Method to Reduce the False-Positive Rate of Loss of Resistance in the Cervical Epidural Region

Young Uk Kim, Doohwan Kim, Jun Young Park, Jae-Hyung Choi, Ji Hyun Kim, Heon-Yong Bae, Eun-Young Joo, Jeong Hun Suh, Young Uk Kim, Doohwan Kim, Jun Young Park, Jae-Hyung Choi, Ji Hyun Kim, Heon-Yong Bae, Eun-Young Joo, Jeong Hun Suh

Abstract

Background. The cervical epidural space can be detected by the loss of resistance (LOR) technique which is commonly performed using air. However, this technique using air has been associated with a high false-positive LOR rate during cervical interlaminar epidural steroid injections (CIESIs). Objective. We investigated whether the detection of LOR with contrast medium might reduce the false-positive LOR rate on the first attempt. Methods. We obtained data retrospectively. A total of 79 patients were divided into two groups according to the LOR technique. Groups 1 and 2 patients underwent CIESI with the LOR technique using air or contrast medium. During the procedure, the injection technique (median or paramedian approach), final depth, LOR technique (air or contrast), total number of LOR attempts, and any side effects were recorded. Results. The mean values for the total number of LOR attempts were 1.38 ± 0.65 (Group 1) and 1.07 ± 0.25 (Group 2). The false-positive rate on the first attempt was 29.4% and 6.6% in Groups 1 and 2, respectively (P = 0.012). Conclusions. The use of contrast medium for LOR technique is associated with a lower rate of false-positivity compared with the use of air.

Figures

Figure 1
Figure 1
AP and the contralateral oblique views under fluoroscopy. AP view (a) and the contralateral oblique view at 50 degrees ((b) and (c)) under fluoroscopy; the contralateral laminae are seen in complete cross-section view ((b) and (c)). The needle can be seen transversing between the inferior and superior laminae with the needle tip directed toward the spinolaminar line (b). And epidural space was confirmed with contrast medium injection (c).

References

    1. Manchikanti L., Cash K. A., Pampati V., Wargo B. W., Malla Y. The effectiveness of fluoroscopic cervical interlaminar epidural injections in managing chronic cervical disc herniation and radiculitis: preliminary results of a randomized, double-blind, controlled trial. Pain Physician. 2010;13(3):223–236.
    1. Manchikanti L., Cash K. A., Pampati V., Wargo B. W., Malla Y. Management of chronic pain of cervical disc herniation and radiculitis with fluoroscopic cervical interlaminar epidural injections. International Journal of Medical Sciences. 2012;9(6):424–434. doi: 10.7150/ijms.4444.
    1. Segal S., Arendt K. W. A retrospective effectiveness study of loss of resistance to air or saline for identification of the epidural space. Anesthesia and Analgesia. 2010;110(2):558–563. doi: 10.1213/ANE.0b013e3181c84e4e.
    1. Stojanovic M. P., Vu T.-N., Caneris O., Slezak J., Cohen S. P., Sang C. N. The role of fluoroscopy in cervical epidural steroid injections: an analysis of contrast dispersal patterns. Spine. 2002;27(5):509–514. doi: 10.1097/00007632-200203010-00011.
    1. Manchikanti L., Cash K. A., Pampati V., Malla Y. Two-year follow-up results of fluoroscopic cervical epidural injections in chronic axial or discogenic neck pain: a randomized, double-blind, controlled trial. International Journal of Medical Sciences. 2014;11(4):309–320. doi: 10.7150/ijms.8069.
    1. Hogan Q. H. Epidural anatomy examined by cryomicrotome section. Influence of age, vertebral level, and disease. Regional Anesthesia. 1996;21(5):395–406.
    1. Lieberman R., Dreyfuss P., Baker R. Fluoroscopically guided interlaminar cervical epidural injections. Archives of Physical Medicine and Rehabilitation. 2003;84:1568–1569.
    1. White A. H. Injection techniques for the diagnosis and treatment of low back pain. Orthopedic Clinics of North America. 1983;14(3):553–567.
    1. Botwin K. P., Castellanos R., Rao S., et al. Complications of fluoroscopically guided interlaminar cervical epidural injections. Archives of Physical Medicine and Rehabilitation. 2003;84(5):627–633. doi: 10.1016/S0003-9993(02)04862-1.
    1. Huang R. C., Shapiro G. S., Lim M., Sandhu H. S., Lutz G. E., Herzog R. J. Cervical epidural abscess after epidural steroid injection. Spine. 2004;29(1):E7–E9. doi: 10.1097/01.brs.0000106764.40001.84.
    1. Maddela R., Wahezi S. E., Sparr S., Brook A. Hemiparesis and facial sensory loss following cervical epidural steroid injection. Pain Physician. 2014;17(6):E761–E767.
    1. Abbasi A., Malhotra G., Malanga G., Elovic E. P., Kahn S. Complications of interlaminar cervical epidural steroid injections: a review of the literature. Spine. 2007;32(19):2144–2151. doi: 10.1097/brs.0b013e318145a360.
    1. Cluff R., Mehio A.-K., Cohen S. P., Chang Y., Sang C. N., Stoianovic M. P. The technical aspects of epidural steroid injections: a national survey. Anesthesia and Analgesia. 2002;95(2):403–408.
    1. Kim K. S., Shin S. S., Kim T. S., Jeong C. Y., Yoon M. H., Choi J. I. Fluoroscopically guided cervical interlaminar epidural injections using the midline approach: an analysis of epidurography contrast patterns. Anesthesia & Analgesia. 2009;108(5):1658–1661. doi: 10.1213/ane.0b013e31819d107b.
    1. Manchikanti L., Malla Y., Cash K. A., Mcmanus C. D., Pampati V. Fluoroscopic cervical interlaminar epidural injections in managing chronic pain of cervical postsurgery syndrome: preliminary results of a randomized, double-blind, active control trial. Pain Physician. 2012;15(1):13–26.
    1. Landers M. H., Dreyfuss P., Bogduk N. On the geometry of fluoroscopy views for cervical interlaminar epidural injections. Pain Medicine. 2012;13(1):58–65. doi: 10.1111/j.1526-4637.2011.01291.x.
    1. Mckay W. P., Rosser T., Kriegler S., Mohamed A. Epidural loss-of-resistance biomechanics: an open pilot cadaver study. Local and Regional Anesthesia. 2010;3(1):101–107. doi: 10.2147/lra.s11932.
    1. Fujinaka M. K., Lawson E. F., Schulteis G., Wallace M. S. Cervical epidural depth: correlation between needle angle, cervical anatomy, and body surface area. Pain Medicine. 2012;13(5):665–669. doi: 10.1111/j.1526-4637.2012.01361.x.
    1. Yoon S. P., Kim H. J., Choi Y. S. Anatomic variations of cervical and high thoracic ligamentum flavum. Korean Journal of Pain. 2014;27(4):321–325. doi: 10.3344/kjp.2014.27.4.321.
    1. Lirk P., Colvin J., Steger B., et al. Incidence of lower thoracic ligamentum flavum midline gaps. British Journal of Anaesthesia. 2005;94(6):852–855. doi: 10.1093/bja/aei133.
    1. Manchikanti L., Falco F. J. E., Benyamin R. M., Gharibo C. G., Candido K. D., Hirsch J. A. Epidural steroid injections safety recommendations by the multi-society pain workgroup (MPW): more regulations without evidence or clarification. Pain Physician. 2014;17(5):E575–E588.
    1. Lee J. W., Hwang S. Y., Lee G. Y., Lee E., Kang H. S. Fluoroscopic cervical paramidline interlaminar epidural steroid injections for cervical radiculopathy: effectiveness and outcome predictors. Skeletal Radiology. 2014;43(7):933–938. doi: 10.1007/s00256-014-1866-x.
    1. Lee M. H., Han C. S., Lee S. H., et al. Motor weakness after caudal epidural injection using the air-acceptance test. Korean Journal of Pain. 2013;26(3):286–290. doi: 10.3344/kjp.2013.26.3.286.
    1. Lim H. K., Cha Y. D., Song J. H., Park J. W., Lee M. H. Asymptomatic pneumomediastinum resulting from air in the epidural space -a case report. Korean Journal of Anesthesiology. 2013;65(3):266–269. doi: 10.4097/kjae.2013.65.3.266.
    1. Sanford C. L., II, Rodriguez R. E., Schmidt J., Austin P. N. Evidence for using air or fluid when identifying the epidural space. AANA Journal. 2013;81(1):23–28.
    1. Furman M., Jasper N. R., Lin H. W. Fluoroscopic contralateral oblique view in interlaminar interventions. Pain Medicine. 2012;13(11):1389–1396. doi: 10.1111/j.1526-4637.2012.01484.x.
    1. Gill J. S., Aner M., Jyotsna N., Keel J. C., Simopoulos T. T. Contralateral oblique view is superior to lateral view for interlaminar cervical and cervicothoracic epidural access. Pain Medicine. 2015;16(1):68–80.

Source: PubMed

Подписаться