Engaging the older cancer patient; Patient Activation through Counseling, Exercise and Mobilization - Pancreatic, Biliary tract and Lung cancer (PACE-Mobil-PBL) - study protocol of a randomized controlled trial

Marta Kramer Mikkelsen, Cecilia Margareta Lund, Anders Vinther, Anders Tolver, Anne-Mette Ragle, Julia Sidenius Johansen, Inna Chen, Lotte Engell-Noerregaard, Finn Ole Larsen, Bo Zerahn, Dorte Lisbet Nielsen, Mary Jarden, Marta Kramer Mikkelsen, Cecilia Margareta Lund, Anders Vinther, Anders Tolver, Anne-Mette Ragle, Julia Sidenius Johansen, Inna Chen, Lotte Engell-Noerregaard, Finn Ole Larsen, Bo Zerahn, Dorte Lisbet Nielsen, Mary Jarden

Abstract

Background: Several intervention studies have demonstrated that exercise training has beneficial effects among cancer patients. However, older cancer patients are underrepresented in clinical trials, and only few exercise-based studies have focused specifically on older patients with cancer. In particular, research investigating the effects of exercise training among older patients with advanced cancer is lacking. The purpose of the current study is to investigate the effect of a 12-week multimodal and exercise-based intervention among older patients (≥65 years) with advanced pancreatic, biliary tract or lung cancer, who are treated with first-line palliative chemotherapy, immunotherapy or targeted therapy.

Methods: PACE-Mobil-PBL is a two-armed randomized controlled trial. Participants will be randomized 1:1 to an intervention group (N = 50) or a control group (N = 50). Participants in the intervention group will receive standard oncological treatment and a 12-week multimodal intervention, comprised of: (I) supervised exercise training, twice weekly in the hospital setting, (II) home-based walking with step counts and goal-setting, (III) supportive and motivational nurse-led counseling, and (IV) protein supplement after each supervised training session. Participants in the control group will receive standard oncological treatment. The primary outcome is physical function measured by the 30-s chair stand test. Secondary outcomes include measures of feasibility, activity level, physical capacity and strength, symptom burden, quality of life, toxicity to treatment, dose reductions, inflammatory biomarkers, body weight and composition, hospitalizations and survival. Assessments will be conducted at baseline, and after 6, 12 and 16 weeks.

Discussion: The current study is one of the first to investigate the effect of an exercise-based intervention specifically targeting older patients with advanced cancer. PACE-Mobil-PBL supports the development of health promoting guidelines for older patients with cancer, and the study results will provide new and valuable knowledge in this understudied field.

Trial registration: The study was prospectively registered at ClinicalTrials.gov on January 26, 2018 (ID: NCT03411200 ).

Keywords: Advanced cancer; Biliary tract cancer; Cancer; Counseling; Exercise; Lung cancer; Mobilization; Multimodal intervention; Older; Pancreatic cancer; Physical activity.

Conflict of interest statement

Authors’ information

MKM is a PhD student from the University of Copenhagen, with an educational background as a RN and MHSc. JSJ, IC, LEN, FOL and DLN are oncologists, CML is a geriatrician, AV is a research physiotherapist, AMR is a physiotherapist, AT is a statistician, BZ is a medical physiologist, and MJ is a senior nursing researcher.

Ethics approval and consent to participate

The study protocol, version 2.0 from February 1st 2018, is approved by the Regional Ethics Committee for the Capital Region of Denmark (j.nr: H-18001096). Any changes in the protocol will be reported to the Regional Ethics Committee. Informed verbal and written content will be obtained for all participants before inclusion in the study.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
PACE-Mobil-PBL study design. Abbreviations: BTC (biliary tract cancer), LC (lung cancer), PC (pancreatic cancer)

References

    1. Scher KS, Hurria A. Under-representation of older adults in cancer registration trials: known problem, little progress. J Clin Oncol. 2012;30(17):2036–2038. doi: 10.1200/JCO.2012.41.6727.
    1. International Agency for Cancer Research. GLOBOCAN 2012: estimated cancer incidence, Mortality and incidence in 2012. 2012. . Accessed 19 Dec 2017.
    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30. doi: 10.3322/caac.21442.
    1. Bellizzi KM, Mustian KM, Palesh OG, Diefenbach M. Cancer survivorship and aging : moving the science forward. Cancer. 2008;113(12 Suppl):3530–3539. doi: 10.1002/cncr.23942.
    1. Strait JB, Lakatta EG. Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail Clin. 2012;8(1):143–164. doi: 10.1016/j.hfc.2011.08.011.
    1. Sharma G, Goodwin J. Effect of aging on respiratory system physiology and immunology. Clin Interv Aging. 2006;1(3):253–260. doi: 10.2147/ciia.2006.1.3.253.
    1. Weinstein JR, Anderson S. The aging kidney: physiological changes. Adv Chronic Kidney Dis. 2010;17(4):302–307. doi: 10.1053/j.ackd.2010.05.002.
    1. Bhutto A, Morley JE. The clinical significance of gastrointestinal changes with aging. Curr Opin Clin Nutr Metab Care. 2008;11(5):651–660. doi: 10.1097/MCO.0b013e32830b5d37.
    1. Fried LP, Ferrucci L, Darer J, Williamson JD, Anderson G. Untangling the concepts of disability, frailty, and comorbidity: implications for improved targeting and care. J Gerontol A Biol Sci Med Sci. 2004;59(3):255–263. doi: 10.1093/gerona/59.3.M255.
    1. Fried LP, Kronmal RA, Newman AB, Bild DE, Mittelmark MB, Polak JF, et al. Risk factors for 5-year mortality in older adults: the Cardiovascular Health Study. Jama. 1998;279(8):585–592. doi: 10.1001/jama.279.8.585.
    1. Hilmer SN, Gnjidic D. The effects of polypharmacy in older adults. Clin Pharmacol Ther. 2009;85(1):86–88. doi: 10.1038/clpt.2008.224.
    1. Cheville AL, Mustian K, Winters-Stone K, Zucker DS, Gamble GL, Alfano CM. Cancer rehabilitation: An Overview of Current Need, Delivery Models, and Levels of Care. Phys Med Rehabil Clin N Am. 2017;28(1):1–17. doi: 10.1016/j.pmr.2016.08.001.
    1. Kenzik KM, Kent EE, Martin MY, Bhatia S, Pisu M. Chronic condition clusters and functional impairment in older cancer survivors: a population-based study. J Cancer Surviv. 2016;10(6):1096–1103. doi: 10.1007/s11764-016-0553-4.
    1. Grov EK, Fossa SD, Dahl AA. Short-term and long-term elderly cancer survivors: a population-based comparative and controlled study of morbidity, psychosocial situation, and lifestyle. Eur J Oncol Nurs. 2011;15(3):213–220. doi: 10.1016/j.ejon.2010.06.011.
    1. Mohile SG, Xian Y, Dale W, Fisher SG, Rodin M, Morrow GR, et al. Association of a cancer diagnosis with vulnerability and frailty in older Medicare beneficiaries. J Natl Cancer Inst. 2009;101(17):1206–1215. doi: 10.1093/jnci/djp239.
    1. Baker F, Haffer SC, Denniston M. Health-related quality of life of cancer and noncancer patients in Medicare managed care. Cancer. 2003;97(3):674–681. doi: 10.1002/cncr.11085.
    1. Hurria A, Togawa K, Mohile SG, Owusu C, Klepin HD, Gross CP, et al. Predicting chemotherapy toxicity in older adults with cancer: a prospective multicenter study. J Clin Oncology. 2011;29(25):3457–3465. doi: 10.1200/JCO.2011.34.7625.
    1. Extermann M, Boler I, Reich RR, Lyman GH, Brown RH, DeFelice J, et al. Predicting the risk of chemotherapy toxicity in older patients: the chemotherapy risk assessment scale for high-age patients (CRASH) score. Cancer. 2012;118(13):3377–3386. doi: 10.1002/cncr.26646.
    1. Repetto L. Greater risks of chemotherapy toxicity in elderly patients with cancer. J Support Oncol. 2003;1(4 Suppl 2):18–24.
    1. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing. 2010;39(4):412–423. doi: 10.1093/ageing/afq034.
    1. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489–495. doi: 10.1016/S1470-2045(10)70218-7.
    1. Moses AW, Slater C, Preston T, Barber MD, Fearon KC. Reduced total energy expenditure and physical activity in cachectic patients with pancreatic cancer can be modulated by an energy and protein dense oral supplement enriched with n-3 fatty acids. Br J Cancer. 2004;90(5):996–1002. doi: 10.1038/sj.bjc.6601620.
    1. Bachmann J, Heiligensetzer M, Krakowski-Roosen H, Buchler MW, Friess H, Martignoni ME. Cachexia worsens prognosis in patients with resectable pancreatic cancer. J Gastrointest Surgery. 2008;12(7):1193–1201. doi: 10.1007/s11605-008-0505-z.
    1. Dewys WD, Begg C, Lavin PT, Band PR, Bennett JM, Bertino JR, et al. Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern Cooperative Oncology Group. Am J Med. 1980;69(4):491–497. doi: 10.1016/S0149-2918(05)80001-3.
    1. Sun L, Quan XQ, Yu S. An epidemiological survey of Cachexia in advanced Cancer patients and analysis on its diagnostic and treatment status. Nutr Cancer. 2015;67(7):1056–1062. doi: 10.1080/01635581.2015.1073753.
    1. Sanchez-Lara K, Turcott JG, Juarez E, Guevara P, Nunez-Valencia C, Onate-Ocana LF, et al. Association of nutrition parameters including bioelectrical impedance and systemic inflammatory response with quality of life and prognosis in patients with advanced non-small-cell lung cancer: a prospective study. Nutr Cancer. 2012;64(4):526–534. doi: 10.1080/01635581.2012.668744.
    1. Fearon KC, Voss AC, Hustead DS. Definition of cancer cachexia: effect of weight loss, reduced food intake, and systemic inflammation on functional status and prognosis. Am J Clin Nutr. 2006;83(6):1345–1350. doi: 10.1093/ajcn/83.6.1345.
    1. Stephens NA, Skipworth RJ, Gallagher IJ, Greig CA, Guttridge DC, Ross JA. Evaluating potential biomarkers of cachexia and survival in skeletal muscle of upper gastrointestinal cancer patients. J Cachexia Sarcopenia Muscle. 2015;6(1):53–61. doi: 10.1002/jcsm.12005.
    1. Bouaziz W, Vogel T, Schmitt E, Kaltenbach G, Geny B, Lang PO. Health benefits of aerobic training programs in adults aged 70 and over: a systematic review. Arch Gerontol Geriatr. 2017;69:110–127. doi: 10.1016/j.archger.2016.10.012.
    1. Papa EV, Dong X, Hassan M. Resistance training for activity limitations in older adults with skeletal muscle function deficits: a systematic review. Clin Interv Aging. 2017;12:955–961. doi: 10.2147/CIA.S104674.
    1. Stewart VH, Saunders DH, Greig CA. Responsiveness of muscle size and strength to physical training in very elderly people: a systematic review. Scand J Med Sci Sports. 2014;24(1):e1–10. doi: 10.1111/sms.12123.
    1. Catalan-Matamoros D, Gomez-Conesa A, Stubbs B, Vancampfort D. Exercise improves depressive symptoms in older adults: an umbrella review of systematic reviews and meta-analyses. Psychiatry Res. 2016;244:202–209. doi: 10.1016/j.psychres.2016.07.028.
    1. Jones LW, Eves ND, Haykowsky M, Freedland SJ, Mackey JR. Exercise intolerance in cancer and the role of exercise therapy to reverse dysfunction. Lancet Oncol. 2009;10(6):598–605. doi: 10.1016/S1470-2045(09)70031-2.
    1. Buffart LM, Kalter J, Sweegers MG, Courneya KS, Newton RU, Aaronson NK, et al. Effects and moderators of exercise on quality of life and physical function in patients with cancer: an individual patient data meta-analysis of 34 RCTs. Cancer Treat Rev. 2017;52:91–104. doi: 10.1016/j.ctrv.2016.11.010.
    1. Gerritsen JK, Vincent AJ. Exercise improves quality of life in patients with cancer: a systematic review and meta-analysis of randomised controlled trials. Br J Sports Med. 2016;50(13):796–803. doi: 10.1136/bjsports-2015-094787.
    1. Adamsen L, Quist M, Andersen C, Moeller T, Herrstedt J, Kronborg D, et al. Effect of a multimodal high intensity exercise intervention in cancer patients undergoing chemotherapy: randomised controlled trial. BMJ. 2009;339:b3410. doi: 10.1136/bmj.b3410.
    1. Kilari D, Soto-Perez-de-Celis E, Mohile SG, Alibhai SM, Presley CJ, Wildes TM, et al. Designing exercise clinical trials for older adults with cancer: recommendations from 2015 Cancer and aging research group NCI U13 meeting. J Geriatr Oncol. 2016;7(4):293–304. doi: 10.1016/j.jgo.2016.04.007.
    1. Granger CL, McDonald CF, Berney S, Chao C, Denehy L. Exercise intervention to improve exercise capacity and health related quality of life for patients with non-small cell lung cancer: a systematic review. Lung Cancer. 2011;72(2):139–153. doi: 10.1016/j.lungcan.2011.01.006.
    1. Cavalheri V, Tahirah F, Nonoyama M, Jenkins S, Hill K. Exercise training for people following lung resection for non-small cell lung cancer - a Cochrane systematic review. Cancer Treat Rev. 2014;40(4):585–594. doi: 10.1016/j.ctrv.2013.11.001.
    1. Quist M, Adamsen L, Rorth M, Laursen JH, Christensen KB, Langer SW. The impact of a multidimensional exercise intervention on physical and functional capacity, anxiety, and depression in patients with advanced-stage lung Cancer undergoing chemotherapy. Integr Cancer Ther. 2015;14(4):341–349. doi: 10.1177/1534735415572887.
    1. Rueda JR, Sola I, Pascual A, Subirana Casacuberta M. Non-invasive interventions for improving well-being and quality of life in patients with lung cancer. Cochrane Database Syst Rev. 2011;(9):Cd004282.
    1. Lai Y, Huang J, Yang M, Su J, Liu J, Che G. Seven-day intensive preoperative rehabilitation for elderly patients with lung cancer: a randomized controlled trial. J Surg Res. 2017;209:30–36. doi: 10.1016/j.jss.2016.09.033.
    1. Yeo Theresa P., Burrell Sherry A., Sauter Patricia K., Kennedy Eugene P., Lavu Harish, Leiby Benjamin E., Yeo Charles J. A Progressive Postresection Walking Program Significantly Improves Fatigue and Health-Related Quality of Life in Pancreas and Periampullary Cancer Patients. Journal of the American College of Surgeons. 2012;214(4):463–475. doi: 10.1016/j.jamcollsurg.2011.12.017.
    1. Jensen W, Baumann FT, Stein A, Bloch W, Bokemeyer C, de Wit M, et al. Exercise training in patients with advanced gastrointestinal cancer undergoing palliative chemotherapy: a pilot study. Support Care Cancer. 2014;22(7):1797–1806.
    1. Slade SC, Dionne CE, Underwood M, Buchbinder R, Beck B, Bennell K, et al. Consensus on exercise reporting template (CERT): modified Delphi study. Phys Ther. 2016;96(10):1514–1524. doi: 10.2522/ptj.20150668.
    1. Rikli R, Jones CJ. Senior fitness test manual -2nd edition. Champaign: Human Kinetics; 2001.
    1. Jones CJ, Rikli RE, Beam WC. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res Q Exerc Sport. 1999;70(2):113–119. doi: 10.1080/02701367.1999.10608028.
    1. Rikli RE, Jones CJ. Development and validation of a functional fitness test for community-residing older adults. J Aging Phys Act. 1999;7:129–161. doi: 10.1123/japa.7.2.129.
    1. Loenbro S, Dalgas U, Primdahl H, Overgaards J, Overgaard K. Feasibility and efficacy of progressive resistance training and dietary supplements in radiotherapy treated head and neck cancer patients -- the DAHANCA 25A study. Acta Oncol. 2013;52(2):310–318. doi: 10.3109/0284186X.2012.741325.
    1. Guralnik JM, Ferrucci L, Pieper CF, Leveille SG, Markides KS, Ostir GV, et al. Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol A Biol Sci Med Sci. 2000;55(4):M221–M231. doi: 10.1093/gerona/55.4.M221.
    1. Cesari M, Kritchevsky SB, Penninx BW, Nicklas BJ, Simonsick EM, Newman AB, et al. Prognostic value of usual gait speed in well-functioning older people--results from the health, aging and body composition study. J Am Geriatr Soc. 2005;53(10):1675–1680. doi: 10.1111/j.1532-5415.2005.53501.x.
    1. Schmidt K, Vogt L, Thiel C, Jäger E, Banzer W. Validity of the six-minute walk test in cancer patients. Int J Sports Med. 2013;34(7):631–636. doi: 10.1055/s-0032-1323746.
    1. Rikli RE, Jones CJ. The reliability and validity of a 6-minute walk test as a measure of physical endurance in older adults. J Aging Phys Act. 1998;6:363–375. doi: 10.1123/japa.6.4.363.
    1. Mathiowetz V, Weber K, Volland G, Kashman N. Reliability and validity of grip and pinch strength evaluations. J Hand Surg Am. 1984;9(2):222–226. doi: 10.1016/S0363-5023(84)80146-X.
    1. Kilgour RD, Vigano A, Trutschnigg B, Lucar E, Borod M, Morais JA. Handgrip strength predicts survival and is associated with markers of clinical and functional outcomes in advanced cancer patients. Support Care Cancer. 2013;21(12):3261–3270. doi: 10.1007/s00520-013-1894-4.
    1. Oken MM, Creech RH, Tormey DC, Horton J, Davis TE, McFadden ET, et al. Toxicity and response criteria of the eastern cooperative oncology group. Am J Clin Oncol. 1982;5(6):649–655. doi: 10.1097/00000421-198212000-00014.
    1. Cleeland CS, Mendoza TR, Wang XS, Chou C, Harle MT, Morrissey M, et al. Assessing symptom distress in cancer patients: the M.D. Anderson symptom inventory. Cancer. 2000;89(7):1634–1646. doi: 10.1002/1097-0142(20001001)89:7<1634::AID-CNCR29>;2-V.
    1. Aaronson NK, Ahmedzai S, Bergman B, Bullinger M, Cull A, Duez NJ, et al. The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. J Natl Cancer Inst. 1993;85(5):365–376. doi: 10.1093/jnci/85.5.365.
    1. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67(6):361–370. doi: 10.1111/j.1600-0447.1983.tb09716.x.
    1. Wright AA, Cook CE, Baxter GD, Dockerty JD, Abbott JH. A comparison of 3 methodological approaches to defining major clinically important improvement of 4 performance measures in patients with hip osteoarthritis. J Orthop Sports Phys Ther. 2011;41(5):319–327. doi: 10.2519/jospt.2011.3515.
    1. Litterini AJ, Fieler VK, Cavanaugh JT, Lee JQ. Differential effects of cardiovascular and resistance exercise on functional mobility in individuals with advanced cancer: a randomized trial. Arch Phys Med Rehabil. 2013;94(12):2329–2335. doi: 10.1016/j.apmr.2013.06.008.
    1. Oldervoll LM, Loge JH, Lydersen S, Paltiel H, Asp MB, Nygaard UV, et al. Physical exercise for cancer patients with advanced disease: a randomized controlled trial. Oncologist. 2011;16(11):1649–1657. doi: 10.1634/theoncologist.2011-0133.
    1. American College of Sports Medicine position stand Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708. doi: 10.1249/MSS.0b013e3181915670.
    1. Sundhedsstyrelsen. Fysisk aktivitet - håndbog om forebyggelse og behandling 2011. Version 3.1. Accessed 2 Feb 2017.
    1. Schmitz KH, Courneya KS, Matthews C, Demark-Wahnefried W, Galvao DA, Pinto BM, et al. American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc. 2010;42(7):1409–1426. doi: 10.1249/MSS.0b013e3181e0c112.
    1. Wildiers H, Heeren P, Puts M, Topinkova E, Janssen-Heijnen ML, Extermann M, et al. International Society of Geriatric Oncology consensus on geriatric assessment in older patients with cancer. J Clin Oncol. 2014;32(24):2595–2603. doi: 10.1200/JCO.2013.54.8347.
    1. Sundhedsstyrelsen. Anbefalinger for den palliative indsats 2017. Accessed 2 Feb 2017.
    1. Tang CC, Von Ah D, Fulton JS. The Symptom Experience of Patients With Advanced Pancreatic Cancer: An Integrative Review. Cancer Nurs. 2018;41(1):33–44. doi: 10.1097/NCC.0000000000000463.
    1. Vainio A, Auvinen A. Prevalence of symptoms among patients with advanced cancer: an international collaborative study. Symptom Prevalence Group. J Pain Symptom Manage. 1996;12(1):3–10. doi: 10.1016/0885-3924(96)00042-5.
    1. LeBlanc TW, Nickolich M, Rushing CN, Samsa GP, Locke SC, Abernethy AP. What bothers lung cancer patients the most? A prospective, longitudinal electronic patient-reported outcomes study in advanced non-small cell lung cancer. Support Care Cancer. 2015;23(12):3455–3463. doi: 10.1007/s00520-015-2699-4.
    1. Larson PJ, Uchinuno A, Izumi S, Kawano A, Takemoto A, Shigeno M, et al. An integrated approach to symptom management. Nurs Health Sci. 1999;1:203–210. doi: 10.1046/j.1442-2018.1999.00027.x.
    1. Bosaeus I, Daneryd P, Lundholm K. Dietary intake, resting energy expenditure, weight loss and survival in cancer patients. J Nutr. 2002;132(11 Suppl):3465s–3466s. doi: 10.1093/jn/132.11.3465S.
    1. Andreyev HJ, Norman AR, Oates J, Cunningham D. Why do patients with weight loss have a worse outcome when undergoing chemotherapy for gastrointestinal malignancies? Eur J Cancer. 1998;34(4):503–509. doi: 10.1016/S0959-8049(97)10090-9.
    1. Lacau St Guily J, Bouvard E, Raynard B, Goldwasser F, Maget B, Prevost A, et al. NutriCancer: a French observational multicentre cross-sectional study of malnutrition in elderly patients with cancer. J Geriatr Oncol. 2018;9(1):74–80. doi: 10.1016/j.jgo.2017.08.003.
    1. Miller W, Rollnick S. Motivational interviewing - helping people change 2nd edition edn. New York: Guilford Press; 2002.
    1. Spencer JC, Wheeler SB. A systematic review of motivational interviewing interventions in cancer patients and survivors. Patient Educ Couns. 2016;99(7):1099–1105. doi: 10.1016/j.pec.2016.02.003.
    1. Locke EA, Bryan JF. The effects of goal-setting, rule-learning, and knowledge of score on performance. Am J Psychol. 1966;79(3):451–457. doi: 10.2307/1420886.

Source: PubMed

Подписаться