Phase I clinical trial of the combination of eribulin and everolimus in patients with metastatic triple-negative breast cancer

Jin Sun Lee, Susan E Yost, Suzette Blanchard, Daniel Schmolze, Hongwei Holly Yin, Raju Pillai, Kim Robinson, Aileen Tang, Norma Martinez, Jana Portnow, Wei Wen, John H Yim, Heather Ann Brauer, Yuqi Ren, Thehang Luu, Joanne Mortimer, Yuan Yuan, Jin Sun Lee, Susan E Yost, Suzette Blanchard, Daniel Schmolze, Hongwei Holly Yin, Raju Pillai, Kim Robinson, Aileen Tang, Norma Martinez, Jana Portnow, Wei Wen, John H Yim, Heather Ann Brauer, Yuqi Ren, Thehang Luu, Joanne Mortimer, Yuan Yuan

Abstract

Background: Alteration of the PI3K/AKT/mTOR pathway is a common genomic abnormality detected in triple-negative breast cancer (TNBC). Everolimus acts synergistically with eribulin in TNBC cell lines and xenograft models. This phase I trial was designed to test the safety and tolerability of combining eribulin and everolimus in patients with metastatic TNBC.

Methods: The primary objective of this study was to evaluate the safety and toxicities of the combination. Patients with metastatic TNBC who had up to four lines of prior chemotherapies were enrolled. The combination of eribulin and everolimus was tested using three dosing levels: A1 (everolimus 5 mg daily; eribulin 1.4 mg/m2 days 1 and 8 every 3 weeks), A2 (everolimus 7.5 mg daily; eribulin 1.4 mg/m2, days 1 and 8 every 3 weeks), and B1 (everolimus 5 mg daily; eribulin 1.1 mg/m2 days 1 and 8 every 3 weeks).

Results: Twenty-seven patients with median age 55 years were enrolled. Among 8 evaluable patients who received dose level A1, 4 had dose-limiting toxicities (DLTs). Among 3 evaluable patients treated with dose level A2, 2 had DLTs. Among 12 evaluable patients who received dose level B1, 4 had DLTs. The DLTs were neutropenia, stomatitis, and hyperglycemia. Over the study period, 59% had a ≥ grade 3 toxicity, 44% had ≥ grade 3 hematologic toxicities, and 22% had grade 4 hematologic toxicities. The most common hematological toxicities were neutropenia, leukopenia, and lymphopenia. Thirty-three percent had grade 3 non-hematologic toxicities. The most common non-hematological toxicities were stomatitis, hyperglycemia, and fatigue. The median number of cycles completed was 4 (range 0-8). Among 25 eligible patients, 9 patients (36%) achieved the best response as partial response, 9 (36%) had stable disease, and 7 (28%) had progression. The median time to progression was 2.6 months (95% CI [2.1, 4.0]), and median overall survival (OS) was 8.3 months (95% CI [5.5, undefined]).

Conclusion: Eribulin 1.1 mg/m2 days 1 and 8 every 3 weeks with everolimus 5 mg daily was defined as the highest dose with acceptable toxicity (RP2D). The combination is safe, and efficacy is modest. A post hoc analysis showed that participants that used dexamethasone mouthwash stayed on treatment for one additional cycle.

Trial registration: ClinicalTrials.gov, NCT02120469. Registered 18 April 2014.

Keywords: Eribulin; Everolimus; Metastatic TNBC; Phase I trial.

Conflict of interest statement

Dr. Yuan has contracted research sponsored by Merck, Eisai, Novartis, Puma, Genentech, and Pfizer; is a consultant for Puma; and is on the Speakers Bureau for Eisai. The other authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Patient accrual and correlative analysis summary. A total of 27 patients were accrued and received treatment on the study. Two of the patients’ on-treatment biopsy revealed HER2+ FISH-amplified tumor, and study treatment was terminated (patients were excluded from the efficacy analysis but included in the toxicity analysis). mRNA profiling was performed for 20 patients with NanoString PanCancer Pathways analysis and 11 patients for BC360™. FoundationOne ® genomic mutation profiles were available for 9 patients
Fig. 2
Fig. 2
Summary of toxicities. a Hematological toxicities: 12/27 (44%) had ≥ grade 3 hematological toxicity, including neutropenia (n = 10), lymphopenia (n = 6), and leukopenia (n = 7). b Non-hematologic toxicities: 9/27 (33%) had grade 3 non-hematological toxicity, including oral mucositis (n = 3), hyperglycemia (n = 3), and fatigue (n = 5). The counts of maximum ≥ grade 2 for each participant was listed for each event type (either ≥ grade 3 toxicity, or 2 participants experienced a grade 2 toxicity)
Fig. 3
Fig. 3
Kaplan-Meier survival analysis. a Median PFS was 2.6 months (95% CI [2.1, 4.0]). b Median OS was 8.3 months (95% CI [5.5, undefined])
Fig. 4
Fig. 4
NanoString PanCancer Pathways® analysis (n = 20). a Volcano plot showing differentially expressed genes with linear fold change > 2 and p < 0.05 comparing SD+PD and PR. b Decreased CDKN2A expression (p = 0.02) in responders. c Increased CALML5 expression (p = 0.01) in responders

References

    1. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G, Troester MA, Tse CK, Edmiston S. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA. 2006;295(21):2492–2502.
    1. Tomao F, Papa A, Zaccarelli E, Rossi L, Caruso D, Minozzi M, Vici P, Frati L, Tomao S. Triple-negative breast cancer: new perspectives for targeted therapies. OncoTargets Ther. 2015;8:177.
    1. Howlader N, Noone A, Krapcho M, Miller D, Bishop K, Kosary C, Yu M, Ruhl J, Tatalovich Z, Mariotto A. SEER Cancer Statistics Review, 1975–2014. Bethesda: National Cancer Institute; 2017.
    1. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–2767.
    1. Metzger-Filho O, Tutt A, de Azambuja E, Saini KS, Viale G, Loi S, Bradbury I, Bliss JM, Azim HA, Jr, Ellis P, et al. Dissecting the heterogeneity of triple-negative breast cancer. J Clin Oncol. 2012;30(15):1879–1887.
    1. Masuda H, Baggerly KA, Wang Y, Zhang Y, Gonzalez-Angulo AM, Meric-Bernstam F, Valero V, Lehmann BD, Pietenpol JA, Hortobagyi GN. Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin Cancer Res. 2013;19(19):5533–5540.
    1. Burstein M. D., Tsimelzon A., Poage G. M., Covington K. R., Contreras A., Fuqua S. A. W., Savage M. I., Osborne C. K., Hilsenbeck S. G., Chang J. C., Mills G. B., Lau C. C., Brown P. H. Comprehensive Genomic Analysis Identifies Novel Subtypes and Targets of Triple-Negative Breast Cancer. Clinical Cancer Research. 2014;21(7):1688–1698.
    1. Liedtke C, Mazouni C, Hess KR, André F, Tordai A, Mejia JA, Symmans WF, Gonzalez-Angulo AM, Hennessy B, Green M. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26(8):1275–1281.
    1. Rodler E, Korde L, Gralow J. Current treatment options in triple negative breast cancer. Breast Dis. 2011;32(1–2):99–122.
    1. Robson M, Im S-A, Senkus E, Xu B, Domchek SM, Masuda N, Delaloge S, Li W, Tung N, Armstrong A. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377(6):523–533.
    1. Robson ME, Im S-A, Senkus E, Xu B, Domchek SM, Masuda N, Delaloge S, Li W, Tung NM, Armstrong A. OlympiAD: phase III trial of olaparib monotherapy versus chemotherapy for patients (pts) with HER2-negative metastatic breast cancer (mBC) and a germline BRCA mutation (gBRCAm): J Clin Oncol. 2017;35(18_suppl).
    1. Litton JK, Rugo HS, Ettl J, Hurvitz SA, Gonçalves A, Lee K-H, Fehrenbacher L, Yerushalmi R, Mina LA, Martin M. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med. 2018;379(8):753–763.
    1. Nanda R, Chow LQ, Dees EC, Berger R, Gupta S, Geva R, Pusztai L, Pathiraja K, Aktan G, Cheng JD. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. J Clin Oncol. 2016;34(21):2460–2467.
    1. Adams S, Schmid P, Rugo H S, Winer E P, Loirat D, Awada A, Cescon D W, Iwata H, Campone M, Nanda R, Hui R, Curigliano G, Toppmeyer D, O’Shaughnessy J, Loi S, Paluch-Shimon S, Tan A R, Card D, Zhao J, Karantza V, Cortés J. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort A of the phase II KEYNOTE-086 study. Annals of Oncology. 2018;30(3):397–404.
    1. Adams S, Loi S, Toppmeyer D, Cescon D, De Laurentiis M, Nanda R, Winer E, Mukai H, Tamura K, Armstrong AC. KEYNOTE-086 cohort B: pembrolizumab monotherapy for PD-L1–positive, previously untreated, metastatic triple-negative breast cancer (mTNBC). Clin Cancer Res. 2018;78(4 Supplement).
    1. Emens LA, Braiteh FS, Cassier P, Delord J-P, Eder JP, Fasso M, Xiao Y, Wang Y, Molinero L, Chen DS. Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer (TNBC): AACR. Cancer Res. 2015;75(9 Supplement):2015.
    1. Emens Leisha A., Cruz Cristina, Eder Joseph Paul, Braiteh Fadi, Chung Cathie, Tolaney Sara M., Kuter Irene, Nanda Rita, Cassier Philippe A., Delord Jean-Pierre, Gordon Michael S., ElGabry Ehab, Chang Ching-Wei, Sarkar Indrani, Grossman William, O’Hear Carol, Fassò Marcella, Molinero Luciana, Schmid Peter. Long-term Clinical Outcomes and Biomarker Analyses of Atezolizumab Therapy for Patients With Metastatic Triple-Negative Breast Cancer. JAMA Oncology. 2019;5(1):74.
    1. Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, Diéras V, Hegg R, Im S-A, Shaw Wright G. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379(22):2108–2121.
    1. André Fabrice, Ciruelos Eva, Rubovszky Gabor, Campone Mario, Loibl Sibylle, Rugo Hope S., Iwata Hiroji, Conte Pierfranco, Mayer Ingrid A., Kaufman Bella, Yamashita Toshinari, Lu Yen-Shen, Inoue Kenichi, Takahashi Masato, Pápai Zsuzsanna, Longin Anne-Sophie, Mills David, Wilke Celine, Hirawat Samit, Juric Dejan. Alpelisib for PIK3CA-Mutated, Hormone Receptor–Positive Advanced Breast Cancer. New England Journal of Medicine. 2019;380(20):1929–1940.
    1. Millis SZ, Gatalica Z, Winkler J, Vranic S, Kimbrough J, Reddy S, O’Shaughnessy JA. Predictive biomarker profiling of > 6000 breast cancer patients shows heterogeneity in TNBC, with treatment implications. Clin Breast Cancer. 2015;15(6):473–481. e473.
    1. Network CGA Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61.
    1. Leroy C, Ramos P, Cornille K, Bonenfant D, Fritsch C, Voshol H, Bentires-Alj M. Activation of IGF1R/p110β/AKT/mTOR confers resistance to α-specific PI3K inhibition. Breast Cancer Res. 2016;18(1):41.
    1. Wein L, SJTB L. Mechanisms of resistance of chemotherapy in early-stage triple negative breast cancer (TNBC) Breast. 2017;34:S27–S30.
    1. Jensen JD, Laenkholm A-V, Knoop A, Ewertz M, Bandaru R, Liu W, Hackl W, Barrett JC, HJCCR G. PIK3CA mutations may be discordant between primary and corresponding metastatic disease in breast cancer. Clin Cancer Res. 2011;17(4):667–677.
    1. Hirata Y, Uemura D. Halichondrins-antitumor polyether macrolides from a marine sponge. Pure Appl Chem. 1986;58(5):701–710.
    1. Kuznetsov G, Towle MJ, Cheng H, Kawamura T, TenDyke K, Liu D, Kishi Y, Melvin JY, Littlefield BA. Induction of morphological and biochemical apoptosis following prolonged mitotic blockage by halichondrin B macrocyclic ketone analog E7389. Cancer Res. 2004;64(16):5760–5766.
    1. Yoshida T, Ozawa Y, Kimura T, Sato Y, Kuznetsov G, Xu S, Uesugi M, Agoulnik S, Taylor N, Funahashi Y. Eribulin mesilate suppresses experimental metastasis of breast cancer cells by reversing phenotype from epithelial–mesenchymal transition (EMT) to mesenchymal–epithelial transition (MET) states. Br J Cancer. 2014;110(6):1497.
    1. Cortes J, O’Shaughnessy J, Loesch D, Blum JL, Vahdat LT, Petrakova K, Chollet P, Manikas A, Diéras V, Delozier T. Eribulin monotherapy versus treatment of physician’s choice in patients with metastatic breast cancer (EMBRACE): a phase 3 open-label randomised study. Lancet. 2011;377(9769):914–923.
    1. Boulay A, Lane HA. The mammalian target of rapamycin kinase and tumor growth inhibition. In: Targeted interference with signal transduction events: Springer; Recent Results Cancer Res. 2007;172:99–124.
    1. Ellard SL, Clemons M, Gelmon KA, Norris B, Kennecke H, Chia S, Pritchard K, Eisen A, Vandenberg T, Taylor M, et al. Randomized phase II study comparing two schedules of everolimus in patients with recurrent/metastatic breast cancer: NCIC Clinical Trials Group IND.163. J Clin Oncol. 2009;27(27):4536–4541.
    1. Boulay A, Rudloff J, Ye J, Zumstein-Mecker S, O’Reilly T, Evans DB, Chen S, Lane HA. Dual inhibition of mTOR and estrogen receptor signaling in vitro induces cell death in models of breast cancer. Clin Cancer Res. 2005;11(14):5319–5328.
    1. Baselga J, Campone M, Piccart M, Burris HA, 3rd, Rugo HS, Sahmoud T, Noguchi S, Gnant M, Pritchard KI, Lebrun F, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012;366(6):520–529.
    1. O’Reilly KE, Rojo F, She Q-B, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006;66(3):1500–1508.
    1. Marcinkowski E, Luu T, Yuan Y, Mortimer J, Leong L, Portnow J, Xing Q, Wen W, Yim J. Abstract P6-13-17: the combination of eribulin and everolimus results in enhanced suppression of tumors in mouse models of triple negative breast cancer. Cancer Res. 2016;76(4 Supplement).
    1. Jerusalem G, Fasolo A, Dieras V, Cardoso F, Bergh J, Vittori L, Zhang Y, Massacesi C, Sahmoud T, Gianni L. Phase I trial of oral mTOR inhibitor everolimus in combination with trastuzumab and vinorelbine in pre-treated patients with HER2-overexpressing metastatic breast cancer. Breast Cancer Res Treat. 2011;125(2):447–455.
    1. Hurvitz SA, Andre F, Jiang Z, Shao Z, Mano MS, Neciosup SP, Tseng L-M, Zhang Q, Shen K, Liu D. Combination of everolimus with trastuzumab plus paclitaxel as first-line treatment for patients with HER2-positive advanced breast cancer (BOLERO-1): a phase 3, randomised, double-blind, multicentre trial. Lancet Oncol. 2015;16(7):816–829.
    1. Morrow PK, Wulf GM, Ensor J, Booser DJ, Moore JA, Flores PR, Xiong Y, Zhang S, Krop IE, Winer EP. Phase I/II study of trastuzumab in combination with everolimus (RAD001) in patients with HER2-overexpressing metastatic breast cancer who progressed on trastuzumab-based therapy. J Clin Oncol. 2011;29(23):3126.
    1. Singh JC, Novik Y, Stein S, Volm M, Meyers M, Smith J, Omene C, Speyer J, Schneider R, Jhaveri K. Phase 2 trial of everolimus and carboplatin combination in patients with triple negative metastatic breast cancer. Breast Cancer Res. 2014;16(2):R32.
    1. Schwarzlose-Schwarck S, Scholz CW, Regierer AC, Martus P, Neumann C, Habbel P, Liu H, Zang C, Schefe J-H, Schulz C-O. The mTOR inhibitor everolimus in combination with carboplatin in metastatic breast cancer–a phase I trial. Anticancer Res. 2012;32(8):3435–3441.
    1. Rugo HS, Seneviratne L, Beck JT, Glaspy JA, Peguero JA, Pluard TJ, Dhillon N, Hwang LC, Nangia C, Mayer IA. Prevention of everolimus-related stomatitis in women with hormone receptor-positive, HER2-negative metastatic breast cancer using dexamethasone mouthwash (SWISH): a single-arm, phase 2 trial. Lancet Oncol. 2017;18(5):654–662.
    1. Parsons HA, Beaver JA, Cimino-Mathews A, Ali SM, Axilbund J, Chu D, Connolly RM, Cochran RL, Croessmann S, Clark TA, et al. Individualized molecular analyses guide efforts (IMAGE): a prospective study of molecular profiling of tissue and blood in metastatic triple-negative breast cancer. Clin Cancer Res. 2017;23(2):379–386.
    1. Chumsri S, Asleh K, Brauer H, Mashadi-Hossein A, Lauttia L, Lindman H, Nielsen T, Joensuu H, Thompson E. Abstract P3-11-05: predictive gene signatures of adjuvant capecitabine benefit in triple negative breast cancer in the FinXX trial. Cancer Res.2019;79(4 Supplement).
    1. Arsenic R, Lehmann A, Budczies J, Koch I, Prinzler J, Kleine-Tebbe A, Schewe C, Loibl S, Dietel M, Denkert C. Analysis of PIK3CA mutations in breast cancer subtypes. Appl Immunohistochem Mol Morphol. 2014;22(1):50–56.
    1. LoRusso PM. Inhibition of the PI3K/AKT/mTOR pathway in solid tumors. J Clin Oncol. 2016;34(31):3803–3815.
    1. Blanchard MS, Longmate JA. Toxicity equivalence range design (TEQR): a practical phase I design. Contemp Clin Trials. 2011;32(1):114–121.
    1. Vahdat LT, Pruitt B, Fabian CJ, Rivera RR, Smith DA, Tan-Chiu E, Wright J, Tan AR, Dacosta NA, Chuang E, et al. Phase II study of eribulin mesylate, a halichondrin B analog, in patients with metastatic breast cancer previously treated with an anthracycline and a taxane. J Clin Oncol. 2009;27(18):2954–2961.
    1. Cortes J, Vahdat L, Blum JL, Twelves C, Campone M, Roche H, Bachelot T, Awada A, Paridaens R, Goncalves A, et al. Phase II study of the halichondrin B analog eribulin mesylate in patients with locally advanced or metastatic breast cancer previously treated with an anthracycline, a taxane, and capecitabine. J Clin Oncol. 2010;28(25):3922–3928.
    1. Aogi K, Iwata H, Masuda N, Mukai H, Yoshida M, Rai Y, Taguchi K, Sasaki Y, Takashima S. A phase II study of eribulin in Japanese patients with heavily pretreated metastatic breast cancer. Ann Oncol. 2012;23(6):1441–1448.
    1. Seto B. Rapamycin and mTOR: a serendipitous discovery and implications for breast cancer. Clin Transl Med. 2012;1(1):29.
    1. Wan X, Helman LJ. The biology behind mTOR inhibition in sarcoma. Oncologist. 2007;12(8):1007–1018.
    1. Wang X, Yue P, Kim YA, Fu H, Khuri FR, Sun SY. Enhancing mammalian target of rapamycin (mTOR)-targeted cancer therapy by preventing mTOR/raptor inhibition-initiated, mTOR/rictor-independent Akt activation. Cancer Res. 2008;68(18):7409–7418.
    1. Sun SY, Rosenberg LM, Wang X, Zhou Z, Yue P, Fu H, Khuri FR. Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res. 2005;65(16):7052–7058.
    1. Kim S-B, Dent R, Im S-A, Espié M, Blau S, Tan AR, Isakoff SJ, Oliveira M, Saura C, Wongchenko MJ. Ipatasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer (LOTUS): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2017;18(10):1360–1372.
    1. Dent RA, Kim S-B, Im S-A, Espie M, Blau S, Tan AR, Isakoff S, Oliveira M, Saura C, Wongchenko M. LOTUS (NCT02162719): a double-blind placebo (PBO)-controlled randomized phase II trial of first-line ipatasertib (IPAT)+ paclitaxel (P) for metastatic triple-negative breast cancer (TNBC). J Clin Oncol. 2018;36(15_suppl):1008.
    1. Dent R, Kim S-B, Oliveira M, Isakoff SJ, Barrios CH, O’Shaughnessy J, Lu X, Wongchenko M, Bradley D, Mani A. IPATunity130: a pivotal randomized phase III trial evaluating ipatasertib (IPAT)+ paclitaxel (PAC) for PIK3CA/AKT1/PTEN-altered advanced triple-negative (TN) or hormone receptor-positive HER2-negative (HR+/HER2–) breast cancer (BC). J Clin Oncol. 2018;36(15_suppl).
    1. Denkert C, von Minckwitz G, Brase JC, Sinn BV, Gade S, Kronenwett R, Pfitzner BM, Salat C, Loi S, Schmitt WD, et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol. 2015;33(9):983–991.
    1. Yuan Y, Yost S, Chang C, Yoh K, Johnson R, Schmolze D, Liang J, Hutchinson K. Abstract PD5-07: comprehensive profiling of poor-risk paired primary and recurrent triple-negative breast cancers reveals immune phenotype shifts. Cancer Res. 2019;79(4 Supplement).

Source: PubMed

Подписаться