Organ-specific distribution of ACE2 mRNA and correlating peptidase activity in rodents

Florian Gembardt, Anja Sterner-Kock, Hans Imboden, Matthias Spalteholz, Franziska Reibitz, Heinz-Peter Schultheiss, Wolf-Eberhard Siems, Thomas Walther, Florian Gembardt, Anja Sterner-Kock, Hans Imboden, Matthias Spalteholz, Franziska Reibitz, Heinz-Peter Schultheiss, Wolf-Eberhard Siems, Thomas Walther

Abstract

Biochemical analysis revealed that angiotensin-converting enzyme related carboxy-peptidase (ACE2) cleaves angiotensin (Ang) II to Ang-(1-7), a heptapeptide identified as an endogenous ligand for the G protein-coupled receptor Mas. No data are currently available that systematically describe ACE2 distribution and activity in rodents. Therefore, we analyzed the ACE2 expression in different tissues of mice and rats on mRNA (RNase protection assay) and protein levels (immunohistochemistry, ACE2 activity, western blot). Although ACE2 mRNA in both investigated species showed the highest expression in the ileum, the mouse organ exceeded rat ACE2, as also demonstrated in the kidney and colon. Corresponding to mRNA, ACE2 activity was highest in the ileum and mouse kidney but weak in the rat kidney, which was also confirmed by immunohistochemistry. Contrary to mRNA, we found weak activity in the lung of both species. Our data demonstrate a tissue- and species-specific pattern for ACE2 under physiological conditions.

Figures

Fig. 1
Fig. 1
mRNA expression in different mouse tissues. Representative RPA of different tissues from C57Bl/6 mice. The specific bands for MMACE2 and the housekeeping mRNA rl32 are indicated with arrows on the left. The MMACE2 and rL32 probes are indicated with arrows on the right. (a) 1. ventricle, 2. kidney, 3. lung, 4. liver, 5. testis, 6. bladder, 7. forebrain, 8. spleen, y+, yeast plus RNase; y−, yeast without RNase; (b) 9. thymus, 2. kidney, 10. stomach, 11. ileum, 12. colon, 13. brainstem, 14. atrium, 15. adipose tissue; MM, Mus Musculus; y+, yeast plus RNase; y−, yeast without RNase.
Fig. 2
Fig. 2
mRNA expression of different rat tissues. Representative RPA of different tissues from C57Bl/6 mice. The specific bands for RNACE2 and the housekeeping mRNA rl32 are indicated with arrows on the left. The RNACE2 and rL32 probes are indicated with arrows on the right. (a) 1. ventricle, 2. kidney, 3. lung, 4. liver, 5. testis, 6. bladder, 7. forebrain, 8. spleen, y+, yeast plus RNase; y−, yeast without RNase; (b) 9. thymus, 2. kidney, 10. stomach, 11. ileum, 12. colon, 13. brainstem, 14. atrium, 15. adipose tissue; RN, Rattus Norvegicus; y+, yeast plus RNase; y−, yeast without RNase.
Fig. 3
Fig. 3
Quantification of the RPAs of mice (white columns) and rats (black columns). The mRNA amount of the lungs is set to 100% (n ≤ 4). The values are shown as mean + S.E.M. 1. ventricle, 2. kidney, 3. lung, 4. liver, 5. testis, 6. bladder, 7. forebrain, 8. spleen, 9. thymus, 10. stomach, 11. ileum, 12. colon, 13. brainstem, 14. atrium, 15. adipose tissue. *P < 0.05, **P < 0.01, ***P < 0.0001 compared mouse vs. rat.
Fig. 4
Fig. 4
Representative western blot of mouse (upper panel) and rat (lower panel) tissues with a commercial polyclonal antibody against ACE2. The band at 75 kDa is indicated. 1. atrium, 2. ventricle, 3. thymus, 4. spleen, 5. kidney, 6. testis, 7. lung, 8. bladder, 9. forebrain, 10. adipose tissue.
Fig. 5
Fig. 5
Immunohistochemical visualization of ACE2 positive cells. Sections of lungs (upper row) and kidneys (lower row) from mouse (left panel) and rat (right panel). In the lungs of both species alveolar macrophages and type 2 cells were stained positive. The tubulus epithelium in mouse kidney was stained positive, whereas in the rat kidney only weak staining was seen.

References

    1. The Acute Infarction Ramipril Efficacy (AIRE) study investigators, effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. Lancet. 1993;342:821–828.
    1. Alenina N., Bader M., Walther T. Imprinting of the murine MAS protooncogene is restricted to its antisense RNA. Biochem Biophys Res Commun. 2002;290:1072–1078.
    1. Alenina N., Baranova T., Smirnow E., Bader M., Lippoldt A., Patkin E. Cell type-specific expression of the Mas proto-oncogene in testis. J Histochem Cytochem. 2002;50:691–696.
    1. Alfalah M., Parkin E.T., Jacob R., Sturrock E.D., Mentele R., Turner A.J. A point mutation in the juxtamembrane stalk of human angiotensin I-converting enzyme invokes the action of a distinct secretase. J Biol Chem. 2001;276:21105–21109.
    1. Averill D.B., Ishiyama Y., Chappell M.C., Ferrario C.M. Cardiac angiotensin-(1–7) in ischemic cardiomyopathy. Circulation. 2003;108:2141–2146.
    1. Block C.H., Santos R.A., Brosnihan K.B., Ferrario C.M. Immunocytochemical localization of angiotensin-(1–7) in the rat forebrain. Peptides. 1988;9:1395–1401.
    1. Bralet J., Schwartz J.C. Vasopeptidase inhibitors: an emerging class of cardiovascular drugs. Trends Pharmacol Sci. 2001;22:106–109.
    1. Brosnihan K.B., Neves L.A., Joyner J., Averill D.B., Chappell M.C., Sarao R., Penninger J., Ferrario C.M. Enhanced renal immunocytochemical expression of ANG-(1–7) and ACE2 during pregnancy. Hypertension. 2003;42:749–753.
    1. Chappell M.C., Modrall J.G., Diz D.I., Ferrario C.M. Novel aspects of the renal renin-angiotensin system: angiotensin-(1–7), ACE2 and blood pressure regulation. Contrib Nephrol. 2004;143:77–89.
    1. Corti R., Burnett J.C., Jr., Rouleau J.L., Ruschitzka F., Luscher T.F. Vasopeptidase inhibitors: a new therapeutic concept in cardiovascular disease? Circulation. 2001;104:1856–1862.
    1. Crackower M.A., Sarao R., Oudit G.Y., Yagil C., Kozieradzki I., Scanga S.E. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417:822–828.
    1. Donoghue M., Hsieh F., Baronas E., Godbout K., Gosselin M., Stagliano N. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res. 2000;87:1–9.
    1. Donoghue M., Wakimoto H., Maguire C.T., Acton S., Hales P., Stagliano N. Heart block, ventricular tachycardia, and sudden death in ACE2 transgenic mice with downregulated connexins. J Mol Cell Cardiol. 2003;35:1043–1053.
    1. Edwards R.M., Pullen M., Nambi P. Distribution of neutral endopeptidase activity along the rat and rabbit nephron. Pharmacology. 1999;59:45–50.
    1. Ferrario C.M., Chappell M.C. Novel angiotensin peptides. Cell Mol Life Sci. 2004;61:2720–2727.
    1. Ferrario C.M., Chappell M.C., Tallant E.A., Brosnihan K.B., Diz D.I. Counterregulatory actions of angiotensin-(1–7) Hypertension. 1997;30:535–541.
    1. Ferreira A.J., Santos R.A., Almeida A.P. Angiotensin-(1–7): cardioprotective effect in myocardial ischemia/reperfusion. Hypertension. 2001;38:665–668.
    1. Fournie-Zaluski M.C., Fassot C., Valentin B., Djordjijevic D., Reaux-Le Goazigo A., Corvol P. Brain renin-angiotensin system blockade by systemically active aminopeptidase A inhibitors: a potential treatment of salt-dependent hypertension. Proc Natl Acad Sci USA. 2004;101:7775–7780.
    1. Gironacci M.M., Adler-Graschinsky E., Pena C., Enero M.A. Effects of angiotensin II and angiotensin-(1–7) on the release of [3H]norepinephrine from rat atria. Hypertension. 1994;24:457–460.
    1. Goulter A.B., Goddard M.J., Allen J.C., Clark K.L. ACE2 gene expression is up-regulated in the human failing heart. BMC Med. 2004;2:19.
    1. Gross V., Obst M., Luft F.C. Insights into angiotensin II receptor function through AT2 receptor knockout mice. Acta Physiol Scand. 2004;181:487–494.
    1. Hamming I., Timens W., Bulthuis M.L., Lely A.T., Navis G.J., van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203:631–637.
    1. Harmer D., Gilbert M., Borman R., Clark K.L. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 2002;532:107–110.
    1. Hofmann H., Geier M., Marzi A., Krumbiegel M., Peipp M., Fey G.H. Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor. Biochem Biophys Res Commun. 2004;319:1216–1221.
    1. Huang L., Sexton D.J., Skogerson K., Devlin M., Smith R., Sanyal I. Novel peptide inhibitors of angiotensin-converting enzyme 2. J Biol Chem. 2003;278:15532–15540.
    1. Imboden H., Felix D. Immunocytochemistry in brain tissue. Meth Neurosci. 1995;24:236–260.
    1. Ishiyama Y., Gallagher P.E., Averill D.B., Tallant E.A., Brosnihan K.B., Ferrario C.M. Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin II receptors. Hypertension. 2004;43:970–976.
    1. Krob H.A., Vinsant S.L., Ferrario C.M., Friedman D.P. Angiotensin-(1–7) immunoreactivity in the hypothalamus of the (mRen-2d)27 transgenic rat. Brain Res. 1998;798:36–45.
    1. Kubota E., Dean R.G., Hubner R.A., Casley D.J., Johnston C.I., Burrell L.M. Differential tissue and enzyme inhibitory effects of the vasopeptidase inhibitor omapatrilat in the rat. Clin Sci (Lond) 2003;105:339–345.
    1. Li W., Moore M.J., Vasilieva N., Sui J., Wong S.K., Berne M.A. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450–454.
    1. Metzger R., Bader M., Ludwig T., Berberich C., Bunnemann B., Ganten D. Expression of the mouse and rat mas proto-oncogene in the brain and peripheral tissues. FEBS Lett. 1995;357:27–32.
    1. Oudit G.Y., Crackower M.A., Backx P.H., Penninger J.M. The role of ACE2 in cardiovascular physiology. Trends Cardiovasc Med. 2003;13:93–101.
    1. Ren Y., Garvin J.L., Carretero O.A. Vasodilator action of angiotensin-(1–7) on isolated rabbit afferent arterioles. Hypertension. 2002;39:799–802.
    1. Santos R.A., Campagnole-Santos M.J., Andrade S.P. Angiotensin-(1–7): an update. Regul Pept. 2000;91:45–62.
    1. Santos R.A., Simoes e Silva A.C., Maric C., Silva D.M., Machado R.P., de Buhr I. Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA. 2003;100:8258–8263.
    1. Schartl M., Bocksch W.G., Dreysse S., Beckmann S., Franke O., Hunten U. Remodeling of myocardium and arteries by chronic angiotensin converting enzyme inhibition in hypertensive patients. J Hypertens Suppl. 1994;12:37–42.
    1. Tipnis S.R., Hooper N.M., Hyde R., Karran E., Christie G., Turner A.J. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 2000;275:33238–33243.
    1. To K.F., Lo A.W. Exploring the pathogenesis of severe acute respiratory syndrome (SARS): the tissue distribution of the coronavirus (SARS-CoV) and its putative receptor, angiotensin-converting enzyme 2 (ACE2) J Pathol. 2004;203:740–743.
    1. Turner A.J., Hooper N.M. The angiotensin-converting enzyme gene family: genomics and pharmacology. Trends Pharmacol Sci. 2002;23:177–183.
    1. Vickers C., Hales P., Kaushik V., Dick L., Gavin J., Tang J. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem. 2002;277:14838–14843.
    1. Walther T., Siems W.E., Hauke D., Spillmann F., Dendorfer A., Krause W. AT1 receptor blockade increases cardiac bradykinin via neutral endopeptidase after induction of myocardial infarction in rats. FASEB J. 2002;16:1237–1241.
    1. Worthley M.I., Corti R., Worthley S.G. Vasopeptidase inhibitors: will they have a role in clinical practice? Br J Clin Pharmacol. 2004;57:27–36.
    1. Zisman L.S., Keller R.S., Weaver B., Lin Q., Speth R., Bristow M.R. Increased angiotensin-(1–7)-forming activity in failing human heart ventricles: evidence for upregulation of the angiotensin-converting enzyme homologue ACE2. Circulation. 2003;108:1707–1712.

Source: PubMed

Подписаться