Covid-19: the renin-angiotensin system imbalance hypothesis

Katharina Lanza, Lucas G Perez, Larissa B Costa, Thiago M Cordeiro, Vitria A Palmeira, Victor T Ribeiro, Ana Cristina Simões E Silva, Katharina Lanza, Lucas G Perez, Larissa B Costa, Thiago M Cordeiro, Vitria A Palmeira, Victor T Ribeiro, Ana Cristina Simões E Silva

Abstract

The emergency of SARS-CoV-2 in China started a novel challenge to the scientific community. As the virus turns pandemic, scientists try to map the cellular mechanisms and pathways of SARS-CoV-2 related to the pathogenesis of Coronavirus Disease 2019 (Covid-19). After transmembrane angiotensin-converting enzyme 2 (ACE2) has been found to be SARS-CoV-2 receptor, we hypothesized an immune-hematological mechanism for Covid-19 based on renin-angiotensin system (RAS) imbalance to explain clinical, laboratory and imaging findings on disease course. We believe that exaggerated activation of ACE/Angiotensin II (Ang II)/Angiotensin Type 1 (AT1) receptor RAS axis in line with reduction of ACE2/Angiotensin-(1-7)/Mas receptor may exert a pivotal role in the pathogenesis of Covid-19. In this perspective, we discuss potential mechanisms and evidence on this hypothesis.

Keywords: Angiotensin-Converting Enzyme 2; Covid-19; Renin-Angiotensin System; SARS-CoV-2.

Conflict of interest statement

The authors declare that there are no competing interests associated with the manuscript.

© 2020 The Author(s).

Figures

Figure 1. Pathophysiological role of ACE2 in…
Figure 1. Pathophysiological role of ACE2 in COVID-19
Schematic representation of pathophysiological mechanisms related to COVID-19 and the overlapping pathways with renin–angiotensin system, particularly with the modulation of ACE2. [O2] = Oxygen concentration; HS = Hemophagocytic-like Syndrome; ACE2 = Angiotensin-Converting Enzyme 2; ANG(1-7) = Angiotensin (1-7); ANGII = Angiotensin II; HPSC = Hematopoietic stem/progenitor cell.
Figure 2. ACE2 basis for age specific…
Figure 2. ACE2 basis for age specific differences in COVID-19 outcome
Schematic representation of the differences detected in ACE2 expression according to age. The figure highlights the hypothetical mechanisms related to COVID-19 outcome based on the protective effects of free ACE2 for buffering the viral infection as well as reducing inflammation. ACE2, angiotensin-converting enzyme 2; ANG(1-7), angiotensin (1-7); ANGII, Angiotensin II.

References

    1. Touyz R., Li H. and Delles C. (2020) ACE2 the Janus-faced protein – from cardiovascular protection to severe acute respiratory syndrome-coronavirus and COVID-19. Clin. Sci. 134, 747–750 10.1042/CS20200363
    1. Guan W., Ni Z., Hu Y., Liang W., Ou C., He J. et al. . (2020) Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 382, 1708–1720 10.1056/NEJMoa2002032
    1. Nair H., Nokes D., Gessner B., Dherani M., Madhi S., Singleton R. et al. . (2010) Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet North Am. Ed. 375, 1545–1555 10.1016/S0140-6736(10)60206-1
    1. Wang Q., Zhang Y., Wu L., Niu S., Song C., Zhang Z. et al. . (2020) Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell 181, 894.e9–904.e9 10.1016/j.cell.2020.03.045
    1. Shang J., Ye G., Shi K., Wan Y., Luo C., Aihara H. et al. . (2020) Structural basis of receptor recognition by SARS-CoV-2. Nature 581, 221–224 10.1038/s41586-020-2179-y
    1. Nehme A., Cerutti C., Dhaouadi N., Gustin M., Courand P., Zibara K. et al. . (2015) Atlas of tissue renin-angiotensin-aldosterone system in human: A transcriptomic meta-analysis. Sci. Rep. 5, 10.1038/srep10035
    1. Rodrigues Prestes T., Rocha N., Miranda A., Teixeira A. and Simoes-e-Silva A. (2017) The Anti-Inflammatory Potential of ACE2/Angiotensin-(1-7)/Mas Receptor Axis: Evidence from Basic and Clinical Research. Curr. Drug Targets 18, 10.2174/1389450117666160727142401
    1. Imai Y., Kuba K., Rao S., Huan Y., Guo F., Guan B. et al. . (2005) Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436, 112–116 10.1038/nature03712
    1. Siddiqi H. and Mehra M. (2020) COVID-19 illness in native and immunosuppressed states: A clinical–therapeutic staging proposal. J. Heart Lung Transplant. 39, 405–407 10.1016/j.healun.2020.03.012
    1. Kuba K., Imai Y., Rao S., Gao H., Guo F., Guan B. et al. . (2005) A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat. Med. 11, 875–879 10.1038/nm1267
    1. Fang Y., Gao F. and Liu Z. (2019) Angiotensin-converting enzyme 2 attenuates inflammatory response and oxidative stress in hyperoxic lung injury by regulating NF-κB and Nrf2 pathways. QJM 112, 914–924 10.1093/qjmed/hcz206
    1. AlGhatrif M., Cingolani O. and Lakatta E. (2020) The Dilemma of Coronavirus Disease 2019, Aging, and Cardiovascular Disease. JAMA Cardiol. 10.1001/jamacardio.2020.1329
    1. Zheng Y., Ma Y., Zhang J. and Xie X. (2020) Reply to: ‘Interaction between RAAS inhibitors and ACE2 in the context of COVID-19. Nat. Rev. Cardiol. 17, 313–314 10.1038/s41569-020-0369-9
    1. Guo J., Huang Z., Lin L. and Lv J. (2020) Coronavirus Disease 2019 (COVID‐19) and Cardiovascular Disease: A Viewpoint on the Potential Influence of Angiotensin‐Converting Enzyme Inhibitors/Angiotensin Receptor Blockers on Onset and Severity of Severe Acute Respiratory Syndrome Coronavirus 2 Infection. J. Am. Heart Assoc. 9
    1. Wang X., Xu W., Hu G., Xia S., Sun Z., Liu Z. et al. . (2020) SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion. Cell. Mol. Immunol., 10.1038/s41423-020-0424-9
    1. Joshi S., Wollenzien H., Leclerc E. and Jarajapu Y. (2019) Hypoxic regulation of angiotensin‐converting enzyme 2 and Mas receptor in human CD34 + cells. J. Cell. Physiol. 234, 20420–20431 10.1002/jcp.28643
    1. Mehta P., McAuley D., Brown M., Sanchez E., Tattersall R. and Manson J. (2020) COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet North Am. Ed. 395, 1033–1034 10.1016/S0140-6736(20)30628-0
    1. Simões e Silva A., Silveira K., Ferreira A. and Teixeira M. (2013) ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis. Br. J. Pharmacol. 169, 477–492 10.1111/bph.12159
    1. Wenzhong l. and Hualan L. (2020) COVID-19: Attacks the 1-Beta Chain of Hemoglobin and Captures the Porphyrin to Inhibit Human Heme Metabolism
    1. Gattinoni L., Coppola S., Cressoni M., Busana M., Rossi S. and Chiumello D. (2020) COVID-19 Does Not Lead to a “Typical” Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 201, 1299–1300 10.1164/rccm.202003-0817LE
    1. Sardu C., Gambardella J., Morelli M., Wang X., Marfella R. and Santulli G. (2020) Is COVID-19 an Endothelial Disease? Clin. Basic Evidence
    1. Tanaka T., Narazaki M. and Kishimoto T. (2014) IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol. 6, a016295–a016295 10.1101/cshperspect.a016295
    1. Liu Q., Zhou Y. and Yang Z. (2015) The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell. Mol. Immunol 13, 3–10
    1. Channappanavar R. and Perlman S. (2017) Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 39, 529–539 10.1007/s00281-017-0629-x
    1. Sahraei Z., Shabani M., Shokouhi S. and Saffaei A. (2020) Aminoquinolines against coronavirus disease 2019 (COVID-19): chloroquine or hydroxychloroquine. Int. J. Antimicrob. Agents 55, 105945 10.1016/j.ijantimicag.2020.105945
    1. Nikpouraghdam M., Jalali Farahani A., Alishiri G., Heydari S., Ebrahimnia M., Samadinia H. et al. . (2020) Epidemiological characteristics of coronavirus disease 2019 (COVID-19) patients in IRAN: A single center study. J. Clin. Virol. 127, 104378 10.1016/j.jcv.2020.104378
    1. Jin J., Bai P., He W., Wu F., Liu X., Han D. et al. . (2020) Gender Differences in Patients With COVID-19: Focus on Severity and Mortality. Front. Public Health 8, 10.3389/fpubh.2020.00152
    1. Xudong X., Junzhu C., Xingxiang W., Furong Z. and Yanrong L. (2006) Age- and gender-related difference of ACE2 expression in rat lung. Life Sci. 78, 2166–2171 10.1016/j.lfs.2005.09.038
    1. Colafella K., Hilliard L. and Denton K. (2016) Epochs in the depressor/pressor balance of the renin–angiotensin system. Clin. Sci. 130, 761–771 10.1042/CS20150939
    1. Kaschina E., Namsolleck P. and Unger T. (2017) AT2 receptors in cardiovascular and renal diseases. Pharmacol. Res. 125, 39–47 10.1016/j.phrs.2017.07.008

Source: PubMed

Подписаться