Gut Resistome of Preschool Children After Prolonged Mass Azithromycin Distribution: A Cluster-randomized Trial

Ahmed M Arzika, Ramatou Maliki, Amza Abdou, Alio K Mankara, Abdoul N Harouna, Catherine Cook, Armin Hinterwirth, Lee Worden, Lina Zhong, Cindi Chen, Kevin Ruder, Zhaoxia Zhou, Elodie Lebas, Kieran S O'Brien, Catherine E Oldenburg, Victoria Le, Benjamin F Arnold, Travis C Porco, Jeremy D Keenan, Thomas M Lietman, Thuy Doan, Ahmed M Arzika, Ramatou Maliki, Amza Abdou, Alio K Mankara, Abdoul N Harouna, Catherine Cook, Armin Hinterwirth, Lee Worden, Lina Zhong, Cindi Chen, Kevin Ruder, Zhaoxia Zhou, Elodie Lebas, Kieran S O'Brien, Catherine E Oldenburg, Victoria Le, Benjamin F Arnold, Travis C Porco, Jeremy D Keenan, Thomas M Lietman, Thuy Doan

Abstract

We evaluated the gut resistome of children from communities treated with 10 twice-yearly azithromycin distributions. Although the macrolide resistance remained higher in the azithromycin arm, the selection of non-macrolide resistance observed at earlier time points did not persist. Longitudinal resistance monitoring should be a critical component of mass distribution programs.

Clinical trials registration: NCT02047981.

Keywords: Niger; antibiotic resistance; azithromycin; gut resistome; mass drug distribution; preschool children.

© The Author(s) 2021. Published by Oxford University Press for the Infectious Diseases Society of America.

Figures

Figure 1.
Figure 1.
Gut antimicrobial resistance determinants of children 6 months after the 10th twice-yearly oral azithromycin distribution. Factor difference of antibiotic resistance determinants in the azithromycin treated group compared to the placebo treated group with associated 95% confidence interval (95% CI).

References

    1. Doan T, Worden L, Hinterwirth A, et al. . Macrolide and nonmacrolide resistance with mass azithromycin distribution. N Engl J Med 2020; 383:1941–50.
    1. Susuman AS, Chialepeh WN, Bado A, Lailulo Y. High infant mortality rate, high total fertility rate and very low female literacy in selected African countries. Scand J Public Health 2016; 44:2–5.
    1. Doan T, Hinterwirth A, Worden L, et al. . Gut microbiome alteration in MORDOR I: a community-randomized trial of mass azithromycin distribution. Nat Med 2019; 25:1370–6.
    1. Doan T, Arzika AM, Hinterwirth A, et al. ; MORDOR Study Group . Macrolide resistance in MORDOR I: a cluster-randomized trial in Niger. N Engl J Med 2019; 380:2271–3.
    1. Lakin SM, Dean C, Noyes NR, et al. . MEGARes: an antimicrobial resistance database for high throughput sequencing. Nucleic Acids Res 2017; 45:D574–80.
    1. Keenan JD, Bailey RL, West SK, et al. ; MORDOR Study Group . Azithromycin to reduce childhood mortality in Sub-Saharan Africa. N Engl J Med 2018; 378:1583–92.
    1. Keenan JD, Arzika AM, Maliki R, et al. . Longer-term assessment of azithromycin for reducing childhood mortality in Africa. N Engl J Med 2019; 380:2207–14.
    1. Wang R, van Dorp L, Shaw LP, et al. . The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat Commun 2018; 9:1179.
    1. Bokhary H, Pangesti KNA, Rashid H, Abd El Ghany M, Hill-Cawthorne GA. Travel-related antimicrobial resistance: A systematic review. Trop Med Infect Dis 2021; 6:11. doi:10.3390/tropicalmed6010011. PMID:33467065; PMCID:PMC7838817.
    1. Olesen SW, Lipsitch M, Grad YH. The role of “spillover” in antibiotic resistance. Proc Natl Acad Sci U S A 2020; 117:29063–8.
    1. Maher MC, Alemayehu W, Lakew T, et al. . The fitness cost of antibiotic resistance in Streptococcus pneumoniae: insight from the field. PLoS One 2012; 7:e29407.
    1. Chang HH, Cohen T, Grad YH, Hanage WP, O’Brien TF, Lipsitch M. Origin and proliferation of multiple-drug resistance in bacterial pathogens. Microbiol Mol Biol Rev 2015; 79:101–16.

Source: PubMed

Подписаться