Intermittent radiotherapy as alternative treatment for recurrent high grade glioma: a modeling study based on longitudinal tumor measurements

Sarah C Brüningk, Jeffrey Peacock, Christopher J Whelan, Renee Brady-Nicholls, Hsiang-Hsuan M Yu, Solmaz Sahebjam, Heiko Enderling, Sarah C Brüningk, Jeffrey Peacock, Christopher J Whelan, Renee Brady-Nicholls, Hsiang-Hsuan M Yu, Solmaz Sahebjam, Heiko Enderling

Abstract

Recurrent high grade glioma patients face a poor prognosis for which no curative treatment option currently exists. In contrast to prescribing high dose hypofractionated stereotactic radiotherapy (HFSRT, [Formula: see text] Gy [Formula: see text] 5 in daily fractions) with debulking intent, we suggest a personalized treatment strategy to improve tumor control by delivering high dose intermittent radiation treatment (iRT, [Formula: see text] Gy [Formula: see text] 1 every 6 weeks). We performed a simulation analysis to compare HFSRT, iRT and iRT plus boost ([Formula: see text] Gy [Formula: see text] 3 in daily fractions at time of progression) based on a mathematical model of tumor growth, radiation response and patient-specific evolution of resistance to additional treatments (pembrolizumab and bevacizumab). Model parameters were fitted from tumor growth curves of 16 patients enrolled in the phase 1 NCT02313272 trial that combined HFSRT with bevacizumab and pembrolizumab. Then, iRT +/- boost treatments were simulated and compared to HFSRT based on time to tumor regrowth. The modeling results demonstrated that iRT + boost(- boost) treatment was equal or superior to HFSRT in 15(11) out of 16 cases and that patients that remained responsive to pembrolizumab and bevacizumab would benefit most from iRT. Time to progression could be prolonged through the application of additional, intermittently delivered fractions. iRT hence provides a promising treatment option for recurrent high grade glioma patients for prospective clinical evaluation.

Conflict of interest statement

SS receives research support from Merck, Bristol Myers Squibb, and Brooklyn ImmunoTherapeutics and acts as advisory board member for Merck, and Boehringer Ingelheim. HY is on the advisory board of AbbVie and Novocure and is a member of the speaker bureau of BrainLab. HY also receives a honorarium from UpToDate. The remaining authors declare that they have no competing interests.

© 2021. The Author(s).

Figures

Figure 1
Figure 1
Overview of the used data. (A) Schematic of the NCT02313272 protocol indicating the imaging and treatment time point for this triple combination therapy trial. (B) Out of the 32 trial participants only those 16 with monitored tumor progression were included in this analysis.
Figure 2
Figure 2
Model fit results. (A) Grid search results to identify the optimal growth rate λ for the patient population (indicated by red arrow). Results of the sum over the median, mean and maximum RMSE are shown (denoted as RMSE score in cm3). (B) Overview of the measured vs. simulated tumor volume. (C) Correlation analysis of the surviving fraction and the PTV gEUD. The Pearson correlation coefficient ρ and corresponding p-value p are given. For S fit parameters to undisturbed data are shown with 90% confidence intervals estimated from bootstraps. See (D) for legend. (D) Correlation analysis of the logarithm of the decay rate (log(ε)) and the surviving fraction. Fit values to undisturbed data are shown with 90% confidence intervals over the bootstraps. RMSE Root mean squared error, PTV Planning target volume, gEUD generalized equivalent uniform dose.
Figure 3
Figure 3
Evaluation of non-inferiority of iRT +/− boost vs HFSRT. (A) Kaplan–Meier plot for five treatment fractions delivered as HFSRT (red), iRT (blue) or iRT + boost (green). Shaded areas correspond to the envelope of the bootstrap estimated modeling uncertainty. The logrank test p-values is given for comparison of HFSRT and iRT + boost. (B) Boxplot of the logarithm of the decay rate parameter ε for iRT responders and non-responders. (C) Boxplot of the surviving fraction S for iRT responders and non-responders. In (B) and (C) median values (red lines), 25th and 75th percentiles (box upper and lower bounds) and full ranges (whiskers) all calculated over patient fit values to undisturbed data are shown. Indicated p-values correspond to Wilcoxon signed-rank test.
Figure 4
Figure 4
Kaplan–Meier plots for treatments with increasing maximum number of iRT fractions. Shown are fitted HFSRT (red), and simulated iRT (blue) and iRT + boost (green) results. Shaded areas correspond to the envelope of the bootstrap estimated modeling uncertainty. The logrank test p-values are given for comparison of HFSRT and iRT+boost. (A) Up to seven fractions. (B) Up to nine fractions. (C) Up to eleven fractions. (D) Up to thirteen fractions.
Figure 5
Figure 5
Grouping of patient response. (AD) Estimated growth trajectories of representative patients for fitted HFSRT (red), and simulated iRT (blue) and iRT + boost (green) treatments with up to eleven treatment fractions. Shaded areas correspond to the envelope of the bootstrap estimated modeling uncertainty. (A) Group 1, (B) Group 2, (C) Group 3, (D) Group 4. (E) Analysis of the logarithm of the decay rate ε for the different groups. Indicated p-values correspond to Wilcoxon signed rank tests between the groups comprising more than one patient. (F) Analysis of the radiotherapy surviving fraction for the different groups. There were no significant differences. In (E) and (F) median values (red lines), 25th and 75th percentiles (box upper and lower bounds) and full ranges (whiskers) are shown.

References

    1. van Linde ME, et al. Treatment outcome of patients with recurrent glioblastoma multiforme: A retrospective multicenter analysis. J. Neurooncol. 2017;135:183–192. doi: 10.1007/s11060-017-2564-z.
    1. Chaul-Barbosa C, Marques DF. How we treat recurrent glioblastoma today and current evidence. Curr. Oncol. Rep. 2019;21:94. doi: 10.1007/s11912-019-0834-y.
    1. Alexander BM, Cloughesy TF. Adult glioblastoma. J. Clin. Oncol. 2017;35:2402–2409. doi: 10.1200/JCO.2017.73.0119.
    1. National Comprehensive Cancer Network. Anaplastic gliomas/glioblastoma. . Accessed 31 Oct 2020.
    1. McGranahan T, Therkelsen KE, Ahmad S, Nagpal S. Current state of immunotherapy for treatment of glioblastoma. Curr. Treat. Opt. Oncol. 2019;20:24. doi: 10.1007/s11864-019-0619-4.
    1. Laub CK, Stefanik J, Doherty L. Approved treatments for patients with recurrent high-grade gliomas. Semin. Oncol. Nurs. 2018;34:486–493. doi: 10.1016/j.soncn.2018.10.005.
    1. Bahadur S, Sahu AK, Baghel P, Saha S. Current promising treatment strategy for glioblastoma multiform: A review. Oncol. Rev. 2019 doi: 10.4081/oncol.2019.417.
    1. Pérez-García VM, et al. Delay effects in the response of low-grade gliomas to radiotherapy: A mathematical model and its therapeutical implications. Math. Med. Biol. J. IMA. 2014;32:307–329. doi: 10.1093/imammb/dqu009.
    1. Henares-Molina A, et al. Non-standard radiotherapy fractionations delay the time to malignant transformation of low-grade gliomas. PLoS One. 2017;12:1–19. doi: 10.1371/journal.pone.0178552.
    1. Pérez-García VM, et al. Computational design of improved standardized chemotherapy protocols for grade ii oligodendrogliomas. PLoS Comput. Biol. 2019;15:1–17. doi: 10.1371/journal.pcbi.1006778.
    1. Pérez-García VM, Pérez-Romasanta LA. Extreme protraction for low-grade gliomas: theoretical proof of concept of a novel therapeutical strategy. Math. Med. Biol. J. IMA. 2015;33:253–271. doi: 10.1093/imammb/dqv017.
    1. Glazar DJ, et al. Tumor volume dynamics as an early biomarker for patient-specific evolution of resistance and progression in recurrent high-grade glioma. J. Clin. Med. 2020;9:2019. doi: 10.3390/jcm9072019.
    1. Hormuth DA, Jarrett AM, Yankeelov TE. Forecasting tumor and vasculature response dynamics to radiation therapy via image based mathematical modeling. Radiat. Oncol. 2020;15:4. doi: 10.1186/s13014-019-1446-2.
    1. Frey B, et al. Immunomodulation by ionizing radiation-impact for design of radio-immunotherapies and for treatment of inflammatory diseases. Immunol. Rev. 2017;280:231–248. doi: 10.1111/imr.12572.
    1. Shabason JE, Minn AJ. Radiation and immune checkpoint blockade: From bench to clinic. Semin. Radiat. Oncol. 2017;27:289–298. doi: 10.1016/j.semradonc.2017.03.002.
    1. Brandmaier A, Formenti SC. The impact of radiation therapy on innate and adaptive tumor immunity. Semin. Radiat. Oncol. 2020;30:139–144. doi: 10.1016/j.semradonc.2019.12.005.
    1. Sahebjam S, et al. Hypofractionated stereotactic re-irradiation with pembrolizumab and bevacizumab in patients with recurrent high grade gliomas: Results from a phase 1 study. Neuro-Oncology. 2020 doi: 10.1093/neuonc/noaa260.
    1. Minniti G, et al. Fractionated stereotactic reirradiation and concurrent temozolomide in patients with recurrent glioblastoma. J. Neurooncol. 2011;103:683–691. doi: 10.1007/s11060-010-0446-8.
    1. Connell JH. The influence of interspecific competition and other factors on the distribution of the Barnacle Chthamalus Stellatus. Ecology. 1961;42:710–723. doi: 10.2307/1933500.
    1. Zeilinger AR, Olson DM, Andow DA. Competitive release and outbreaks of non-target pests associated with transgenic Bt cotton. Ecol. Appl. 2016;26:1047–1054. doi: 10.1890/15-1314.
    1. Wargo AR, Huijben S, de Roode JC, Shepherd J, Read AF. Competitive release and facilitation of drug-resistant parasites after therapeutic chemotherapy in a rodent malaria model. Proc. Natl. Acad. Sci. 2007;104:19914–19919. doi: 10.1073/pnas.0707766104.
    1. Zhang J, Cunningham JJ, Brown JS, Gatenby RA. Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer. Nat. Commun. 2017;8:1816. doi: 10.1038/s41467-017-01968-5.
    1. Brady-Nicholls R, et al. Prostate-specific antigen dynamics predict individual responses to intermittent androgen deprivation. Nat. Commun. 2020;11:1750. doi: 10.1038/s41467-020-15424-4.
    1. Niemierko A. Reporting and analyzing dose distributions: A concept of equivalent uniform dose. Med. Phys. 1997;24:103–110. doi: 10.1118/1.598063.
    1. Niemierko A. A generalized concept of equivalent uniform dose (EUD) Med. Phys. 1999;26:1101.
    1. Kim M, Kotas J, Rockhill J, Phillips M. A feasibility study of personalized prescription schemes for glioblastoma patients using a proliferation and invasion glioma model. Cancers. 2017;9:51. doi: 10.3390/cancers9050051.
    1. Wen PY, et al. Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology working group. J. Clin. Oncol. 2010;28:1963–1972. doi: 10.1200/JCO.2009.26.3541.
    1. Prokopiou S, et al. A proliferation saturation index to predict radiation response and personalize radiotherapy fractionation. Radiat. Oncol. 2015;10:159. doi: 10.1186/s13014-015-0465-x.
    1. Fowler JF. The linear-quadratic formula and progress in fractionated radiotherapy. Br. J. Radiol. 1989;62:679–694. doi: 10.1259/0007-1285-62-740-679.
    1. Eriksson D, Stigbrand T. Radiation-induced cell death mechanisms. Tumor Biol. 2010;31:363–372. doi: 10.1007/s13277-010-0042-8.
    1. Lorenzo G, et al. Mechanistic modelling of prostate-specific antigen dynamics shows potential for personalized prediction of radiation therapy outcome. J. R. Soc. Interface. 2019;16:20190195. doi: 10.1098/rsif.2019.0195.
    1. Brüningk SC, Ziegenhein P, Rivens I, Oelfke U, ter Haar G. A cellular automaton model for spheroid response to radiation and hyperthermia treatments. Sci. Rep. 2019;9:17674. doi: 10.1038/s41598-019-54117-x.
    1. Portet S. A primer on model selection using the akaike information criterion. Infect. Dis. Model. 2020;5:111–128. doi: 10.1016/j.idm.2019.12.010.
    1. Ellingson BM, et al. Contrast-enhancing tumor growth dynamics of preoperative, treatment-naive human glioblastoma. Cancer. 2016;122:1718–1727. doi: 10.1002/cncr.29957.
    1. Kruser TJ, et al. NRG brain tumor specialists consensus guidelines for glioblastoma contouring. J. Neurooncol. 2019;143:157–166. doi: 10.1007/s11060-019-03152-9.
    1. Nishino M. Tumor response assessment for precision cancer therapy: Response evaluation criteria in solid tumors and beyond. Am. Soc. Clin. Oncol. Educ. Book. 2018 doi: 10.1200/EDBK_201441.
    1. Hubenak JR, Zhang Q, Branch CD, Kronowitz SJ. Mechanisms of injury to normal tissue after radiotherapy. Plast. Reconstr. Surg. 2014;133:49e–56e. doi: 10.1097/01.prs.0000440818.23647.0b.
    1. Creed J, Gerke T, Berglund A. MatSurv: Survival analysis and visualization in MATLAB. J. Open Source Softw. 2020;5:1830. doi: 10.21105/joss.01830.
    1. Trott K-R, Kummermehr J. The time factor and repopulation in tumors and normal tissues. Semin. Radiat. Oncol. 1993;3:115–125. doi: 10.1016/S1053-4296(05)80087-6.
    1. Funk, R. K., Stockham, A. L. & Laack, N. N. I. Chapter 3—Basics of radiation therapy. In Clinical Cardio-Oncology (ed. Herrmann, J.) 39–60. (Elsevier, 2016) 10.1016/B978-0-323-44227-5.00003-X.
    1. Eschrich S, et al. Systems biology modeling of the radiation sensitivity network: A biomarker discovery platform. Int. J. Radiat. Oncol. Biol. Phys. 2009;75:497–505. doi: 10.1016/j.ijrobp.2009.05.056.
    1. Eschrich SA, et al. A gene expression model of intrinsic tumor radiosensitivity: Prediction of response and prognosis after chemoradiation. Int. J. Radiat. Oncol. Biol. Phys. 2009;75:489–496. doi: 10.1016/j.ijrobp.2009.06.014.
    1. Diao K, et al. Stereotactic radiosurgery and ipilimumab for patients with melanoma brain metastases: Clinical outcomes and toxicity. J. Neurooncol. 2018;139:421–429. doi: 10.1007/s11060-018-2880-y.
    1. Prabhu RS, et al. Preoperative stereotactic radiosurgery before planned resection of brain metastases: Updated analysis of efficacy and toxicity of a novel treatment paradigm. J. Neurosurg. 2019;131:1387–1394. doi: 10.3171/2018.7.JNS181293.
    1. Lawrence YR, et al. Radiation dose-volume effects in the brain. Int. J. Radiat. Oncol. Biol. Phys. 2010;76:S20–S27. doi: 10.1016/j.ijrobp.2009.02.091.
    1. Fan J, et al. Automatic treatment planning based on three-dimensional dose distribution predicted from deep learning technique. Med. Phys. 2019;46:370–381. doi: 10.1002/mp.13271.
    1. Tsui G, et al. Automated machine-learning radiation therapy treatment planning for pediatric and adult brain tumors. Int. J. Radiat. Oncol. Biol. Phys. 2020 doi: 10.1016/j.ijrobp.2020.07.232.
    1. Mutic S, Dempsey JF. The ViewRay system: Magnetic resonance-guided and controlled radiotherapy. Semin. Radiat. Oncol. 2014;24:196–199. doi: 10.1016/j.semradonc.2014.02.008.
    1. Lagendijk JJ, Raaymakers BW, van Vulpen M. The magnetic resonance imaging-Linac system. Semin. Radiat. Oncol. 2014;24:207–209. doi: 10.1016/j.semradonc.2014.02.009.
    1. Keall PJ, Barton M, Crozier S. The Australian magnetic resonance imaging-Linac program. Semin. Radiat. Oncol. 2014;24:203–206. doi: 10.1016/j.semradonc.2014.02.015.
    1. Enderling H, Lopez Alfonso JC, Moros E, Caudell JJ, Harrison LB. Integrating mathematical modeling into the roadmap for personalized adaptive radiation therapy. Trends Cancer. 2019;5:467–474. doi: 10.1038/s41467-020-15424-4.
    1. Sahebjam S, Sharabi A, Lim M, Kesarwani P, Chinnaiyan P. Immunotherapy and radiation in glioblastoma. J. Neurooncol. 2017;134:531–539. doi: 10.1007/s11060-017-2413-0.
    1. Marciscano AE, et al. Immunomodulatory effects of stereotactic body radiation therapy: Preclinical insights and clinical opportunities. Int. J. Radiat. Oncol. Biol. Phys. 2019 doi: 10.1016/j.ijrobp.2019.02.046.
    1. Jarrett AM, et al. Evaluating patient-specific neoadjuvant regimens for breast cancer via a mathematical model constrained by quantitative magnetic resonance imaging data. Neoplasia. 2020;22:820–830. doi: 10.1016/j.neo.2020.10.011.
    1. Bogdańska M, et al. A mathematical model of low grade gliomas treated with temozolomide and its therapeutical implications. Math. Biosci. 2017;288:1–13. doi: 10.1016/j.mbs.2017.02.003.
    1. Kohandel M, Kardar M, Milosevic M, Sivaloganathan S. Dynamics of tumor growth and combination of anti-angiogenic and cytotoxic therapies. Phys. Med. Biol. 2007;52:3665–3677. doi: 10.1088/0031-9155/52/13/001.
    1. Brady R, Enderling H. Mathematical models of cancer: When to predict novel therapies, and when not to. Bull. Math. Biol. 2019;81:3722–3731. doi: 10.1007/s11538-019-00640-x.
    1. Gatenby R, Brown J. The evolution and ecology of resistance in cancer therapy. Cold Spring Harb. Perspect. Med. 2018;8:a033415. doi: 10.1101/cshperspect.a033415.
    1. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481:306–313. doi: 10.1038/nature10762.
    1. Seystahl K, Wick W, Weller M. Therapeutic options in recurrent glioblastoma—An update. Crit. Rev. Oncol. Hematol. 2016;99:389–408. doi: 10.1016/j.critrevonc.2016.01.018.
    1. Birk HS, Han SJ, Butowski NA. Treatment options for recurrent high-grade gliomas. CNS Oncol. 2017;6:61–70. doi: 10.2217/cns-2016-0013.

Source: PubMed

Подписаться