Procalcitonin, mid-regional proadrenomedullin and C-reactive protein in predicting treatment outcome in community-acquired febrile urinary tract infection

Janneke Evelyne Stalenhoef, Cees van Nieuwkoop, Darius Cameron Wilson, Willize Elizabeth van der Starre, Tanny J K van der Reijden, Nathalie Manon Delfos, Eliane Madeleine Sophie Leyten, Ted Koster, Hans Christiaan Ablij, Johannes Jan Willem van 't Wout, Jaap Tamino van Dissel, Janneke Evelyne Stalenhoef, Cees van Nieuwkoop, Darius Cameron Wilson, Willize Elizabeth van der Starre, Tanny J K van der Reijden, Nathalie Manon Delfos, Eliane Madeleine Sophie Leyten, Ted Koster, Hans Christiaan Ablij, Johannes Jan Willem van 't Wout, Jaap Tamino van Dissel

Abstract

Background: A reduction in duration of antibiotic therapy is crucial in minimizing the development of antimicrobial resistance, drug-related side effects and health care costs. The minimal effective duration of antimicrobial therapy for febrile urinary tract infections (fUTI) remains a topic of uncertainty, especially in male patients, those of older age or with comorbidities. Biomarkers have the potential to objectively identify the optimal moment for cessation of therapy.

Methods: A secondary analysis of a randomized placebo-controlled trial among 35 primary care centers and 7 emergency departments of regional hospitals in the Netherlands. Women and men aged ≥18 years with a diagnosis of fUTI were randomly assigned to receive antibiotic treatment for 7 or 14 days. Patients indicated to receive antimicrobial treatment for more than 14 days were excluded from randomization. The biomarkers procalcitonin (PCT), mid-regional proadrenomedullin (MR-proADM), and C-reactive protein (CRP) were compared in their ability to predict clinical cure or failure through the 10-18 day post-treatment visit.

Results: Biomarker concentrations were measured in 249 patients, with a clinical cure rate of 94% in the 165 randomized and 88% in the 84 non-randomized patients. PCT, MR-proADM and CRP concentrations did not differ between patients with clinical cure and treatment failure, and did not predict treatment outcome, irrespective of 7 or 14 day treatment duration (ROCAUC 0.521; 0.515; 0.512, respectively). PCT concentrations at presentation were positively correlated with bacteraemia (τ = 0.33, p < 0.001) and presence of shaking chills (τ = 0.25, p < 0.001), and MR-proADM levels with length of hospital stay (τ = 0.40, p < 0.001), bacteraemia (τ = 0.33, p < 0.001), initial intravenous treatment (τ = 0.22, p < 0.001) and time to defervescence (τ = 0.21, p < 0.001). CRP did not display any correlation to relevant clinical parameters.

Conclusions: Although the biomarkers PCT and MR-proADM were correlated to clinical parameters indicating disease severity, they did not predict treatment outcome in patients with community acquired febrile urinary tract infection who were treated for either 7 or 14 days. CRP had no added value in the management of patients with fUTI.

Trial registration: The study was registered at ClinicalTrials.gov [ NCT00809913 ; December 16, 2008] and trialregister.nl [ NTR1583 ; December 19, 2008].

Keywords: Antibiotic stewardship; Antibiotic therapy; Biomarkers; Pyelonephritis; Treatment duration; Urinary tract infections.

Conflict of interest statement

Ethics approval and consent to participate

The study protocol was primarily approved by the Medical Ethics Committee of the Leiden University Medical Center (protocol P08.65) and subsequently by all scientific boards of all participating centers. All patients have given written informed consent.

Consent for publication

Not Applicable.

Competing interests

Darius Wilson is employed by Thermo Fisher Scientific / Brahms, Hennigsdorf, Germany. All other authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flow of patients
Fig. 2
Fig. 2
Levels of PCT, MR-proADM and CRP measured at presentation in patients with clinical cure and failure
Fig. 3
Fig. 3
Biomarker accuracy in the prediction of treatment outcome

References

    1. van Nieuwkoop C, van der Starre WE, Stalenhoef JE, van Aartrijk AM, van der Reijden TJ, Vollaard AM, Delfos NM, van 't Wout JW, Blom JW, Spelt IC et al: Treatment duration of febrile urinary tract infection: a pragmatic randomized, double-blind, placebo-controlled non-inferiority trial in men and women. BMC Med 2017, 15(1):70.
    1. Christ-Crain M, Morgenthaler NG, Stolz D, Muller C, Bingisser R, Harbarth S, Tamm M, Struck J, Bergmann A, Muller B. Pro-adrenomedullin to predict severity and outcome in community-acquired pneumonia [ISRCTN04176397] Crit Care. 2006;10(3):R96. doi: 10.1186/cc4955.
    1. Schuetz P, Muller B, Christ-Crain M, Stolz D, Tamm M, Bouadma L, Luyt CE, Wolff M, Chastre J, Tubach F, et al. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Cochrane Database Syst Rev. 2012;9 CD007498.
    1. Bouadma L, Luyt CE, Tubach F, Cracco C, Alvarez A, Schwebel C, Schortgen F, Lasocki S, Veber B, Dehoux M, et al. Use of procalcitonin to reduce patients' exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet. 2010;375(9713):463–474. doi: 10.1016/S0140-6736(09)61879-1.
    1. Elke G, Bloos F, Wilson DC, Brunkhorst FM, Briegel J, Reinhart K, Loeffler M, Kluge S, Nierhaus A, Jaschinski U, et al. The use of mid-regional proadrenomedullin to identify disease severity and treatment response to sepsis - a secondary analysis of a large randomised controlled trial. Crit Care. 2018;22(1):79. doi: 10.1186/s13054-018-2001-5.
    1. van der Starre WE, Zunder SM, Vollaard AM, van NC, Stalenhoef JE, Delfos NM, van't Wout JW, Spelt IC, Blom JW, Leyten EM, et al. Prognostic value of pro-adrenomedullin, procalcitonin and C-reactive protein in predicting outcome of febrile urinary tract infection. Clin Microbiol Infect. 2014;20(10):1048–1054. doi: 10.1111/1469-0691.12645.
    1. Andaluz-Ojeda D, Nguyen HB, Meunier-Beillard N, Cicuendez R, Quenot JP, Calvo D, Dargent A, Zarca E, Andres C, Nogales L, et al. Superior accuracy of mid-regional proadrenomedullin for mortality prediction in sepsis with varying levels of illness severity. Ann Intensive Care. 2017;7(1):15. doi: 10.1186/s13613-017-0238-9.
    1. Stalenhoef JE, van Nieuwkoop C, Wilson DC, van der Starre WE, Delfos NM, Leyten EMS, Koster T, Ablij HC, Willem Van't Wout JJ, van Dissel JT: Biomarker guided triage can reduce hospitalization rate in community acquired febrile urinary tract infection. J Infect. 2018;77(1):18–24. 10.1016/j.jinf.2018.05.007. Epub 2018 May 26
    1. van Nieuwkoop C, van't Wout JW, Assendelft WJ, Elzevier HW, Leyten EM, Koster T, Wattel-Louis GH, Delfos NM, Ablij HC, Kuijper EJ, et al. Treatment duration of febrile urinary tract infection (FUTIRST trial): a randomized placebo-controlled multicenter trial comparing short (7 days) antibiotic treatment with conventional treatment (14 days) BMC Infect Dis. 2009;9:131. doi: 10.1186/1471-2334-9-131.
    1. Drozdov D, Schwarz S, Kutz A, Grolimund E, Rast AC, Steiner D, Regez K, Schild U, Guglielmetti M, Conca A, et al. Procalcitonin and pyuria-based algorithm reduces antibiotic use in urinary tract infections: a randomized controlled trial. BMC Med. 2015;13:104. doi: 10.1186/s12916-015-0347-y.
    1. Christ-Crain M, Jaccard-Stolz D, Bingisser R, Gencay MM, Huber PR, Tamm M, Muller B. Effect of procalcitonin-guided treatment on antibiotic use and outcome in lower respiratory tract infections: cluster-randomised, single-blinded intervention trial. Lancet. 2004;363(9409):600–607. doi: 10.1016/S0140-6736(04)15591-8.
    1. van Nieuwkoop C, Bonten TN, van't Wout JW, Kuijper EJ, Groeneveld GH, Becker MJ, Koster T, Wattel-Louis GH, Delfos NM, Ablij HC, et al. Procalcitonin reflects bacteremia and bacterial load in urosepsis syndrome: a prospective observational study. Crit Care. 2010;14(6):R206. doi: 10.1186/cc9328.
    1. Park JH, Wee JH, Choi SP, Park KN. Serum procalcitonin level for the prediction of severity in women with acute pyelonephritis in the ED: value of procalcitonin in acute pyelonephritis. Am J Emerg Med. 2013;31(7):1092–1097. doi: 10.1016/j.ajem.2013.04.012.
    1. Ha YE, Kang CI, Wi YM, Chung DR, Kang ES, Lee NY, Song JH, Peck KR. Diagnostic usefulness of procalcitonin as a marker of bacteremia in patients with acute pyelonephritis. Scand J Clin Lab Invest. 2013;73(5):444–448. doi: 10.3109/00365513.2013.803231.
    1. Schuetz P, Wirz Y, Sager R, Christ-Crain M, Stolz D, Tamm M, Bouadma L, Luyt CE, Wolff M, Chastre J, et al. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Cochrane Database Syst Rev. 2017;10:CD007498.
    1. Rhee C. Using Procalcitonin to guide antibiotic therapy. Open forum infectious diseases. 2017, 4(1):ofw249.
    1. de Jong E, van Oers JA, Beishuizen A, Vos P, Vermeijden WJ, Haas LE, Loef BG, Dormans T, van Melsen GC, Kluiters YC, et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. Lancet Infect Dis. 2016;16(7):819–827. doi: 10.1016/S1473-3099(16)00053-0.
    1. Drekonja DM, Rector TS, Cutting A, Johnson JR. Urinary tract infection in male veterans: treatment patterns and outcomes. JAMA Intern Med. 2013;173(1):62–68. doi: 10.1001/2013.jamainternmed.829.

Source: PubMed

Подписаться