-10 receptor. Am. J. Pathol. 2018;188:1183–1194. doi: 10.1016/j.ajpath.2018.01.011.
    1. Zelante T., Iannitti R.G., Cunha C., De Luca A., Giovannini G., Pieraccini G., Zecchi R., D’Angelo C., Massi-Benedetti C., Fallarino F. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39:372–385. doi: 10.1016/j.immuni.2013.08.003.
    1. Vangipurapu J., Stancáková A., Smith U., Kuusisto J., Laakso M. Nine amino acids are associated with decreased insulin secretion and elevated glucose levels in a 7.4-year follow-up study of 5,181 Finnish men. Diabetes. 2019;68:1353–1358. doi: 10.2337/db18-1076.
    1. Breum L., Rasmussen M.H., Hilsted J., Fernstrom J.D. Twenty-four–hour plasma tryptophan concentrations and ratios are below normal in obese subjects and are not normalized by substantial weight reduction. Am. J. Clin. Nutr. 2003;77:1112–1118. doi: 10.1093/ajcn/77.5.1112.
    1. De Mello V.D., Paananen J., Lindström J., Lankinen M.A., Shi L., Kuusisto J., Pihlajamäki J., Auriola S., Lehtonen M., Rolandsson O. Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Sci. Rep. 2017;7:46337. doi: 10.1038/srep46337.
    1. Abildgaard A., Elfving B., Hokland M., Wegener G., Lund S. The microbial metabolite indole-3-propionic acid improves glucose metabolism in rats, but does not affect behaviour. Arch. Physiol. Biochem. 2018;124:306–312. doi: 10.1080/13813455.2017.1398262.
    1. Konopelski P., Konop M., Gawrys-Kopczynska M., Podsadni P., Szczepanska A., Ufnal M. Indole-3-propionic acid, a tryptophan-derived bacterial metabolite, reduces weight gain in rats. Nutrients. 2019;11:591. doi: 10.3390/nu11030591.
    1. Hou Q., Ye L., Liu H., Huang L., Yang Q., Turner J., Yu Q. Lactobacillus accelerates ISCs regeneration to protect the integrity of intestinal mucosa through activation of STAT3 signaling pathway induced by LPLs secretion of IL-22. Cell Death Differ. 2018;25:1657–1670. doi: 10.1038/s41418-018-0070-2.
    1. Zapata R.C., Singh A., Ajdari N.M., Chelikani P.K. Dietary Tryptophan Restriction Dose-Dependently Modulates Energy Balance, Gut Hormones, and Microbiota in Obesity-Prone Rats. Obesity. 2018;26:730–739. doi: 10.1002/oby.22136.
    1. Dodd D., Spitzer M.H., Van Treuren W., Merrill B.D., Hryckowian A.J., Higginbottom S.K., Le A., Cowan T.M., Nolan G.P., Fischbach M.A. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature. 2017;551:648–652. doi: 10.1038/nature24661.
    1. Chambers E.S., Preston T., Frost G., Morrison D.J. Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr. Nutr. Rep. 2018;7:198–206. doi: 10.1007/s13668-018-0248-8.
    1. Bjerrum J.T., Wang Y., Hao F., Coskun M., Ludwig C., Günther U., Nielsen O.H. Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn’s disease and healthy individuals. Metabolomics. 2015;11:122–133. doi: 10.1007/s11306-014-0677-3.
    1. Imhann F., Vila A.V., Bonder M.J., Fu J., Gevers D., Visschedijk M.C., Spekhorst L.M., Alberts R., Franke L., van Dullemen H.M. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut. 2018;67:108–119. doi: 10.1136/gutjnl-2016-312135.
    1. Huda-Faujan N., Abdulamir A., Fatimah A., Anas O.M., Shuhaimi M., Yazid A., Loong Y. The impact of the level of the intestinal short chain fatty acids in inflammatory bowel disease patients versus healthy subjects. Open Biochem. J. 2010;4:53. doi: 10.2174/1874091X01004010053.
    1. Sabatino A.D., Morera R., Ciccocioppo R., Cazzola P., Gotti S., Tinozzi F., Tinozzi S., Corazza G. Oral butyrate for mildly to moderately active Crohn’s disease. Aliment. Pharm. Ther. 2005;22:789–794. doi: 10.1111/j.1365-2036.2005.02639.x.
    1. Fernando M.R., Saxena A., Reyes J.-L., McKay D.M. Butyrate enhances antibacterial effects while suppressing other features of alternative activation in IL-4-induced macrophages. Am. J. Physiol. -Gastrointest. Liver Physiol. 2016;310:G822–G831. doi: 10.1152/ajpgi.00440.2015.
    1. Laffin M., Fedorak R., Zalasky A., Park H., Gill A., Agrawal A., Keshteli A., Hotte N., Madsen K.L. A high-sugar diet rapidly enhances susceptibility to colitis via depletion of luminal short-chain fatty acids in mice. Sci. Rep. 2019;9:1–11. doi: 10.1038/s41598-019-48749-2.
    1. Fernandes J., Vogt J., Wolever T.M. Kinetic model of acetate metabolism in healthy and hyperinsulinaemic humans. Eur. J. Clin. Nutr. 2014;68:1067–1071. doi: 10.1038/ejcn.2014.136.
    1. Chambers E.S., Viardot A., Psichas A., Morrison D.J., Murphy K.G., Zac-Varghese S.E., MacDougall K., Preston T., Tedford C., Finlayson G.S. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015;64:1744–1754. doi: 10.1136/gutjnl-2014-307913.
    1. Chambers E.S., Byrne C.S., Morrison D.J., Murphy K.G., Preston T., Tedford C., Garcia-Perez I., Fountana S., Serrano-Contreras J.I., Holmes E. Dietary supplementation with inulin-propionate ester or inulin improves insulin sensitivity in adults with overweight and obesity with distinct effects on the gut microbiota, plasma metabolome and systemic inflammatory responses: A randomised cross-over trial. Gut. 2019;68:1430–1438.
    1. Granado-Serrano A.B., Martín-Garí M., Sánchez V., Solans M.R., Berdun R., Ludwig I.A., Rubio L., Vilaprinyo E., Portero-Otín M., Serrano J. Faecal bacterial and short-chain fatty acids signature in hypercholesterolemia. Sci. Rep. 2019;9:1–13. doi: 10.1038/s41598-019-38874-3.
    1. Zhou D., Chen Y.-W., Zhao Z.-H., Yang R.-X., Xin F.-Z., Liu X.-L., Pan Q., Zhou H., Fan J.-G. Sodium butyrate reduces high-fat diet-induced non-alcoholic steatohepatitis through upregulation of hepatic GLP-1R expression. Exp. Mol. Med. 2018;50:1–12. doi: 10.1038/s12276-018-0183-1.
    1. Da Zhou Q.P., Xin F.-Z., Zhang R.-N., He C.-X., Chen G.-Y., Liu C., Chen Y.-W., Fan J.-G. Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier. World J. Gastroenterol. 2017;23:60. doi: 10.3748/wjg.v23.i1.60.
    1. Raso G.M., Simeoli R., Russo R., Iacono A., Santoro A., Paciello O., Ferrante M.C., Canani R.B., Calignano A., Meli R. Effects of sodium butyrate and its synthetic amide derivative on liver inflammation and glucose tolerance in an animal model of steatosis induced by high fat diet. PLoS ONE. 2013;8:e68626.
    1. Yamashita H., Fujisawa K., Ito E., Idei S., Kawaguchi N., Kimoto M., Hiemori M., Tsuji H. Improvement of obesity and glucose tolerance by acetate in Type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Biosci. Biotechnol. Biochem. 2007;71:1236–1243. doi: 10.1271/bbb.60668.
    1. Lin H.V., Frassetto A., Kowalik Jr E.J., Nawrocki A.R., Lu M.M., Kosinski J.R., Hubert J.A., Szeto D., Yao X., Forrest G. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE. 2012;7 doi: 10.1371/journal.pone.0035240.
    1. Khan S., Jena G. Protective role of sodium butyrate, a HDAC inhibitor on beta-cell proliferation, function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways: Study in juvenile diabetic rat. Chem. -Biol. Interact. 2014;213:1–12. doi: 10.1016/j.cbi.2014.02.001.
    1. Dawson P.A., Karpen S.J. Intestinal transport and metabolism of bile acids. J. Lipid Res. 2015;56:1085–1099. doi: 10.1194/jlr.R054114.
    1. Franzosa E.A., Sirota-Madi A., Avila-Pacheco J., Fornelos N., Haiser H.J., Reinker S., Vatanen T., Hall A.B., Mallick H., McIver L.J. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 2019;4:293–305. doi: 10.1038/s41564-018-0306-4.
    1. Heinken A., Ravcheev D.A., Baldini F., Heirendt L., Fleming R.M., Thiele I. Systematic assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic capabilities in inflammatory bowel disease. Microbiome. 2019;7:75. doi: 10.1186/s40168-019-0689-3.
    1. Pavlidis P., Powell N., Vincent R., Ehrlich D., Bjarnason I., Hayee B. Systematic review: Bile acids and intestinal inflammation-luminal aggressors or regulators of mucosal defence? Aliment. Pharmacol. Ther. 2015;42:802–817. doi: 10.1111/apt.13333.
    1. Potthoff M.J., Boney-Montoya J., Choi M., He T., Sunny N.E., Satapati S., Suino-Powell K., Xu H.E., Gerard R.D., Finck B.N. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway. Cell Metab. 2011;13:729–738. doi: 10.1016/j.cmet.2011.03.019.
    1. Gadaleta R.M., Oldenburg B., Willemsen E.C., Spit M., Murzilli S., Salvatore L., Klomp L.W., Siersema P.D., van Erpecum K.J., van Mil S.W. Activation of bile salt nuclear receptor FXR is repressed by pro-inflammatory cytokines activating NF-κB signaling in the intestine. Biochim. Et Biophys. Acta (BBA)-Mol. Basis Dis. 2011;1812:854–858. doi: 10.1016/j.bbadis.2011.04.005.
    1. Gadaleta R.M., Van Erpecum K.J., Oldenburg B., Willemsen E.C., Renooij W., Murzilli S., Klomp L.W., Siersema P.D., Schipper M.E., Danese S. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut. 2011;60:463–472. doi: 10.1136/gut.2010.212159.
    1. Song X., Sun X., Oh S.F., Wu M., Zhang Y., Zheng W., Geva-Zatorsky N., Jupp R., Mathis D., Benoist C. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature. 2020;577:410–415. doi: 10.1038/s41586-019-1865-0.
    1. Luo L., Aubrecht J., Li D., Warner R.L., Johnson K.J., Kenny J., Colangelo J.L. Assessment of serum bile acid profiles as biomarkers of liver injury and liver disease in humans. PLoS ONE. 2018;13 doi: 10.1371/journal.pone.0193824.
    1. Patti M.E., Houten S.M., Bianco A.C., Bernier R., Larsen P.R., Holst J.J., Badman M.K., Maratos-Flier E., Mun E.C., Pihlajamaki J. Serum bile acids are higher in humans with prior gastric bypass: Potential contribution to improved glucose and lipid metabolism. Obesity. 2009;17:1671–1677. doi: 10.1038/oby.2009.102.
    1. Bennion L.J., Grundy S.M. Effects of diabetes mellitus on cholesterol metabolism in man. N. Engl. J. Med. 1977;296:1365–1371. doi: 10.1056/NEJM197706162962401.
    1. Gao J., He J., Zhai Y., Wada T., Xie W. The constitutive androstane receptor is an anti-obesity nuclear receptor that improves insulin sensitivity. J. Biol. Chem. 2009;284:25984–25992. doi: 10.1074/jbc.M109.016808.
    1. Maglich J.M., Lobe D.C., Moore J.T. The nuclear receptor CAR (NR1I3) regulates serum triglyceride levels under conditions of metabolic stress. J. Lipid Res. 2009;50:439–445. doi: 10.1194/jlr.M800226-JLR200.
    1. Velasquez M.T., Ramezani A., Manal A., Raj D.S. Trimethylamine N-oxide: The good, the bad and the unknown. Toxins. 2016;8:326. doi: 10.3390/toxins8110326.
    1. Santoru M.L., Piras C., Murgia A., Palmas V., Camboni T., Liggi S., Ibba I., Lai M.A., Orrù S., Blois S. Cross sectional evaluation of the gut-microbiome metabolome axis in an Italian cohort of IBD patients. Sci. Rep. 2017;7:1–14. doi: 10.1038/s41598-017-10034-5.
    1. Hong Y.-S., Ahn Y.-T., Park J.-C., Lee J.-H., Lee H., Huh C.-S., Kim D.-H., Hwang G.-S. 1 H NMR-based metabonomic assessment of probiotic effects in a colitis mouse model. Arch. Pharmacal Res. 2010;33:1091–1101. doi: 10.1007/s12272-010-0716-1.
    1. Koeth R.A., Wang Z., Levison B.S., Buffa J.A., Org E., Sheehy B.T., Britt E.B., Fu X., Wu Y., Li L. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013;19:576. doi: 10.1038/nm.3145.
    1. Tang W.W., Wang Z., Levison B.S., Koeth R.A., Britt E.B., Fu X., Wu Y., Hazen S.L. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 2013;368:1575–1584. doi: 10.1056/NEJMoa1109400.
    1. Shan Z., Sun T., Huang H., Chen S., Chen L., Luo C., Yang W., Yang X., Yao P., Cheng J. Association between microbiota-dependent metabolite trimethylamine-N-oxide and type 2 diabetes. Am. J. Clin. Nutr. 2017;106:888–894. doi: 10.3945/ajcn.117.157107.
    1. Wang Z., Tang W.W., Buffa J.A., Fu X., Britt E.B., Koeth R.A., Levison B.S., Fan Y., Wu Y., Hazen S.L. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. European heart journal. 2014;35:904–910. doi: 10.1093/eurheartj/ehu002.
    1. Trøseid M., Ueland T., Hov J., Svardal A., Gregersen I., Dahl C., Aakhus S., Gude E., Bjørndal B., Halvorsen B. Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J. Intern. Med. 2015;277:717–726. doi: 10.1111/joim.12328.
    1. Oellgaard J., Abitz Winther S., Schmidt Hansen T., Rossing P., Johan von Scholten B. Trimethylamine N-oxide (TMAO) as a new potential therapeutic target for insulin resistance and cancer. Curr. Pharm. Des. 2017;23:3699–3712. doi: 10.2174/1381612823666170622095324.
    1. Chen S., Henderson A., Petriello M.C., Romano K.A., Gearing M., Miao J., Schell M., Sandoval-Espinola W.J., Tao J., Sha B. Trimethylamine N-oxide binds and activates PERK to promote metabolic dysfunction. Cell Metab. 2019;30:1141–1151.e1145. doi: 10.1016/j.cmet.2019.08.021.
    1. Dumas M.-E., Barton R.H., Toye A., Cloarec O., Blancher C., Rothwell A., Fearnside J., Tatoud R., Blanc V., Lindon J.C. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc. Natl. Acad. Sci. USA. 2006;103:12511–12516. doi: 10.1073/pnas.0601056103.
    1. Saad M.J.A., Santos A., Prada P.O. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology. 2016;31:283–293. doi: 10.1152/physiol.00041.2015.
    1. Duboc H., Rajca S., Rainteau D., Benarous D., Maubert M.-A., Quervain E., Thomas G., Barbu V., Humbert L., Despras G. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut. 2013;62:531–539. doi: 10.1136/gutjnl-2012-302578.
    1. Lavelle A., Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2020:1–15. doi: 10.1038/s41575-019-0258-z.
    1. Jones B.V., Begley M., Hill C., Gahan C.G., Marchesi J.R. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl. Acad. Sci. USA. 2008;105:13580–13585. doi: 10.1073/pnas.0804437105.
    1. Ma K., Saha P.K., Chan L., Moore D.D. Farnesoid X receptor is essential for normal glucose homeostasis. J. Clin. Investig. 2006;116:1102–1109. doi: 10.1172/JCI25604.
    1. Trauner M., Claudel T., Fickert P., Moustafa T., Wagner M. Bile acids as regulators of hepatic lipid and glucose metabolism. Dig. Dis. 2010;28:220–224. doi: 10.1159/000282091.
    1. Jena P.K., Sheng L., Liu H.-X., Kalanetra K.M., Mirsoian A., Murphy W.J., French S.W., Krishnan V.V., Mills D.A., Wan Y.-J.Y. Western diet–induced dysbiosis in farnesoid X receptor knockout mice causes persistent hepatic inflammation after antibiotic treatment. Am. J. Pathol. 2017;187:1800–1813. doi: 10.1016/j.ajpath.2017.04.019.
    1. Armstrong L.E., Guo G.L. Role of FXR in liver inflammation during nonalcoholic steatohepatitis. Curr. Pharmacol. Rep. 2017;3:92–100. doi: 10.1007/s40495-017-0085-2.
    1. Labbé A., Ganopolsky J.G., Martoni C.J., Prakash S., Jones M.L. Bacterial bile metabolising gene abundance in Crohn’s, ulcerative colitis and type 2 diabetes metagenomes. PLoS ONE. 2014;9
    1. Ogilvie L.A., Jones B.V. Dysbiosis modulates capacity for bile acid modification in the gut microbiomes of patients with inflammatory bowel disease: A mechanism and marker of disease? Gut. 2012;61:1642–1643. doi: 10.1136/gutjnl-2012-302137.
    1. Han C.Y. Update on FXR biology: Promising therapeutic target? Int. J. Mol. Sci. 2018;19:2069. doi: 10.3390/ijms19072069.
    1. Jung E.H., Lee J.-H., Kim S.C., Kim Y.W. AMPK activation by liquiritigenin inhibited oxidative hepatic injury and mitochondrial dysfunction induced by nutrition deprivation as mediated with induction of farnesoid X receptor. Eur. J. Nutr. 2017;56:635–647. doi: 10.1007/s00394-015-1107-7.
    1. Lee C.G., Kim Y.W., Kim E.H., Meng Z., Huang W., Hwang S.J., Kim S.G. Farnesoid X receptor protects hepatocytes from injury by repressing miR-199a-3p, which increases levels of LKB1. Gastroenterology. 2012;142:1206–1217. e1207. doi: 10.1053/j.gastro.2012.01.007.
    1. Ríos-Covián D., Ruas-Madiedo P., Margolles A., Gueimonde M., de los Reyes-Gavilán C.G., Salazar N. Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol. 2016;7:185. doi: 10.3389/fmicb.2016.00185.
    1. Venegas D.P., Marjorie K., Landskron G., González M.J., Quera R., Dijkstra G., Harmsen H.J., Faber K.N., Hermoso M.A. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 2019:10.
    1. Zhang X., Xue C., Xu Q., Zhang Y., Li H., Li F., Liu Y., Guo C. Caprylic acid suppresses inflammation via TLR4/NF-κB signaling and improves atherosclerosis in ApoE-deficient mice. Nutr. Metab. 2019;16:40. doi: 10.1186/s12986-019-0359-2.
    1. Yamashiro K., Tanaka R., Urabe T., Ueno Y., Yamashiro Y., Nomoto K., Takahashi T., Tsuji H., Asahara T., Hattori N. Correction: Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke. PLoS ONE. 2017;12:e0176062. doi: 10.1371/journal.pone.0176062.
    1. Yuille S., Reichardt N., Panda S., Dunbar H., Mulder I.E. Human gut bacteria as potent class I histone deacetylase inhibitors in vitro through production of butyric acid and valeric acid. PLoS ONE. 2018;13 doi: 10.1371/journal.pone.0201073.
    1. Bodnaruc A.M., Prud’homme D., Blanchet R., Giroux I. Nutritional modulation of endogenous glucagon-like peptide-1 secretion: A review. Nutr. Metab. 2016;13:92. doi: 10.1186/s12986-016-0153-3.
    1. Larraufie P., Martin-Gallausiaux C., Lapaque N., Dore J., Gribble F., Reimann F., Blottiere H. SCFAs strongly stimulate PYY production in human enteroendocrine cells. Sci. Rep. 2018;8:1–9. doi: 10.1038/s41598-017-18259-0.
    1. Puddu A., Sanguineti R., Montecucco F., Viviani G.L. Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes. Mediat. Inflamm. 2014;2014 doi: 10.1155/2014/162021.
    1. Freeland K.R., Wilson C., Wolever T.M. Adaptation of colonic fermentation and glucagon-like peptide-1 secretion with increased wheat fibre intake for 1 year in hyperinsulinaemic human subjects. Br. J. Nutr. 2010;103:82–90. doi: 10.1017/S0007114509991462.
    1. Laffin M.R., Tayebi Khosroshahi H., Park H., Laffin L.J., Madsen K., Kafil H.S., Abedi B., Shiralizadeh S., Vaziri N.D. Amylose resistant starch (HAM-RS2) supplementation increases the proportion of Faecalibacterium bacteria in end-stage renal disease patients: Microbial analysis from a randomized placebo-controlled trial. Hemodial. Int. 2019;23:343–347. doi: 10.1111/hdi.12753.
    1. Jakobsdottir G., Xu J., Molin G., Ahrne S., Nyman M. High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects. PLoS ONE. 2013;8 doi: 10.1371/journal.pone.0080476.
    1. Estaki M., Pither J., Baumeister P., Little J.P., Gill S.K., Ghosh S., Ahmadi-Vand Z., Marsden K.R., Gibson D.L. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome. 2016;4:42. doi: 10.1186/s40168-016-0189-7.
    1. Hansen C.P., Andreasen J., Holst J. The release of gastric inhibitory peptide, glucagon-like peptide-I, and insulin after oral glucose test in colectomized subjects. Scand. J. Gastroenterol. 1997;32:473–477. doi: 10.3109/00365529709025084.
    1. Gentilella R., Pechtner V., Corcos A., Consoli A. Glucagon-like peptide-1 receptor agonists in type 2 diabetes treatment: Are they all the same? Diabetes/Metab. Res. Rev. 2019;35:e3070. doi: 10.1002/dmrr.3070.
    1. De Silva A., Bloom S.R. Gut hormones and appetite control: A focus on PYY and GLP-1 as therapeutic targets in obesity. Gut Liver. 2012;6:10. doi: 10.5009/gnl.2012.6.1.10.
    1. Schicho R., Nazyrova A., Shaykhutdinov R., Duggan G., Vogel H.J., Storr M. Quantitative metabolomic profiling of serum and urine in DSS-induced ulcerative colitis of mice by 1H NMR spectroscopy. J. Proteome Res. 2010;9:6265–6273. doi: 10.1021/pr100547y.
    1. Roager H.M., Licht T.R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 2018;9:1–10. doi: 10.1038/s41467-018-05470-4.
    1. Willing B., Halfvarson J., Dicksved J., Rosenquist M., Järnerot G., Engstrand L., Tysk C., Jansson J.K. Twin studies reveal specific imbalances in the mucosaassociated microbiota of patients with ileal Crohn’s disease. Inflamm. Bowel Dis. 2009;15:653–660. doi: 10.1002/ibd.20783.
    1. Gupta N.K., Thaker A.I., Kanuri N., Riehl T.E., Rowley C.W., Stenson W.F., Ciorba M.A. Serum analysis of tryptophan catabolism pathway: Correlation with Crohn’s disease activity. Inflamm. Bowel Dis. 2012;18:1214–1220. doi: 10.1002/ibd.21849.
    1. Bethge J., Meffert S., Ellrichmann M., Conrad C., Nikolaus S., Schreiber S. Combination therapy with vedolizumab and etanercept in a patient with pouchitis and spondylarthritis. BMJ Open Gastroenterol. 2017;4:e000127. doi: 10.1136/bmjgast-2016-000127.
    1. Sofia M.A., Ciorba M.A., Meckel K., Lim C.K., Guillemin G.J., Weber C.R., Bissonnette M., Pekow J.R. Tryptophan metabolism through the kynurenine pathway is associated with endoscopic inflammation in ulcerative colitis. Inflamm. Bowel Dis. 2018;24:1471–1480. doi: 10.1093/ibd/izy103.
    1. Menni C., Hernandez M.M., Vital M., Mohney R.P., Spector T.D., Valdes A.M. Circulating levels of the anti-oxidant indoleproprionic acid are associated with higher gut microbiome diversity. Gut Microbes. 2019;10:688–695. doi: 10.1080/19490976.2019.1586038.
    1. Ma L., Li H., Hu J., Zheng J., Zhou J., Botchlett R., Matthews D., Zeng T., Chen L., Xiao X. Indole Alleviates Diet-induced Hepatic Steatosis and Inflammation in a Manner Involving Myeloid Cell PFKFB3. Hepatology. 2020 doi: 10.1002/hep.31115.
    1. Busbee P.B., Menzel L., Alrafas H.R., Dopkins N., Becker W., Miranda K., Tang C., Chatterjee S., Singh U.P., Nagarkatti M. Indole-3-carbinol prevents colitis and associated microbial dysbiosis in an IL-22–dependent manner. JCI Insight. 2020:5. doi: 10.1172/jci.insight.127551.
    1. Wlodarska M., Luo C., Kolde R., d’Hennezel E., Annand J.W., Heim C.E., Krastel P., Schmitt E.K., Omar A.S., Creasey E.A. Indoleacrylic acid produced by commensal peptostreptococcus species suppresses inflammation. Cell Host Microbe. 2017;22:25–37. e26. doi: 10.1016/j.chom.2017.06.007.
    1. Natividad J.M., Agus A., Planchais J., Lamas B., Jarry A.C., Martin R., Michel M.-L., Chong-Nguyen C., Roussel R., Straube M. Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metab. 2018;28:737–749. e734. doi: 10.1016/j.cmet.2018.07.001.
    1. Goettel J.A., Gandhi R., Kenison J.E., Yeste A., Murugaiyan G., Sambanthamoorthy S., Griffith A.E., Patel B., Shouval D.S., Weiner H.L. AHR activation is protective against colitis driven by T cells in humanized mice. Cell Rep. 2016;17:1318–1329. doi: 10.1016/j.celrep.2016.09.082.
    1. Ji Y., Yin Y., Li Z., Zhang W. Gut Microbiota-Derived Components and Metabolites in the Progression of Non-Alcoholic Fatty Liver Disease (NAFLD) Nutrients. 2019;11:1712. doi: 10.3390/nu11081712.
    1. Marinelli L., Martin-Gallausiaux C., Bourhis J.-M., Béguet-Crespel F., Blottière H.M., Lapaque N. Identification of the novel role of butyrate as AhR ligand in human intestinal epithelial cells. Sci. Rep. 2019;9:1–14. doi: 10.1038/s41598-018-37019-2.
    1. Wu W., Zhang L., Xia B., Tang S., Liu L., Xie J., Zhang H. Bioregional Alterations in Gut Microbiome Contribute to the Plasma Metabolomic Changes in Pigs Fed with Inulin. Microorganisms. 2020;8:111. doi: 10.3390/microorganisms8010111.
    1. Karusheva Y., Koessler T., Strassburger K., Markgraf D., Mastrototaro L., Jelenik T., Simon M.-C., Pesta D., Zaharia O.-P., Bódis K. Short-term dietary reduction of branched-chain amino acids reduces meal-induced insulin secretion and modifies microbiome composition in type 2 diabetes: A randomized controlled crossover trial. Am. J. Clin. Nutr. 2019;110:1098–1107. doi: 10.1093/ajcn/nqz191.
    1. Teixeira T., Grześkowiak Ł.M., Salminen S., Laitinen K., Bressan J., Peluzio M.D.C.G. Faecal levels of Bifidobacterium and Clostridium coccoides but not plasma lipopolysaccharide are inversely related to insulin and HOMA index in women. Clin. Nutr. 2013;32:1017–1022. doi: 10.1016/j.clnu.2013.02.008.
    1. Urbini M., Petito V., de Notaristefani F., Scaldaferri F., Gasbarrini A., Tortora L. ToF-SIMS and principal component analysis of lipids and amino acids from inflamed and dysplastic human colonic mucosa. Anal. Bioanal. Chem. 2017;409:6097–6111. doi: 10.1007/s00216-017-0546-9.
    1. Bosch S., Struys E.A., van Gaal N., Bakkali A., Jansen E.W., Diederen K., Benninga M.A., Mulder C.J., de Boer N.K., de Meij T.G. Fecal amino acid analysis can discriminate de novo treatment-naïve pediatric inflammatory bowel disease from controls. J. Pediatric Gastroenterol. Nutr. 2018;66:773–778. doi: 10.1097/MPG.0000000000001812.
    1. Cheng S., Ma X., Geng S., Jiang X., Li Y., Hu L., Li J., Wang Y., Han X. Fecal microbiota transplantation beneficially regulates intestinal mucosal autophagy and alleviates gut barrier injury. MSystems. 2018;3:e00137-00118. doi: 10.1128/mSystems.00137-18.
    1. Laferrère B., Reilly D., Arias S., Swerdlow N., Gorroochurn P., Bawa B., Bose M., Teixeira J., Stevens R.D., Wenner B.R. Differential metabolic impact of gastric bypass surgery versus dietary intervention in obese diabetic subjects despite identical weight loss. Sci. Transl. Med. 2011;3:80re82.
    1. Tremblay F., Brûlé S., Um S.H., Li Y., Masuda K., Roden M., Sun X.J., Krebs M., Polakiewicz R.D., Thomas G. Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient-and obesity-induced insulin resistance. Proc. Natl. Acad. Sci. USA. 2007;104:14056–14061. doi: 10.1073/pnas.0706517104.
    1. Draznin B. Molecular mechanisms of insulin resistance: Serine phosphorylation of insulin receptor substrate-1 and increased expression of p85α: The two sides of a coin. Diabetes. 2006;55:2392–2397. doi: 10.2337/db06-0391.
    1. Carding S., Verbeke K., Vipond D.T., Corfe B.M., Owen L.J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 2015;26:26191. doi: 10.3402/mehd.v26.26191.
    1. Thevaranjan N., Puchta A., Schulz C., Naidoo A., Szamosi J., Verschoor C.P., Loukov D., Schenck L.P., Jury J., Foley K.P. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe. 2017;21:455–466. e454. doi: 10.1016/j.chom.2017.03.002.
    1. Hotamisligil G.S. Inflammation and metabolic disorders. Nature. 2006;444:860–867. doi: 10.1038/nature05485.
    1. Gukovsky I., Li N., Todoric J., Gukovskaya A., Karin M. Inflammation, autophagy, and obesity: Common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastroenterology. 2013;144:1199–1209.e1194. doi: 10.1053/j.gastro.2013.02.007.
    1. Knebel B., Strassburger K., Szendroedi J., Kotzka J., Scheer M., Nowotny B., Müssig K., Lehr S., Pacini G., Finner H. Specific metabolic profiles and their relationship to insulin resistance in recent-onset type 1 and type 2 diabetes. J. Clin. Endocrinol. Metab. 2016;101:2130–2140. doi: 10.1210/jc.2015-4133.
    1. Gomez-Arango L.F., Barrett H.L., McIntyre H.D., Callaway L.K., Morrison M., Nitert M.D. Connections between the gut microbiome and metabolic hormones in early pregnancy in overweight and obese women. Diabetes. 2016;65:2214–2223. doi: 10.2337/db16-0278.
    1. Kreznar J.H., Keller M.P., Traeger L.L., Rabaglia M.E., Schueler K.L., Stapleton D.S., Zhao W., Vivas E.I., Yandell B.S., Broman A.T. Host genotype and gut microbiome modulate insulin secretion and diet-induced metabolic phenotypes. Cell Rep. 2017;18:1739–1750. doi: 10.1016/j.celrep.2017.01.062.
    1. Perry R.J., Peng L., Barry N.A., Cline G.W., Zhang D., Cardone R.L., Petersen K.F., Kibbey R.G., Goodman A.L., Shulman G.I. Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature. 2016;534:213–217. doi: 10.1038/nature18309.
    1. Sun J., Furio L., Mecheri R., van der Does A.M., Lundeberg E., Saveanu L., Chen Y., van Endert P., Agerberth B., Diana J. Pancreatic β-cells limit autoimmune diabetes via an immunoregulatory antimicrobial peptide expressed under the influence of the gut microbiota. Immunity. 2015;43:304–317. doi: 10.1016/j.immuni.2015.07.013.
    1. Tan C., Ling Z., Huang Y., Cao Y., Liu Q., Cai T., Yuan H., Liu C., Li Y., Xu K. Dysbiosis of intestinal microbiota associated with inflammation involved in the progression of acute pancreatitis. Pancreas. 2015;44:868–875. doi: 10.1097/MPA.0000000000000355.
    1. Chen J., Huang C., Wang J., Zhou H., Lu Y., Lou L., Zheng J., Tian L., Wang X., Cao Z. Dysbiosis of intestinal microbiota and decrease in paneth cell antimicrobial peptide level during acute necrotizing pancreatitis in rats. PLoS ONE. 2017;12 doi: 10.1371/journal.pone.0176583.
    1. Zhang X.M., Zhang Z.Y., Zhang C.H., Jing W., Wang Y.X., Zhang G.X. Intestinal microbial community differs between acute pancreatitis patients and healthy volunteers. Biomed. Environ. Sci. 2018;31:81–86.
    1. Penalva J.C., Martínez J., Laveda R., Esteban A., Muñoz C., Sáez J., Such J., Navarro S., Feu F., Sánchez-Payá J. A study of intestinal permeability in relation to the inflammatory response and plasma endocab IgM levels in patients with acute pancreatitis. J. Clin. Gastroenterol. 2004;38:512–517. doi: 10.1097/01.mcg.0000129060.46654.e0.
    1. Porras M., Martin M., Torres R., Vergara P. Cyclical upregulated iNOS and long-term downregulated nNOS are the bases for relapse and quiescent phases in a rat model of IBD. Am. J. Physiol. -Gastrointest. Liver Physiol. 2006;290:G423–G430. doi: 10.1152/ajpgi.00323.2005.
    1. Takahashi M., Kitahashi T., Ishigamori R., Mutoh M., Komiya M., Sato H., Kamanaka Y., Naka M., Maruyama T., Sugimura T. Increased expression of inducible nitric oxide synthase (iNOS) in N-nitrosobis (2-oxopropyl) amine-induced hamster pancreatic carcinogenesis and prevention of cancer development by ONO-1714, an iNOS inhibitor. Carcinogenesis. 2008;29:1608–1613. doi: 10.1093/carcin/bgn152.
    1. Al-Mufti R., Williamson R., Mathie R. Increased nitric oxide activity in a rat model of acute pancreatitis. Gut. 1998;43:564–570. doi: 10.1136/gut.43.4.564.
    1. Qader S.S., Ekelund M., Andersson R., Obermuller S., Salehi A. Acute pancreatitis, expression of inducible nitric oxide synthase and defective insulin secretion. Cell Tissue Res. 2003;313:271–279. doi: 10.1007/s00441-003-0764-7.
    1. Murri M., Leiva I., Gomez-Zumaquero J.M., Tinahones F.J., Cardona F., Soriguer F., Queipo-Ortuño M.I. Gut microbiota in children with type 1 diabetes differs from that in healthy children: A case-control study. BMC Med. 2013;11:46. doi: 10.1186/1741-7015-11-46.
    1. Pflüger M., Winkler C., Hummel S., Ziegler A. Early infant diet in children at high risk for type 1 diabetes. Horm. Metab. Res. 2010;42:143–148. doi: 10.1055/s-0029-1241830.
    1. Kostic A.D., Gevers D., Siljander H., Vatanen T., Hyötyläinen T., Hämäläinen A.-M., Peet A., Tillmann V., Pöhö P., Mattila I. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe. 2015;17:260–273. doi: 10.1016/j.chom.2015.01.001.
    1. Candon S., Perez-Arroyo A., Marquet C., Valette F., Foray A.-P., Pelletier B., Milani C., Ventura M., Bach J.-F., Chatenoud L. Correction: Antibiotics in Early Life Alter the Gut Microbiome and Increase Disease Incidence in a Spontaneous Mouse Model of Autoimmune Insulin-Dependent Diabetes. PLoS ONE. 2016;11:e0147888. doi: 10.1371/journal.pone.0147888.
    1. Cirstea M., Radisavljevic N., Finlay B.B. Good bug, bad bug: Breaking through microbial stereotypes. Cell Host Microbe. 2018;23:10–13. doi: 10.1016/j.chom.2017.12.008.
    1. Ohland C.L., MacNaughton W.K. Probiotic bacteria and intestinal epithelial barrier function. Am. J. Physiol. -Gastrointest. Liver Physiol. 2010;298:G807–G819. doi: 10.1152/ajpgi.00243.2009.
    1. Schlee M., Wehkamp J., Altenhoefer A., Oelschlaeger T.A., Stange E.F., Fellermann K. Induction of human β-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin. Infect. Immun. 2007;75:2399–2407. doi: 10.1128/IAI.01563-06.
    1. Kamada N., Hisamatsu T., Okamoto S., Chinen H., Kobayashi T., Sato T., Sakuraba A., Kitazume M.T., Sugita A., Koganei K. Unique CD14+ intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-γ axis. J. Clin. Investig. 2008;118:2269–2280. doi: 10.1172/JCI34610.
    1. Roselli F., Tartaglione B., Federico F., Lepore V., Defazio G., Livrea P. Rate of MMSE score change in Alzheimer’s disease: Influence of education and vascular risk factors. Clin. Neurol. Neurosurg. 2009;111:327–330. doi: 10.1016/j.clineuro.2008.10.006.
    1. Sleator R.D., Hill C. Patho-biotechnology: Using bad bugs to do good things. Curr. Opin. Biotechnol. 2006;12:211–216. doi: 10.1016/j.copbio.2006.01.006.
    1. Kamada N., Chen G.Y., Inoue N., Nunez G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 2013;14:685–690. doi: 10.1038/ni.2608.
    1. Zmora N., Zilberman-Schapira G., Suez J., Mor U., Dori-Bachash M., Bashiardes S., Kotler E., Zur M., Regev-Lehavi D., Brik R.B., et al. Personalized Gut Mucosal Colonization Resistance to Empiric Probiotics Is Associated with Unique Host and Microbiome Features. Cell. 2018;174:1388–1405 e1321. doi: 10.1016/j.cell.2018.08.041.
    1. Gibson M.K., Pesesky M.W., Dantas G. The Yin and Yang of bacterial resilience in the human gut microbiota. J. Mol. Biol. 2014;426:3866–3876. doi: 10.1016/j.jmb.2014.05.029.
    1. Jonkers W., Dong Y., Broz K., Kistler H.C. The Wor1-like protein Fgp1 regulates pathogenicity, toxin synthesis and reproduction in the phytopathogenic fungus Fusarium graminearum. PLoS Pathog. 2012;8 doi: 10.1371/journal.ppat.1002724.
    1. Derwa Y., Gracie D., Hamlin P., Ford A. Systematic review with meta-analysis: The efficacy of probiotics in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2017;46:389–400. doi: 10.1111/apt.14203.
    1. Cui H.-H., Chen C.-L., Wang J.-D., Yang Y.-J., Cun Y., Wu J.-B., Liu Y.-H., Dan H.-L., Jian Y.-T., Chen X.-Q. Effects of probiotic on intestinal mucosa of patients with ulcerative colitis. World J. Gastroenterol. 2004;10:1521. doi: 10.3748/wjg.v10.i10.1521.
    1. Sood A., Midha V., Makharia G.K., Ahuja V., Singal D., Goswami P., Tandon R.K. The probiotic preparation, VSL# 3 induces remission in patients with mild-to-moderately active ulcerative colitis. Clin. Gastroenterol. Hepatol. 2009;7:1202–1209.e1201.
    1. Tursi A., Brandimarte G., Papa A., Giglio A., Elisei W., Giorgetti G.M., Forti G., Morini S., Hassan C., Pistoia M.A. Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL# 3 as adjunctive to a standard pharmaceutical treatment: A double-blind, randomized, placebo-controlled study. Am. J. Gastroenterol. 2010;105:2218.
    1. Burcelin R., Cani P.D., Amar J. Response to Comment on: Cani et al.(2007) Metabolic Endotoxemia Initiates Obesity and Insulin Resistance: Diabetes 56: 1761–1772. Diabetes. 2007;56:e21. doi: 10.2337/db07-1262.
    1. Zhang D., Vahala R., Wang Y., Smets B.F. Microbes in biological processes for municipal landfill leachate treatment: Community, function and interaction. Int. Biodeterior. Biodegrad. 2016;113:88–96. doi: 10.1016/j.ibiod.2016.02.013.
    1. Suez J., Zmora N., Segal E., Elinav E. The pros, cons, and many unknowns of probiotics. Nat. Med. 2019;25:716–729. doi: 10.1038/s41591-019-0439-x.

Source: PubMed

Подписаться