The ORVAC trial: a phase IV, double-blind, randomised, placebo-controlled clinical trial of a third scheduled dose of Rotarix rotavirus vaccine in Australian Indigenous infants to improve protection against gastroenteritis: a statistical analysis plan

Mark A Jones, Todd Graves, Bianca Middleton, James Totterdell, Thomas L Snelling, Julie A Marsh, Mark A Jones, Todd Graves, Bianca Middleton, James Totterdell, Thomas L Snelling, Julie A Marsh

Abstract

Objective: The purpose of this double-blind, randomised, placebo-controlled, adaptive design trial with frequent interim analyses is to determine if Australian Indigenous children, who receive an additional (third) dose of human rotavirus vaccine (Rotarix, GlaxoSmithKline) for children aged 6 to < 12 months, would improve protection against clinically significant all-cause gastroenteritis.

Participants: Up to 1000 Australian Aboriginal and Torres Strait Islander (hereafter Indigenous) infants aged 6 to < 12 months will be recruited from all regions of the Northern Territory.

Interventions: The intervention is the addition of a third scheduled dose of human monovalent rotavirus vaccine.

Co-primary and secondary outcome measures: ORVAC has two co-primary outcomes: (1) anti-rotavirus IgA seroconversion, defined as serum anti-rotavirus IgA ≥ 20 U/ml 28 to 55 days post Rotarix/placebo, and (2) time from randomisation to medical attendance for which the primary reason for presentation is acute gastroenteritis or acute diarrhoea illness before age 36 months. Secondary outcomes include (1) change in anti-rotavirus IgA log titre, (2) time from randomisation to hospitalisation with primary admission code presumed or confirmed acute diarrhoea illness before age 36 months, (3) time from randomisation to hospitalisation for which the admission is rotavirus confirmed diarrhoea illness before age 36 months and (4) time from randomisation to rotavirus infection (not necessarily requiring hospitalisation) meeting the jurisdictional definition before age 36 months.

Discussion: A detailed, prospective statistical analysis plan is presented for this Bayesian adaptive design. The plan was written by the trial statistician and details the study design, pre-specified adaptative elements, decision thresholds, statistical methods and the simulations used to evaluate the operating characteristics of the trial. As at August 2020, four interim analyses have been run, but no stopping rules have been triggered. Application of this SAP will minimise bias and supports transparent and reproducible research.

Trial registration: Clinicaltrials.gov NCT02941107. Registered on 21 October 2016 ORIGINAL PROTOCOL FOR THE STUDY: https://doi.org/10.1136/bmjopen-2019-032549.

Keywords: Adaptive design; Bayesian; Infectious disease; Interim analysis; RV1; Randomised controlled trial; Rotarix; Rotavirus vaccine; Statistical methods.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Process flow diagram for interim analyses and decision rules
Fig. 2
Fig. 2
Statistical power for clinical outcome for a range of baseline values, effect sizes and accrual rates
Fig. 3
Fig. 3
Expected sample size (total enrolled) assessed on clinical and immunological outcome over a range of baseline values, effect sizes and accrual rates
Fig. 4
Fig. 4
Statistical power for immunological outcome for a range of baseline values, effect sizes and accrual rates
Fig. 5
Fig. 5
Probability of expected success assessed on clinical outcome over a range of baseline values, effect sizes and accrual rates
Fig. 6
Fig. 6
Probability of futility assessed on clinical and immunological outcome over a range of baseline values, effect sizes and accrual rates
Fig. 7
Fig. 7
Probability of stopping venous sampling assessed on immunological outcome over a range of baseline values, effect sizes and accrual rates
Fig. 8
Fig. 8
Expected sample size (venous samples) assessed on immunological outcome over a range of baseline values, effect sizes and accrual rates

References

    1. Dey AWH, Menzies R, Macartney K. Changes in hospitalisations for acute gastroenteritis in Australia after the national rotavirus vaccination program. Med J Aust. 2012;197(8):453–7. doi: 10.5694/mja12.10062.
    1. Pendleton A, Galic M, Clarke C, Ng SP, Ledesma E, Ramakrishnan G, Liu Y. Impact of rotavirus vaccination in Australian children below 5 years of age. Hum Vaccines Immunotherapeutics. 2013;9(8):1617–25. doi: 10.4161/hv.24831.
    1. Moher D, Hopewell S, Schulz KF, Montori V, Gøtzsche PC, Devereaux PJ, Elbourne D, Egger M, Altman DG. CONSORT 2010 Explanation and Elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340(mar23 1):c869. doi: 10.1136/bmj.c869.
    1. Detry MA, Lewis RJ, Broglio KR, Connor JT, Berry SM, Berry DA. Standards for the design, conduct, and evaluation of adaptive randomized clinical trials. Technical report. Patient Centered Outcomes Res Inst. 2012. .
    1. Dimairo M, Coates E, Pallmann P, Todd S, Julious SA, Jaki T, Wason J, Mander AP, Weir CJ, Koenig F, Walton MK, Biggs K, Nicholl J, Hamasaki T, Proschan MA, Scott JA, Ando Y, Hind D, Altman DG. Development process of a consensus-driven CONSORT extension for randomised trials using an adaptive design. BMC Med. 2018; 16(1). 10.1186/s12916-018-1196-2.
    1. Hatfield I, Allison A, Flight L, Julious SA, Dimairo M. Adaptive designs undertaken in clinical research: a review of registered clinical trials. Trials. 2016; 17. 10.1186/s13063-016-1273-9.
    1. Hummel J, Wang S, Kirkpatrick J. Using simulation to optimize adaptive trial designs: applications in learning and confirmatory phase trials. Clin Inv. 2015;5(4):401–13.
    1. Meurer WJ, Lewis RJ, Tagle D, Fetters MD, Legocki L, Berry S, Connor J, Durkalski V, Elm J, Zhao W, Frederiksen S, Silbergleit R, Palesch Y, Berry DA. An overview of the adaptive designs accelerating promising trials into treatments (ADAPT-IT) project. Ann Emerg Med. 2012;60(4):451–7. doi: 10.1016/j.annemergmed.2012.01.020.
    1. Pallmann P, Bedding AW, Choodari OB, Flight L, Dimairo M, Hampson LV, Holmes J, Mander AP, Odondi L, Sydes MR, Villar SS, Wason JMS, Weir CJ, Wheeler GM, Yap C, Jaki T. Adaptive designs in clinical trials: why use them, and how to run and report them. BioMed Cent. 2018; 16(1). 10.1186/s12916-018-1017-7.
    1. Berry SM, Carlin BP, Lee J, Muller P. Bayesian adaptive methods for clinical trials, 1st edn. Biostatistics Series vol. 38. Boca Raton: CRC Press; 2010.
    1. Park JJH, Thorlund K, Mills EJ. Critical concepts in adaptive clinical trials. Clin Epidemiol. 2018;10:343–51. doi: 10.2147/CLEP.S156708.
    1. Thorlund K, Haggstrom J, Park JJH, Mills EJ. Key design considerations for adaptive clinical trials: a primer for clinicians. BMJ. 2018:k698. 10.1136/bmj.k698.
    1. Saville BR, Connor JT, Ayers GD, Alvarez J. The utility of Bayesian predictive probabilities for interim monitoring of clinical trials. Clin Trials J Soc Clin Trials. 2014;11(4):485–93. doi: 10.1177/1740774514531352.
    1. Angus DC, Alexander BM, Berry S. Adaptive platform trials: definition, design, conduct and reporting considerations. Nat Rev Drug Discov. 2019;18:797–07. doi: 10.1038/s41573-019-0034-3.
    1. Berry SM. The platform trial an efficient strategy for evaluating multiple treatments. JAMA. 2015;313(16):1619–20. doi: 10.1001/jama.2015.2316.
    1. Hager DN, Hooper MH, Bernard GR, Busse LW, Ely EW, Fowler AA, Hall DFGA, Hinson JS, Jackson JC, Kelen GD, Levine M, Lindsell CJ, Malone RE, McGlothlin A, Rothman RE, Viele K, Wright DW, Sevransky JE, Martin GS. The Vitamin C, Thiamine and Steroids in Sepsis (VICTAS) protocol: a prospective, multi-center, double-blind, adaptive sample size, randomized, placebo-controlled, clinical trial. Trials. 2019; 20(1). 10.1186/s13063-019-3254-2.
    1. Butler CC, Coenen S, Saville BR, Cook J, van der Velden A, Homes J, de Jong M, Little P, Goossens H, Beutels P, Ieven M, Francis N, Moons P, Bongard E, Verhei T. A trial like ALIC4E: why design a platform, response-adaptive, open, randomised controlled trial of antivirals for influenza-like illness. ERJ Open Res. 2018;4(2):00046–2018. doi: 10.1183/23120541.00046-2018.
    1. Lewis RJ, Angus DC, Laterre P-F, Kjolbye AL, van der Meulen E, Blemings A, Graves T, Russell JA, Carlsen JE, Jacobsen K, Yealy DM, Opal SM, Windelov NA, Francois B, Perner A, Pickkers P, Berry SM. Rationale and design of an adaptive phase 2b/3 clinical trial of selepressin for adults in septic shock. Ann Am Thorac Soc. 2018;15(2):250–57. doi: 10.1513/AnnalsATS.201708-669SD.
    1. Brown AR, Gajewski BJ, Aaronson LS, Mudaranthakam DP, Hunt SL, Berry SM, Quintana M, Pasnoor M, Dimachkie MM, Jawdat O, Herbelin L, Barohn RJ. A Bayesian comparative effectiveness trial in action: developing a platform for multisite study adaptive randomization. Trials. 2016; 17(428). 10.1186/s13063-016-1544-5.
    1. Schultz A, Marsh JA, Saville BR, Norman R, Middleton PG, Greville HW, Berry MIBSM, Snelling T. Trial refresh: a case for an adaptive platform trial for pulmonary exacerbations of cystic fibrosis. Front Pharmacol. 2019; 10(301). 10.3389/fphar.2019.00301.
    1. Alexander BM, Ba S, Berger MS, Berry DA, Cavenee WK, Chang SM, Cloughesy TF, Jiang T, Khasraw M, Li W, Mittman R, Poste GH, Wen PY, Yung WKA, Barker AD. Adaptive global innovative learning environment for glioblastoma: GBM AGILE. Clin Cancer Res. 2018; 24. 10.1158/1078-0432.ccr-17-0764.
    1. Snelling TL, Andrews RM, Kirkwood CD, Culvenor S, Carapetis JR. Case-control evaluation of the effectiveness of the G1P[8] human rotavirus vaccine during an outbreak of rotavirus G2P[4] infection in central Australia. Clin Infect Dis. 2011; 52. 10.1093/cid/ciq101.
    1. Schulz K. F., Altman D. G., Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c332. doi: 10.1136/bmj.c332.
    1. Bines JE, Liem NT, Justice F, Son TN, de Campo JBCM, Jamsen K, Mulholland K, Barnett P, Barnes GL. Validation of clinical case definition of acute intussusception in infants in Viet Nam and Australia. Bull World Health Organ. 2006;84(7):569–75. doi: 10.2471/BLT.05.025445.
    1. National Health and Medical Research Council. Guidance: safety monitoring and reporting in clinical trials involving therapeutic goods. Canberra: National Health and Medical Research Council: 2016. NHMRC reference EH59. ISBN 978-1-925129-68-7. .
    1. Lau B, Cole SR, Gange SJ. Competing risk regression models for epidemiologic data. Am J Epidemiol. 2009;170(2):244–256. doi: 10.1093/aje/kwp107.
    1. Gelman A, Jakulin A, Pittau MG, Su Y-S. A weakly informative default prior distribution for logistic and other regression models. Ann Appl Stat. 2008;2(4):1360–1383. doi: 10.1214/08-AOAS191.
    1. Ghosh J, Li Y, Mitra R. On the use of cauchy prior distributions for Bayesian logistic regression. Bayesian Anal. 2018;13(2):359–383. doi: 10.1214/17-BA1051.
    1. Cox DR. Regression models and life-tables. J R Stat Soc Ser B Methodol. 1972;42(2):187–20.
    1. Faruk A. The comparison of proportional hazards and accelerated failure time models in analyzing the first birth interval survival data. J Phys Conf Ser. 2018;974:012008. doi: 10.1088/1742-6596/974/1/012008.
    1. Zhang Z. Parametric regression model for survival data: Weibull regression model as an example. Ann Transl Med. 2016;4(24):484. doi: 10.21037/atm.2016.08.45.
    1. Zare A, Hosseini M, Mahmoodi M, Mohammad K, Zeraati H, Naieni KH. A comparison between accelerated failure-time and Cox proportional hazard models in analyzing the survival of gastric cancer patients. Iran J Public Health. 2015; 44(8).
    1. Patel K, Kay R, Rowell L. Comparing proportional hazards and accelerated failure time models: an application in influenza. Pharm Stat. 2006; 5(3).
    1. Ibrahim JG, Chen M-H, Sinha D. Bayesian survival analysis, 1st edn. Springer Series in Statistics, vol. 1. New York: Springer; 2001.
    1. Gabry J., Simpson D., Vehtari A., Betancourt M., Gelman A. Visualization in Bayesian workflow. J R Stat Soc Ser A. 2019;182(2):389–402. doi: 10.1111/rssa.12378.
    1. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. Bayesian data analysis. Boca Raton: CRC Press; 2014.
    1. Christensen R, Johnson W, Branscum A, Hanson T. Bayesian ideas and data analysis: an introduction for scientists and statisticians, first edition. Texts in Statistical Science, vol. 1. Boca Raton: CRC Press; 2010.
    1. Fisher LD, Lin DY. Time-dependent covariates in the Cox proportional-hazards regression model. Ann Rev Public Health. 1999;20(1):145–157. doi: 10.1146/annurev.publhealth.20.1.145.
    1. Petersen T. Fitting parametric survival models with time-dependent covariates. Appl Stat. 1986;35(3):281. doi: 10.2307/2348028.
    1. Austin PC, Fine JP. Practical recommendations for reporting Fine-Gray model analyses for competing risk data. Stat Med. 2017;36(27):4391–4400. doi: 10.1002/sim.7501.
    1. Austin PC, Fine JP. Accounting for competing risks in randomized controlled trials: a review and recommendations for improvement. Stat Med. 2016;36(8):1203–1209. doi: 10.1002/sim.7215.
    1. Middleton B, Jones M, Waddington C, Danchin M, McCallum C, Gallagher S, Leach A, Andrews R, Kirkwood C, Cunliffe N, Carapetis J, Marsh J, Snelling T. The ORVAC trial protocol: a phase IV, double-blind, randomised, placebo-controlled clinical trial of a third scheduled dose of Rotarix rotavirus vaccine in Australian Indigenous infants to improve protection against gastroenteritis. BMJ Open. 2019;9(11):1–9. doi: 10.1136/bmjopen-2019-032549.
    1. Berry SM, Berry DA, Natarajan K, Lin C-S, Hennekens C, Belder R. Bayesian survival analysis with nonproportional hazards. J Am Stat Assoc. 2004;99(465):36–4. doi: 10.1198/016214504000000052.
    1. Ma Z, Chen G. Bayesian methods for dealing with missing data problems. J Korean Stat Soc. 2018; 47. 10.1016/j.jkss.2018.03.002.
    1. Robert CP, Casella G. Monte Carlo statistical methods, 2nd edn. Springer texts in Statistics, vol. 1. New York: Springer; 2004.
    1. Armah G, Lewis KDC, Cortese MM, Parashar UD, Ansah A, Gazley L, Victor JC, McNeal MM, Binka F, Steele AD. A randomized, controlled trial of the impact of alternative dosing schedules on the immune response to human rotavirus vaccine in rural Ghanaian infants. J Infect Dis. 2016;213(11):1678–1685. doi: 10.1093/infdis/jiw023.
    1. Kompithra RZ, Paul A, Manoharan D, Babji S, Sarkar R, Mathew LG, Kang G. Immunogenicity of a three dose and five dose oral human rotavirus vaccine (RIX4414) schedule in south Indian infants. Vaccine. 2014;32:A129–33. doi: 10.1016/j.vaccine.2014.03.002.
    1. Neuzil KM, Zamanb K, Victor JC. A proposed framework for evaluating and comparing efficacy estimates in clinical trials of new rotavirus vaccines. Vaccine. 2014;32:A179–84. doi: 10.1016/j.vaccine.2014.04.074.

Source: PubMed

Подписаться