A randomized pilot trial of remote ischemic preconditioning in heart failure with reduced ejection fraction

Michael A McDonald, Juarez R Braga, Jing Li, Cedric Manlhiot, Heather J Ross, Andrew N Redington, Michael A McDonald, Juarez R Braga, Jing Li, Cedric Manlhiot, Heather J Ross, Andrew N Redington

Abstract

Background: Remote ischemic preconditioning (RIPC) induced by transient limb ischemia confers multi-organ protection and improves exercise performance in the setting of tissue hypoxia. We aimed to evaluate the effect of RIPC on exercise capacity in heart failure patients.

Methods: We performed a randomized crossover trial of RIPC (4×5-minutes limb ischemia) compared to sham control in heart failure patients undergoing exercise testing. Patients were randomly allocated to either RIPC or sham prior to exercise, then crossed over and completed the alternate intervention with repeat testing. The primary outcome was peak VO2, RIPC versus sham. A mechanistic substudy was performed using dialysate from study patient blood samples obtained after sham and RIPC. This dialysate was used to test for a protective effect of RIPC in a mouse heart Langendorff model of infarction. Mouse heart infarct size with RIPC or sham dialysate exposure was also compared with historical control data.

Results: Twenty patients completed the study. RIPC was not associated with improvements in peak VO2 (15.6+/-4.2 vs 15.3+/-4.6 mL/kg/min; p = 0.53, sham and RIPC, respectively). In our Langendorff sub-study, infarct size was similar between RIPC and sham dialysate groups from our study patients, but was smaller than expected compared to healthy controls (29.0%, 27.9% [sham, RIPC] vs 51.2% [controls]. We observed less preconditioning among the subgroup of patients with increased exercise performance following RIPC (p<0.04).

Conclusion: In this pilot study of RIPC in heart failure patients, RIPC was not associated with improvements in exercise capacity overall. However, the degree of effect of RIPC may be inversely related to the degree of baseline preconditioning. These data provide the basis for a larger randomized trial to test the potential benefits of RIPC in patients with heart failure.

Trial registration: ClinicalTrials.gov +++++NCT01128790.

Conflict of interest statement

Competing Interests: Andrew Redington is co-holder of a patent and shareholder in a company developing an automated remote preconditioning device. There was no commercial funding or other involvement for this project and an automated device was not used in this study. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.

Figures

Figure 1. Patient flow through the study.
Figure 1. Patient flow through the study.
22 patients consented to participate in the study. Two patients declined repeat testing and were excluded from the analysis; 20 patients complete the study protocol with paired testing.
Figure 2. Individual exercise test results for…
Figure 2. Individual exercise test results for sham versus RIPC intervention.
Peak VO2 is shown for all study subjects undergoing exercise stress testing immediately following sham and RIPC interventions.
Figure 3. Langendorff mouse heart infarct size…
Figure 3. Langendorff mouse heart infarct size after perfusion with dialysate from heart failure patients versus healthy controls.
Heart failure patient dialysate, irrespective of RIPC or sham treatment, reduced infarct to the same extent as the dialysate from RIPC-treated healthy controls, as compared to sham treated healthy controls.
Figure 4. Infarct size stratified by the…
Figure 4. Infarct size stratified by the effect of RIPC on exercise performance.
In the Langendorff model, mean infarct size was significantly smaller after perfusion with dialysate from the subgroup of patients who had no improvement in exercise performance following RIPC treatment. Data are presented as mean +/− SD % of infarcted myocardium.

References

    1. McElroy PA, Janicki JS, Weber KT (1988) Cardiopulmonary exercise testing in congestive heart failure. Am J Cardiol 62: 35A–40A.
    1. Mancini DM, Eisen H, Kussmaul W, Mull R, Edmunds LH Jr, et al. (1991) Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation 83: 778–86.
    1. Pardaens K, Van Cleemput J, Vanhaecke J, Fagard RH (2000) Peak oxygen uptake better predicts outcome than submaximal respiratory data in heart transplant candidates. Circulation 101: 1152–57.
    1. O'Neill JO, Young JB, Pothier CE, Lauer MS (2005) Peak oxygen consumption as a predictor of death in patients with heart failure receiving beta-blockers. Circulation 111: 2313–18.
    1. Aaronson KD, Schwartz JS, Chen TM, Wong KL, Goin JE, et al. (1997) Development and prospective validation of a clinical index to predict survival in ambulatory patients referred for cardiac transplant evaluation. Circulation 95: 2660–67.
    1. Wilson JR, Martin JL, Ferraro N (1984) Impaired skeletal muscle nutritive flow during exercise in patients with congestive heart failure: role of cardiac pump dysfunction as determined by the effect of dobutamine. Am J Cardiol 53: 1308–15.
    1. Mancini DM, Coyle E, Coggan A, Beltz J, Ferraro N, et al. (1989) Contribution of intrinsic skeletal muscle changes to 31P NMR skeletal muscle metabolic abnormalities in patients with chronic heart failure. Circulation 80: 1338–46.
    1. Duscha BD, Kraus WE, Keteyian SJ, Sullivan MJ, Green HJ, et al. (1999) Capillary density of skeletal muscle: a contributing mechanism for exercise intolerance in class II–III chronic heart failure independent of other peripheral alterations. J Am Coll Cardiol 33: 1956–63.
    1. Hambrecht R, Fiehn E, Yu J, Niebauer J, Weigl C, et al. (1997) Effects of endurance training on mitochondrial ultrastructure and fibre type distribution in skeletal muscle of patients with stable chronic heart failure. J Am Coll Cardio 29: 1067–73.
    1. Haykowsky MJ, Liang Y, Pechter D, Jones LW, McAlister FA, et al. (2007) A meta-analysis of the effect of exercise training on left ventricular remodeling in heart failure patients. The benefit depends on the type of training performed. J Am Coll Cardiol 49: 2329–36.
    1. O'Connor CM, Whellan DJ, Lee KL, Keteyian SJ, Cooper LS, et al. (2009) Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA 301: 1439–50.
    1. Stevenson LW, Steimle AE, Fonarow G, Kermani M, Kermani D, et al. (1995) Improvement in exercise capacity of candidates awaiting heart transplantation. J Am Coll Cardiol 25: 163–70.
    1. Kharbanda RK, Nielsen TT, Redington AN (2009) Translation of remote ischaemic preconditioning into clinical practice. Lancet 374: 1557–65.
    1. Shimizu M, Tropak M, Diaz RJ, Suto F, Surendra H, et al. (2009) Transient limb ischaemia remotely preconditions through a humoral mechanism acting directly on the myocardium ; evidence suggesting cross-species protection. Clin Sci (Lond) 117: 191–200.
    1. Steensrud T, Li J, Dai X, Manlhiot C, Kharbanda RK, et al. (2010) Pretreatment with the nitric oxide donor SNAP or nerve transection blocks humoral preconditioning by remote limb ischemia or intra-arterial adenosine. Am J Physiol 299: H1598–603.
    1. Redington KL, Disenhouse T, Strantzas SC, Gladstone R, Wei C, et al. (2012) Remote cardioprotection by direct peripheral nerve stimulation and topical capsaicin is mediated by circulating humoral factors. Basic Res Cardiol 107: 1–10.
    1. Cheung MM, Kharbanda RK, Konstantinov IE, Shimitzu IE, Shimizu M, et al. (2006) Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: first clinical application in humans. J Am Coll Cardiol 47: 2277–82.
    1. Venugopal V, Hausenloy DJ, Ludman A, Di Salvo C, Kolvekar S, et al. (2009) Remote ischaemic preconditioning reduces myocardial injury in patients undergoing cardiac surgery with cold-blood cardioplegia: a randomised controlled trial. Heart 95: 1567–71.
    1. Ali ZA, Callaghan CJ, Lim E, Ali AA, Nouraei SA, et al. (2007) Remote ischemic preconditioning reduces myocardial and renal injury after elective abdominal aortic aneurysm repair: a randomized controlled trial. Circulation 116 (11 Suppl) I98–105.
    1. Hoole SP, Heck PM, Sharples L, Khan SN, Duehmke R, et al. (2009) Cardiac remote ischemic preconditioning in coronary stenting (CRISP Stent) study: a prospective randomized control trial. Circulation 119: 820–7.
    1. Botker HE, Kharbanda R, Schmidt MR, Bottcher M, Kaltoft AK, et al. (2010) Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in pateints with acute myocardial infarction: a randomized trial. Lancet 375: 727–34.
    1. de Groot PC, Thijssen DH, Sanchez M, Ellenkamp R, Hopman MT (2010) Ischemic preconditioning improves maximal performance in humans. Eur J Appl Physio 108: 141–6.
    1. Jean-St-Michel E, Manlhiot C, Li J, Tropak M, Michelsen MM, et al. (2011) Remote preconditioning improves maximal performance in highly-trained athletes. Med Sci Sports Exerc 43: 1280–6.
    1. Michelsen MM, Stottrup NB, Schmidt MR, Lofgren B, Jensen RV, et al. (2012) Exercise induced cardioprotection is medicated by a bloodborne, transferable factor. Basic Res Cardiol 107: 1–9.
    1. Dickson EW, Lorbar M, Porcaro WA, Lee WJ, Blehar DJ, et al. (1999) Rabbit heart can be “preconditioned” via transfer of coronary effluent. Am J Physiol 277: H2451–7.
    1. Zhu J, Rebecchi MJ, Tan M, Glass PS, Brink PR, et al. (2010) Age-associated differences in activation of Akt/GSK-3beta signaling pathways and inhibition of mitochondrial permeability transition pore opening in the rat heart. J Gerontol A Biol Sci Med Sci 65: 611–9.
    1. Maack C, Dabew ER, Hohl M, Schafers HJ, Hohm M (2009) Endogenous activation of mitochondrial katp channels protects human failing myocardium from hydroxyl radical-induced stunning. Circ Res 105: 811–7.
    1. Hambrecht R, Niebauer J, Fiehn E, Kalberer B, Offner B, et al. (1995) Physical training in patients with stable chronic heart failure: effects on cardiorespiratory fitness and ultrastructural abnormalities of leg muscles. J Am Coll Cardiol 25: 1239–49.
    1. Rajabi M, Kassiotis C, Razeghi P, Taegtmeyer H (2007) Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev 12: 331–43.
    1. Ostadal B, Ostadalova I, Kolar F, Charvatova Z, Netuka I (2009) Ontogenetic development of cardiac tolerance to oxygen deprivation – possible mechanisms. Physiol Res 58: Suppl 2 S1–12.
    1. Hausenloy DJ, Botker HE, Condorelli G, Ferdinandy P, Garcia-Dorado D, et al. (2013) Translating cardioprotection for patient benefit: position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res 98: 7–27.
    1. Ferdinandy P, Schultz R, Baxter GF (2007) Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmcol Rev 59: 418–58.
    1. Giricz A, Varga ZV, Baranyai T, Sipos P, Paloczi K, et al. (2014) Cardioprotection by remote ischemic preconditioning of the rat heart is mediated by extracellular vesicles. J Mol Cell Cardiol 68: 75–78.

Source: PubMed

Подписаться