Nutritional Characteristics Assessment of Sunflower Seeds, Oil and Cake. Perspective of Using Sunflower Oilcakes as a Functional Ingredient

Ancuţa Petraru, Florin Ursachi, Sonia Amariei, Ancuţa Petraru, Florin Ursachi, Sonia Amariei

Abstract

Ample amounts of by-products are generated from the oil industry. Among them, sunflower oilcakes have the potential to be used for human consumption, thus achieving the concept of sustainability and circular economy. The study assessed the nutritional composition of sunflower seeds, cold-pressed oil and the remaining press-cakes with the aim of its valorization as a food ingredient. Sunflower oil contains principally oleic (19.81%) and linoleic (64.35%) acids, which cannot be synthetized by humans and need to be assimilated through a diet. Sunflower seeds are very nutritive (33.85% proteins and 65.42% lipids and 18 mineral elements). Due to the rich content of lipids, they are principally used as a source of vegetable oil. Compared to seeds, sunflower oilcakes are richer in fibers (31.88% and 12.64% for samples in form of pellets and cake, respectively) and proteins (20.15% and 21.60%), with a balanced amino acids profile. The remaining oil (15.77% and 14.16%) is abundant in unsaturated fatty acids (95.59% and 92.12%). The comparison between the three products showed the presence of valuable components that makes them suitable for healthy diets with an adequate intake of nutrients and other bioactive compounds with benefic effects.

Keywords: amino acids profile; classification; fatty acids composition; nutritive parameters; sunflower oil; sunflower oilcakes; sunflower seeds; sustainability.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Amino acids of sunflower seeds, meals and oil.
Figure 2
Figure 2
Sunflower seeds and press-cakes.
Figure 3
Figure 3
Spatial dimension of sunflower seeds; L—length, W—width, T—thickness.

References

    1. Otles S., Despoudi S., Bucatariu C., Kartal C. Valorization, and Sustainability in the Food Industry. Elsevier Inc.; Amsterdam, The Netherlands: 2015.
    1. Kot A.M., Pobiega K., Piwowarek K., Kieliszek M., Błażejak S., Gniewosz M., Lipińska E. Biotechnological Methods of Management and Utilization of Potato Industry Waste—A Review. Potato Res. 2020;63:431–447. doi: 10.1007/s11540-019-09449-6.
    1. Esposito B., Sessa M.R., Sica D., Malandrino O. Towards circular economy in the agri-food sector. A systematic literature review. Sustainability. 2020;12:7401. doi: 10.3390/su12187401.
    1. Borrello M., Caracciolo F., Lombardi A., Pascucci S., Cembalo L. Consumers’ perspective on circular economy strategy for reducing food waste. Sustainability. 2017;9:141. doi: 10.3390/su9010141.
    1. Kowalczewski P.Ł., Olejnik A., Rybicka I., Zielińska-Dawidziak M., Białas W., Lewandowicz G. Membrane filtration-assisted enzymatic hydrolysis affects the biological activity of potato juice. Molecules. 2021;26:852. doi: 10.3390/molecules26040852.
    1. Kieliszek M., Piwowarek K., Kot A.M., Pobiega K. The aspects of microbial biomass use in the utilization of selected waste from the agro-food industry. Open Life Sci. 2020;15:787–796. doi: 10.1515/biol-2020-0099.
    1. Kowalczewski P.Ł., Olejnik A., Białas W., Kubiak P., Siger A., Nowicki M., Lewandowicz G. Effect of Thermal Processing on Antioxidant Activity and Cytotoxicity of Waste Potato Juice. Open Life Sci. 2019;14:150–157. doi: 10.1515/biol-2019-0017.
    1. Kumar S., Kushwaha R., Verma M.L., Elsevier B.V. Recovery and Utilization of Bioactives from Food Processing Waste. Elsevier B.V.; Amsterdam, The Netherlands: 2019.
    1. Ancuţa P., Sonia A. Oil press-cakes and meals valorization through circular economy approaches: A review. Appl. Sci. 2020;10:7432. doi: 10.3390/app10217432.
    1. Gupta A., Sharma R., Sharma S., Singh B. Oilseed as Potential Functional Food Ingredient. In: Prodyut Kumar P., Mahawar M.K., Abobatta W., Panja P., editors. Trends & Prospects in Food Technology, Processing and Preservation. 1st ed. Today and Tomorrow’s Printers and Publishers; New Delhi, India: 2018. pp. 25–58.
    1. Adeleke B.S., Babalola O.O. Oilseed crop sunflower (Helianthus annuus) as a source of food: Nutritional and health benefits. Food Sci. Nutr. 2020;8:4666–4684. doi: 10.1002/fsn3.1783.
    1. Chauhan V. Nutritional quality analysis of sunflower seed cake (SSC) Pharma Innov. J. 2021;10:720–728.
    1. Mirpoor S.F., Giosafatto C.V.L., Porta R. Biorefining of seed oil cakes as industrial co-streams for production of innovative bioplastics. A review. Trends Food Sci. Technol. 2021;109:259–270. doi: 10.1016/j.tifs.2021.01.014.
    1. Gültekin Subaşı B., Vahapoğlu B., Capanoglu E., Mohammadifar M.A. A review on protein extracts from sunflower cake: Techno-functional properties and promising modification methods. Crit. Rev. Food Sci. Nutr. 2021:1–16. doi: 10.1080/10408398.2021.1904821.
    1. Ahmar S., Gill R.A., Jung K.H., Faheem A., Qasim M.U., Mubeen M., Zhou W. Conventional and molecular techniques from simple breeding to speed breeding in crop plants: Recent advances and future outlook. Int. J. Mol. Sci. 2020;21:2590. doi: 10.3390/ijms21072590.
    1. Jocić S., Miladinović D., Kaya Y. Breeding and Genetics of Sunflower. AOCS Press; Champaign, IL, USA: 2015.
    1. Pal D. Sunflower (Helianthus annuus L.) Seeds in Health and Nutrition. Elsevier Inc.; Amsterdam, The Netherlands: 2011.
    1. Romanić R. Cold Pressed Oils. Academic Press; Cambridge, MA, USA: 2020. Cold Pressed Sunflower (Helianthus annuus L.) oil; pp. 197–218.
    1. Islam R.T., Hossain M.M., Majumder K., Tipu A.H. In vitro Phytochemical Investigation of Helianthus annuus Seeds. Bangladesh Pharm. J. 2016;19:100–105. doi: 10.3329/bpj.v19i1.29245.
    1. Anjum F.M., Nadeem M., Khan M.I., Hussain S. Nutritional and therapeutic potential of sunflower seeds: A review. Br. Food J. 2012;114:544–552. doi: 10.1108/00070701211219559.
    1. Ivanova P., Chalova V., Koleva L., Pishtiyski I. Amino acid composition and solubility of proteins isolated from sunflower meal produced in Bulgaria. Int. Food Res. J. 2013;20:2995–3000.
    1. Sarwar F. The role of oilseeds nutrition in human health: A critical review. J. Cereals Oilseeds. 2013;4:97–100. doi: 10.5897/JCO12.024.
    1. Savoire R., Lanoisellé J.L., Vorobiev E. Mechanical Continuous Oil Expression from Oilseeds: A Review. Food Bioprocess Technol. 2013;6:1–16. doi: 10.1007/s11947-012-0947-x.
    1. Ramadan M.F. Introduction to Cold Pressed Oils: Green Technology, Bioactive Compounds, Functionality, and Applications. Elsevier Inc.; Amsterdam, The Netherlands: 2020.
    1. Poiana M., Alexa E., Moigradean D., Popa M. The influence of the storage conditions on the oxidative stability and antioxidant properties of sunflower and pumpkin oil; Proceedings of the 44th Croatian & 4th International Symposium of Agriculture; Opatija, Croatia. 16–20 February 2009; pp. 449–453.
    1. Zoumpoulakis P., Sinanoglou V.J., Siapi E., Heropoulos G., Proestos C. Evaluating modern techniques for the extraction and characterisation of sunflower (Hellianthus annus L.) seeds phenolics. Antioxidants. 2017;6:46. doi: 10.3390/antiox6030046.
    1. Avni T.C.A., Anupriya S., Rai P., Maan K. Effects of Heating and Storage on Nutritional value of Sunflower Oil. DU J. Undergrad. Res. Innov. 2016;2:196–202.
    1. Nadeem M., Situ C., Mahmud A., Khalique A., Imran M., Rahman F., Khan S. Antioxidant activity of sesame (Sesamum indicum L.) cake extract for the stabilization of olein based butter. JAOCS J. Am. Oil Chem. Soc. 2014;91:967–977. doi: 10.1007/s11746-014-2432-3.
    1. Nandha R., Singh H., Garg K., Rani S. Therapeutic Potential of Sunflower Seeds: An Overview. Int. J. Res. Dev. Pharm. Life Sci. 2014;3:967–972.
    1. Bochkarev M.S., Egorova E.Y., Reznichenko I.Y., Poznyakovskiy V.M. Reasons for the ways of using oilcakes in food industry. Foods Raw Mater. 2016;4:4–12. doi: 10.21179/2308-4057-2016-1-4-12.
    1. Alagawany M., Farag M.R., El-Hack M.E.A., Dhama K. The Practical Application of Sunflower Meal in Poultry Nutrition. Adv. Anim. Vet. Sci. 2015;3:634–648. doi: 10.14737/journal.aavs/2015/3.12.634.648.
    1. Serrapica F., Masucci F., Raffrenato E., Sannino M., Vastolo A., Barone C.M.A., Di Francia A. High fiber cakes from mediterranean multipurpose oilseeds as protein sources for ruminants. Animals. 2019;9:918. doi: 10.3390/ani9110918.
    1. Nang Thu T.T., Bodin N., Saeger S., Larondelle Y., Rollin X. Substitution of fish meal by sesame oil cake (Sesamum indicum L.) in the diet of rainbow trout (Oncorhynchus mykiss W.) Aquac. Nutr. 2011;17:80–89. doi: 10.1111/j.1365-2095.2009.00732.x.
    1. Wanjari N., Waghmare J. Phenolic and antioxidant potential of sunflower meal. Pelagia Res. Libr. Adv. Appl. Sci. Res. 2015;6:221–229.
    1. Lazaro E., Benjamin Y., Robert M. The Effects of Dehulling on Physicochemical Properties of Seed Oil and Cake Quality of Sunflower. Tanzania J. Agric. Sci. 2014;13:41–47.
    1. Araujo M.E.V., Barbosa E.G., Gomes F.A., Teixeira I.R., Lisboa C.F., Araújo R.S.L., Corrêa P.C. Physical properties of sesame seeds harvested at different maturation stages and thirds of the plant. Chil. J. Agric. Res. 2018;78:495–502. doi: 10.4067/S0718-58392018000400495.
    1. Ortiz-Hernandez A.A., Araiza-Esquivel M., Delgadillo-Ruiz L., Ortega-Sigala J.J., Durán-Muñoz H.A., Mendez-Garcia V.H., Yacaman M.J., Vega-Carrillo H.R. Physical characterization of sunflower seeds dehydrated by using electromagnetic induction and low-pressure system. Innov. Food Sci. Emerg. Technol. 2020;60:102285. doi: 10.1016/j.ifset.2019.102285.
    1. Igbozulike A.O., Amamgbo N. Effect of Moisture Content on Physical Properties of Fluted Pumpkin Seeds. J. Biosyst. Eng. 2019;44:69–76. doi: 10.1007/s42853-019-00015-z.
    1. Malik M.A., Saini C.S. Engineering properties of sunflower seed: Effect of dehulling and moisture content. Cogent Food Agric. 2016;2 doi: 10.1080/23311932.2016.1145783.
    1. Munder S., Argyropoulos D., Müller J. Class-based physical properties of air-classified sunflower seeds and kernels. Biosyst. Eng. 2017;164:124–134. doi: 10.1016/j.biosystemseng.2017.10.005.
    1. De Figueiredo A.K., Baümler E., Riccobene I.C., Nolasco S.M. Moisture-dependent engineering properties of sunflower seeds with different structural characteristics. J. Food Eng. 2011;102:58–65. doi: 10.1016/j.jfoodeng.2010.08.003.
    1. Costa C., Antonucci F., Pallottino F., Aguzzi J., Sun D.W., Menesatti P. Shape Analysis of Agricultural Products: A Review of Recent Research Advances and Potential Application to Computer Vision. Food Bioprocess Technol. 2011;4:673–692. doi: 10.1007/s11947-011-0556-0.
    1. Mirzabe A.H., Khazaei J., Chegini G.R. Physical properties and modeling for sunflower seeds. Agric. Eng. Int. CIGR J. 2012;14:190–202.
    1. Seiler G.J., Gulya T.J. Sunflower: Overview. 2nd ed. Elsevier Ltd.; Amsterdam, The Netherlands: 2016.
    1. Menzel C. Improvement of starch films for food packaging through a three-principle approach: Antioxidants, cross-linking and reinforcement. Carbohydr. Polym. 2020;250:116828. doi: 10.1016/j.carbpol.2020.116828.
    1. Casoni A.I., Gutierrez V.S., Volpe M.A. Conversion of sunflower seed hulls, waste from edible oil production, into valuable products. J. Environ. Chem. Eng. 2019;7:102893. doi: 10.1016/j.jece.2019.102893.
    1. Dobrzaski B., Stpniewski A. Physical Properties of Seeds in Technological Processes. Adv. Agrophys. Res. 2013;11:269–294. doi: 10.5772/56874.
    1. Rodríguez M., Nolasco S., Izquierdo N., Mascheroni R., Madrigal M.S., Flores D.C., Ramos A.Q. Microwave-assisted extraction of antioxidant compounds from sunflower hulls. Heat Mass Transf. 2019;55:3017–3027. doi: 10.1007/s00231-019-02648-4.
    1. Çetin N., Karaman K., Beyzi E., Sağlam C., Demirel B. Comparative Evaluation of Some Quality Characteristics of Sunflower Oilseeds (Helianthus annuus L.) Through Machine Learning Classifiers. Food Anal. Methods. 2021;14:1666–1681. doi: 10.1007/s12161-021-02002-7.
    1. Muttagi G.C., Joshi N. Physico-chemical composition of selected sunflower seed cultivars. Int. J. Chem. Stud. 2020;8:2095–2100. doi: 10.22271/chemi.2020.v8.i4w.9936.
    1. Akkaya M.R. Prediction of fatty acid composition of sunflower seeds by near-infrared reflectance spectroscopy. J. Food Sci. Technol. 2018;55:2318–2325. doi: 10.1007/s13197-018-3150-x.
    1. Nadeem M., Anjum F.M., Arshad M.U., Hussain S. Chemical characteristics and antioxidant activity of different sunflower hybrids and their utilization in bread. Afr. J. Food Sci. 2010;4:618–626.
    1. Kolláthová R., Varga B., Ivanišová E., Bíro D., Rolinec M., Juráček M., Šimko M., Gálik B. Mineral Profile Analysis of Oilseeds and Their By-Products As Feeding Sources for Animal Nutrition. Slovak J. Anim. Sci. 2019;52:9–15.
    1. Jafari S., Khazaei J., Arabhosseini A., Massah J., Khoshtaghaza M.H. Study on Mechanical Properties of Sunflower Seeds. Food Sci. Technol. 2011;14:6.
    1. Gupta R.K., Das S.K. Physical properties of sunflower seeds. J. Agric. Eng. Res. 1997;66:1–8. doi: 10.1006/jaer.1996.0111.
    1. Sumon M.M., Tinggi S., Ekonomi I., Surabaya P., Hossain A. Comparative Study on Physicochemical Composition of Different Genotypes of Sunflower Seed and Mineral Profile of Oil Cake. Agriculturists. 2021;18:83–93. doi: 10.3329/agric.v18i2.51062.
    1. Pawar V.D., Patil J.N., Sakhale B.K., Agarkar B.S. Studies on selected functional properties of defatted sunflower meal and its high protein products. J. Food Sci. Technol. 2001;38:47–51.
    1. Taha F.S., Mohamed G.F., Mohamed S.H., Mohamed S.S., Kamil M.M. Optimization of the Extraction of Total Phenolic Compounds from Sunflower Meal and Evaluation of the Bioactivities of Chosen Extracts. Am. J. Food Technol. 2011;6:1002–1020. doi: 10.3923/ajft.2011.1002.1020.
    1. Rosa P.M., Antoniassi R., Freitas S.C., Bizzo H.R., Zanotto D.L., Oliveira M.F., Castiglioni V.B.R. Chemical composition of brazilian sunflower varieties. Helia. 2009;32:145–156. doi: 10.2298/HEL0950145R.
    1. Žilic S., Barac M., Pešic M., Crevar M., Stanojevic S., Nišavic A., Saratlic G., Tolimir M. Characterization of sunflower seed and kernel proteins. Helia. 2010;33:103–114. doi: 10.2298/HEL1052103Z.
    1. Santalla E.M., Mascheroni R.H. Note: Physical Properties of High Oleic Sunflower Seeds. Food Sci. Technol. Int. 2003;9:435–442. doi: 10.1177/1082013203040756.
    1. Abdullah M.H.R.O., Ch’ng P.E., Lim T.H. Some Physical Properties of Parkia Speciosa Seeds. Int. Conf. Food Eng. Biotechnol. 2011;9:43–47.
    1. Krajewska M., Ślaska-Grzywna B., Andrejko D. Physical Properties of Seeds of the Selected Oil Plants. Agric. Eng. 2016;20:69–77. doi: 10.1515/agriceng-2016-0007.
    1. Coşkuner Y., Gökbudak A. Dimensional specific physical properties of fan palm fruits, seeds and seed coats (Washingtonia robusta) Int. Agrophys. 2016;30:301–309. doi: 10.1515/intag-2016-0004.
    1. Aviara N.A., Gwandzang M.I., Haque M.A. Physical properties of guna seeds. J. Agric. Eng. Res. 1999;73:105–111. doi: 10.1006/jaer.1998.0374.
    1. Niveditha V.R., Sridhar K.R., Balasubramanian D. Physical and mechanical properties of seeds and kernels of canavalia of coastal sand dunes. Int. Food Res. J. 2013;20:1547–1554.
    1. Seifi M.R., Alimardani R. Moisture-Dependent Physical Properties of Sunflower (SHF8190) Mod. Appl. Sci. 2010;4:135–143. doi: 10.5539/mas.v4n7p135.
    1. Babić L.J., Radojčin M., Pavkov I., Babić M. The physical and compressive load properties of sunflower (Helianthus annuus L.) fruit. Helia. 2012;35:95–112. doi: 10.2298/HEL1257095B.
    1. Popović S., Hromiš N., Šuput D., Bulut S., Romanić R., Lazić V. Cold Pressed Oils. Academic Press; Cambridge, MA, USA: 2020. Valorization of By-Products From the Production of Pressed Edible Oils to Produce Biopolymer Films; pp. 15–30.
    1. Sobczak P., Zawislak K., Starek A., Zukiewicz-Sobczak W., Sagan A., Zdybel B., Andrejko D. Compaction process as a concept of press-cake production from organic waste. Sustainability. 2020;12:1567. doi: 10.3390/su12041567.
    1. Adesina S.A. Effect of processing on the proximate composition of sunflower (Helianthus annuus) seeds. Agro-Science. 2019;17:27. doi: 10.4314/as.v17i3.5.
    1. Rani R., Badwaik L.S. Functional Properties of Oilseed Cakes and Defatted Meals of Mustard, Soybean and Flaxseed. Waste Biomass Valorization. 2021;12:5639–5647. doi: 10.1007/s12649-021-01407-z.
    1. Sinkovič L., Kolmanič A. Elemental composition and nutritional characteristics of cucurbita pepo subsp. Pepo seeds, oil cake and pumpkin oil. J. Elem. 2021;26:97–107. doi: 10.5601/jelem.2020.25.4.2072.
    1. Sunil L., Appaiah P., Prasanth Kumar P.K., Gopala Krishna A.G. Preparation of food supplements from oilseed cakes. J. Food Sci. Technol. 2015;52:2998–3005. doi: 10.1007/s13197-014-1386-7.
    1. Cozea A., Ionescu N., Popescu M., Neagu M., Gruia R. Comparative study concerning the composition of certain oil cakes with phytotherapeutical potential. Rev. Chim. 2016;67:422–425.
    1. Hussain S., Jõudu I., Bhat R. Dietary fiber from underutilized plant resources-A positive approach for valorization of fruit and vegetable wastes. Sustainability. 2020;12:5401. doi: 10.3390/su12135401.
    1. Dhingra D., Michael M., Rajput H., Patil R.T. Dietary fibre in foods: A review. J. Food Sci. Technol. 2012;49:255–266. doi: 10.1007/s13197-011-0365-5.
    1. Maphosa Y., Jideani V.A. Dietary fiber extraction for human nutrition—A review. Food Rev. Int. 2016;32:98–115. doi: 10.1080/87559129.2015.1057840.
    1. Nevara G.A., Kharidah S., Muhammad S., Zawawi N., Mustapha N.A., Karim R. Dietary Fiber: Fractionation, Characterization and Potential Sources from Defatted Oilseeds. Foods. 2021;10:754. doi: 10.3390/foods10040754.
    1. Bhise S.R., Kaur A., Manikantan M.R., Singh B. Development of textured defatted sunflower meal by extrusion using response surface methodology. Acta Aliment. 2015;44:251–258. doi: 10.1556/066.2015.44.0002.
    1. Bhise S., Kaur A. The effect of extrusion conditions on the functional properties of defatted cake of sunflower-maize based expanded snacks. Int. J. Food Ferment. Technol. 2015;5:247. doi: 10.5958/2277-9396.2016.00014.3.
    1. Brachet M., Arroyo J., Bannelier C., Cazals A., Fortun-Lamothe L. Hydration capacity: A new criterion for feed formulation. Anim. Feed Sci. Technol. 2015;209:174–185. doi: 10.1016/j.anifeedsci.2015.07.014.
    1. Lin M.J., Humbert E.S., Sosulski F.W. Functional Properties Sunflower Meal Products of. J. Food Sci. 1974;39:368–370. doi: 10.1111/j.1365-2621.1974.tb02896.x.
    1. Sosulski F., Fleming S.E. Chemical, functional, and nutritional properties of sunflower protein products. J. Am. Oil Chem. Soc. 1977;54:A100. doi: 10.1007/BF02912382.
    1. Grasso S., Omoarukhe E., Wen X., Papoutsis K., Methven L. The use of upcycled defatted sunflower seed flour as a functional ingredient in biscuits. Foods. 2019;8:305. doi: 10.3390/foods8080305.
    1. Amza T., Amadou I., Zhu K.X., Zhou H.M. Effect of extraction and isolation on physicochemical and functional properties of an underutilized seed protein: Gingerbread plum (Neocarya macrophylla) Food Res. Int. 2011;44:2843–2850. doi: 10.1016/j.foodres.2011.06.029.
    1. White N.D.G., Jayas D.S. Physical properties of canola and sunflower meal pellets. Can. Biosyst. Eng. 2001;43:349–352.
    1. Dabbour M., He R., Ma H., Musa A. Optimization of ultrasound assisted extraction of protein from sunflower meal and its physicochemical and functional properties. J. Food Process Eng. 2018;41:e12799. doi: 10.1111/jfpe.12799.
    1. Cai T., Chang K.C., Lunde H. Physicochemical Properties and Yields of Sunflower Protein Enzymatic Hydrolysates As Affected by Enzyme and Defatted Sunflower Meal. J. Agric. Food Chem. 1996;44:3500–3506. doi: 10.1021/jf9507396.
    1. Melo D., Álvarez-Ortí M., Nunes M.A., Costa A.S.G., Machado S., Alves R.C., Pardo J.E., Oliveira M.B.P.P. Whole or defatted sesame seeds (Sesamum indicum L.)? The effect of cold pressing on oil and cake quality. Foods. 2021;10:2108. doi: 10.3390/foods10092108.
    1. Arrutia F., Binner E., Williams P., Waldron K.W. Oilseeds beyond oil: Press cakes and meals supplying global protein requirements. Trends Food Sci. Technol. 2020;100:88–102. doi: 10.1016/j.tifs.2020.03.044.
    1. Jannathulla R., Dayal J.S., Ambasankar K., Muralidhar M. Effect of Aspergillus niger fermented soybean meal and sunflower oil cake on growth, carcass composition and haemolymph indices in Penaeus vannamei Boone, 1931. Aquaculture. 2018;486:1–8. doi: 10.1016/j.aquaculture.2017.12.005.
    1. Zentek J., Knorr F., Mader A. Reducing Waste in Fresh Produce Processing and Households through Use of Waste as Animal Feed. Woodhead Publishing Limited; Cambridge, UK: 2013.
    1. Soetan K.O., Olaiya C.O., Oyewole O.E. The importance of mineral elements for humans, domestic animals and plants: A review. Afr. J. Food Sci. 2010;4:200–222.
    1. Njuguna D.G., Wanyoko J.K., Kinyanjui T., Wachira F.N. Mineral Elements in the Kenyan Tea Seed Oil Cake. Int. J. Res. Chem. Environ. 2013;3:253–261.
    1. Chaves E.S., dos Santos E.J., Araujo R.G.O., Oliveira J.V., Frescura V.L.A., Curtius A.J. Metals and phosphorus determination in vegetable seeds used in the production of biodiesel by ICP OES and ICP-MS. Microchem. J. 2010;96:71–76. doi: 10.1016/j.microc.2010.01.021.
    1. Goiri I., Zubiria I., Benhissi H., Atxaerandio R., Ruiz R., Mandaluniz N., Garcia-Rodriguez A. Use of cold-pressed sunflower cake in the concentrate as a low-input local strategy to modify the milk fatty acid profile of dairy cows. Animals. 2019;9:803. doi: 10.3390/ani9100803.
    1. Zubiria I., Garcia-Rodriguez A., Atxaerandio R., Ruiz R., Benhissi H., Mandaluniz N., Lavín J.L., Abecia L., Goiri I. Effect of feeding cold-pressed sunflower cake on ruminal fermentation, lipid metabolism and bacterial community in dairy cows. Animals. 2019;9:755. doi: 10.3390/ani9100755.
    1. Hansen J.Ø., Skrede A., Mydland L.T., Øverland M. Fractionation of rapeseed meal by milling, sieving and air classification—Effect on crude protein, amino acids and fiber content and digestibility. Anim. Feed Sci. Technol. 2017;230:143–153. doi: 10.1016/j.anifeedsci.2017.05.007.
    1. Chetrariu A., Dabija A. Quality Characteristics of Spelt Pasta Enriched with Spent Grain. Agronomy. 2021;11:1824. doi: 10.3390/agronomy11091824.
    1. Omowaye-Taiwo O.A., Fagbemi T.N., Ogunbusola E.M., Badejo A.A. Effect of germination and fermentation on the proximate composition and functional properties of full-fat and defatted cucumeropsis mannii seed flours. J. Food Sci. Technol. 2015;52:5257–5263. doi: 10.1007/s13197-014-1569-2.
    1. Onipe O.O., Beswa D., Jideani A.I.O. Effect of size reduction on colour, hydration and rheological properties of wheat bran. Food Sci. Technol. 2017;37:389–396. doi: 10.1590/1678-457x.12216.
    1. Coțovanu I., Batariuc A., Mironeasa S. Characterization of quinoa seeds milling fractions and their effect on the rheological properties of wheat flour dough. Appl. Sci. 2020;10:7225. doi: 10.3390/app10207225.
    1. Iyenagbe D.O., Malomo S.A., Idowu A.O., Badejo A.A., Fagbemi T.N. Effects of thermal processing on the nutritional and functional properties of defatted conophor nut (Tetracarpidium conophorum) flour and protein isolates. Food Sci. Nutr. 2017;5:1170–1178. doi: 10.1002/fsn3.508.
    1. Konak M., Çarman K., Aydin C. Physical properties of chick pea seeds. Biosyst. Eng. 2002;82:73–78. doi: 10.1006/bioe.2002.0053.
    1. Dabadé D.S., Jacxsens L., Miclotte L., Abatih E., Devlieghere F., De Meulenaer B. Survey of multiple biogenic amines and correlation to microbiological quality and free amino acids in foods. Food Control. 2021;120:107497. doi: 10.1016/j.foodcont.2020.107497.
    1. Gifty A.G., De Meulenaer B., Olango T.M. Variation in tuber proximate composition, sugars, fatty acids and amino acids of eight Oromo dinich (Plectranthus edulis) landraces experimentally grown in Ethiopia. J. Food Compos. Anal. 2018;67:191–200. doi: 10.1016/j.jfca.2018.01.015.
    1. Dulf F.V. Fatty acids in berry lipids of six sea buckthorn (Hippophae rhamnoides L., subspecies carpatica) cultivars grown in Romania. Chem. Cent. J. 2012;6:106. doi: 10.1186/1752-153X-6-106.

Source: PubMed

Подписаться