Ablation for paroxysmal atrial fibrillation-real-life results from a middle-volume electrophysiology laboratory

Piotr Kulakowski, Agnieszka Sikorska, Roman Piotrowski, Tomasz Kryński, Jakub Baran, Piotr Kulakowski, Agnieszka Sikorska, Roman Piotrowski, Tomasz Kryński, Jakub Baran

Abstract

Introduction: A significant improvement in safety and efficacy of ablation for paroxysmal atrial fibrillation (PAF) has been reported by experienced centers over recent years; however, data from real-life surveys and smaller electrophysiology (EP) laboratories have been less optimistic.

Aim: To asses efficacy of ablation for PAF in a middle-volume EP center over last years.

Methods: Retrospective analysis of 1 year efficacy and safety of ablation for PAF in three cohorts of patients treated between 2011 and 2014 (period I), 2015-2017 (period II), and 2018-2019 (period III).

Results: Of 234 patients (mean age 57 ± 9 years, 165 males), 81 (35%) were treated in period I, 84 (36%) in period II, and 69 (29%) in period III. The overall efficacy of ablation during all analyzed periods was 67%. The overall efficacy of ablation increased over time-from 56% in period I to 68% in period II and 81% in period III. Significant improvement was achieved using radiofrequency ablation (RF) (53% in period I vs 82% in period III, and 55% in period II vs 82% in period III, p = 0.003 and 0.0012, respectively) whereas positive trend in the improvement of cryoballoon efficacy was NS. The rate of peri-procedural complications was 9% and it did not change significantly over time.

Conclusions: This real-life observational study from a medium volume EP center shows that progress in PAF ablation, especially RF, reported by highly-skilled centers, can be reproduced in real life by less experienced operators.

Keywords: Ablation; Atrial fibrillation; Efficacy.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Overall efficacy (%) in analyzed time-periods. Period I vs period II and vs period III, p<0.05
Fig. 2
Fig. 2
Comparison of RF vs CRYO efficacy (%) in analyzed time-periods. For RF: Period I vs period II and vs period III, p<0.01; for CB, NS

References

    1. Haïssaguerre M, Jaïs P, Shah DC, Takahashi A, Hocini M, Quiniou G, Garrigue S, Le Mouroux A, Le Métayer P, Clémenty J. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339:659–666. doi: 10.1056/NEJM199809033391003.
    1. Taghji P, El Haddad M, Phlips T, Wolf M, Knecht S, Vandekerckhove Y, Tavernier R, Nakagawa H, Duytschaever M. Evaluation of a strategy aiming to enclose the pulmonary veins with contiguous and optimized radiofrequency lesions in paroxysmal atrial fibrillation: a pilot study. JACC Clin Electrophysiol. 2018;4:99–108. doi: 10.1016/j.jacep.2017.06.023.
    1. Berte B, Hilfiker G, Moccetti F, Schefer T, Weberndörfer V, Cuculi F, Toggweiler S, Ruschitzka F, Kobza R. Pulmonary vein isolation using ablation index vs. CLOSE protocol with a surround flow ablation catheter. Europace. 2020;22:84–89. doi: 10.1093/europace/euz244.
    1. Arbelo E, Brugada J, Blomström-Lundqvist C, Laroche C, Kautzner J, Pokushalov E, Raatikainen P, Efremidis M, Hindricks G, Barrera A, Maggioni A, Tavazzi L, Dagres N, on the behalf of the ESC-EHRA Atrial Fibrillation Ablation Long-term Registry Investigators Contemporary management of patients undergoing atrial fibrillation ablation: in-hospital and 1-year follow-up findings from the ESC-EHRA atrial fibrillation ablation long-term registry. Eur Heart J. 2017;38:1303–1316. doi: 10.1093/eurheartj/ehw564.
    1. Neyt M, Van Brabandt H, Devos C. The cost-utility of catheter ablation of atrial fibrillation: a systematic review and critical appraisal of economic evaluations. BMC Cardiovasc Disord. 2013;13:78. doi: 10.1186/1471-2261-13-78.
    1. Cheng EP, Liu CF, Yeo I, Markowitz SM, Thomas G, Ip JE, Kim LK, Lerman BB, Cheung JW. Risk of mortality following catheter ablation of atrial fibrillation. J Am Coll Cardiol. 2019;74(18):2254–2264. doi: 10.1016/j.jacc.2019.08.1036.
    1. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary. J Arrhythm. 2017;33:369–409. 10.1016/j.joa.2017.08.001.
    1. Pilichowska-Paszkiet E, Baran J, Sygitowicz G, Sikorska A, Stec S, Kułakowski P, Zaborska B. Noninvasive assessment of left atrial fibrosis. Correlation between echocardiography, biomarkers, and electroanatomical mapping. Echocardiography. 2018;35:1326–1334. doi: 10.1111/echo.14043.
    1. Sikorska A, Pilichowska-Paszkiet E, Zuk A, Piotrowski R, Kryński T, Baran J, Zaborska B, Kułakowski P. Acceleration of sinus rhythm following ablation for atrial fibrillation: a simple parameter predicting ablation efficacy. Kardiol Pol. 2019;77:960–965. doi: 10.33963/KP.14950.
    1. Straube F, Dorwarth U, Schmidt M, Wankerl M, Ebersberger U, Hoffman E. Compariosn of the first and second cryoballon: high-volume single-venter safety and efficacy analysis. Circ Arrhythm Electrophysiol. 2014;7:293–299. doi: 10.1161/CIRCEP.113.000899.
    1. Miyazaki S, Kajiyama T, Watanabe T, Nakamura H, Hachiya H, Tada H, Iesaka Y, Miyazaki S, et al. Predictors of durable pulmonary vein isolation after second-generation cryoballoon ablation with a single short freeze strategy - different criteria for the best freeze of the 4 individual PVs. Int J Cardiol. 2020;301:96–102. doi: 10.1016/j.ijcard.2019.11.089.
    1. Sairaku A, Nakano Y, Oda N, Makita Y, Kajihara K, Tokuyama T, Kihara Y. Learning curve for ablation of atrial fibrillation in medium-volume centers. J Cardiol. 2011;57:263–268. doi: 10.1016/j.jjcc.2011.01.005.
    1. Velagić V, de Asmundis C, Mugnai G, Hünük B, Hacioğlu E, Ströker E, Moran D, Ruggiero D, Poelaert J, Verborgh C, Umbrain V, Paparella G, Beckers S, Brugada P, Chierchia GB. Learning curve using the second-generation cryoballoon ablation. J Cardiovasc Med (Hagerstown) 2017;18:518–527. doi: 10.2459/JCM.0000000000000493.
    1. Landolina M, Arena G, Iacopino S, et al. Center experience does not influence long-term outcome and peri-procedural complications after cryoballoon ablation of paroxysmal atrial fibrillation: data on 860 patients from the real-world multicenter observational project. Int J Cardiol. 2018;272:130–136. doi: 10.1016/j.ijcard.2018.07.051.
    1. Baran J, Piotrowski R, Sikorska A, Kowalik I, Kryński T, Stec S, Kułakowski P. Impact of pulmonary vein ostia anatomy on efficacy of cryoballoon ablation for atrial fibrillation. Heart Beat J. 2016;1:65–70. doi: 10.24255/hbj/68162.
    1. Rubesch-Kütemeyer V, Molatta S, Vogt J, Gutleben KJ, Horstkotte D, Nölker G, Rubesch-Kütemeyer V, et al. Reduction of radiation exposure in cryoballoon ablation procedures: a single-centre study applying intracardiac echocardiography and other radioprotective measures. Europace. 2017;19(6):947–953. doi: 10.1093/europace/euw139.
    1. Middeldorp ME, Pathak RK, Meredith M, Mehta AB, Elliott AD, Mahajan R, Twomey D, Gallagher C, Hendriks JML, Linz D, McEvoy RD, Abhayaratna WP, Kalman JM, Lau DH, Sanders P. PREVEntion and regReSsive Effect of weight-loss and risk factor modification on atrial fibrillation: the REVERSE-AF study. Europace. 2018;20:1929–1935. doi: 10.1093/europace/euy117.
    1. Baran J, Lewandowski P, Smarż K, Sikorska A, Zaborska B, Kułakowski P. Acute hemodynamic and tissue effects of cryoballoon ablation on pulmonary vessels: the IVUS-Cryo study. J Am Heart Assoc. 2017;6(6):e005988. doi: 10.1161/JAHA.117.005988.
    1. Futyma P, Ciąpała K, Sander J, Głuszczyk R, Futyma M, Kułakowski P. Ultrasound-guided venous access facilitated by the Valsalva maneuver during invasive electrophysiological procedures. Kardiol Pol. 2020;78(3):235–239. doi: 10.33963/KP.15188.

Source: PubMed

Подписаться