Cannabis and Its Secondary Metabolites: Their Use as Therapeutic Drugs, Toxicological Aspects, and Analytical Determination

Joana Gonçalves, Tiago Rosado, Sofia Soares, Ana Y Simão, Débora Caramelo, Ângelo Luís, Nicolás Fernández, Mário Barroso, Eugenia Gallardo, Ana Paula Duarte, Joana Gonçalves, Tiago Rosado, Sofia Soares, Ana Y Simão, Débora Caramelo, Ângelo Luís, Nicolás Fernández, Mário Barroso, Eugenia Gallardo, Ana Paula Duarte

Abstract

Although the medicinal properties of Cannabis species have been known for centuries, the interest on its main active secondary metabolites as therapeutic alternatives for several pathologies has grown in recent years. This potential use has been a revolution worldwide concerning public health, production, use and sale of cannabis, and has led inclusively to legislation changes in some countries. The scientific advances and concerns of the scientific community have allowed a better understanding of cannabis derivatives as pharmacological options in several conditions, such as appetite stimulation, pain treatment, skin pathologies, anticonvulsant therapy, neurodegenerative diseases, and infectious diseases. However, there is some controversy regarding the legal and ethical implications of their use and routes of administration, also concerning the adverse health consequences and deaths attributed to marijuana consumption, and these represent some of the complexities associated with the use of these compounds as therapeutic drugs. This review comprehends the main secondary metabolites of Cannabis, approaching their therapeutic potential and applications, as well as their potential risks, in order to differentiate the consumption as recreational drugs. There will be also a focus on the analytical methodologies for their analysis, in order to aid health professionals and toxicologists in cases where these compounds are present.

Keywords: analytical determination; cannabinoids; cannabis; legalization; therapeutics; toxicology.

Conflict of interest statement

The authors declare that they have no conflict of interest or financial involvement regarding this submission.

Figures

Figure 1
Figure 1
Some natural cannabinoids from the cannabis plant.
Figure 2
Figure 2
Main metabolites of THC.

References

    1. Verpoorte R., Contin A., Memelink J. Biotechnology for the production of plant secondary metabolites. Phytochem. Rev. 2002;1:13–25. doi: 10.1023/A:1015871916833.
    1. Sirikantaramas S., Taura F., Morimoto S., Shoyama Y. Recent Advances in Cannabis sativa Research: Biosynthetic Studies and Its Potential in Biotechnology. Curr. Pharm. Biotechnol. 2007;8:237–243. doi: 10.2174/138920107781387456.
    1. Cohen K., Weinstein A. The effects of cannabinoids on executive functions: Evidence from cannabis and synthetic cannabinoids—A systematic review. Brain Sci. 2018;8:40. doi: 10.3390/brainsci8030040.
    1. Solymosi K., Kofalvi A. Cannabis: A Treasure Trove or Pandora’s Box? Mini Rev. Med. Chem. 2017;17:1223–1291. doi: 10.2174/1389557516666161004162133.
    1. ElSohly M.A., Radwan M.M., Gul W., Chandra S., Galal A. Phytochemistry of Cannabis sativa L. Prog. Chem. Org. Nat. Prod. 2017;103:1–36.
    1. Andre C.M., Hausman J.-F., Guerriero G. Cannabis sativa: The Plant of the Thousand and One Molecules. Front. Plant Sci. 2016;7:19. doi: 10.3389/fpls.2016.00019.
    1. Bonini S.A., Premoli M., Tambaro S., Kumar A., Maccarinelli G., Memo M., Mastinu A. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. J. Ethnopharmacol. 2018;227:300–315. doi: 10.1016/j.jep.2018.09.004.
    1. Brenneisen R. Chemistry and Analysis of Phytocannabinoids and Other Cannabis Constituents—Marijuana and the Cannabinoids. In: ElSohly M.A., editor. Marijuana and the Cannabinoids. Humana Press; Totowa, NJ, USA: 2007. pp. 17–49.
    1. El Sohly M.A., editor. Marijuana and the Cannabinoids. Humana Press; Totowa, NJ, USA: 2017.
    1. Guo T.T., Zhang J.C., Zhang H., Liu Q.C., Zhao Y., Hou Y.F., Bai L., Zhang L., Liu X.Q., Liu X.Y., et al. Bioactive spirans and other constituents from the leaves of Cannabis sativa f. sativa. J. Asian Nat. Prod. Res. 2017;19:793–802. doi: 10.1080/10286020.2016.1248947.
    1. Appendino G., Chianese G., Taglialatela-Scafati O. Cannabinoids: Occurrence and Medicinal Chemistry. Curr. Med. Chem. 2011;18:1085–1099. doi: 10.2174/092986711794940888.
    1. Grof C.P.L. Cannabis, from plant to pill. Br. J. Clin. Pharmacol. 2018;84:2463–2467. doi: 10.1111/bcp.13618.
    1. Lucas C.J., Galettis P., Schneider J. The pharmacokinetics and the pharmacodynamics of cannabinoids. Br. J. Clin. Pharmacol. 2018;84:2477–2482. doi: 10.1111/bcp.13710.
    1. Newmeyer M.N., Swortwood M.J., Barnes A.J., Abulseoud O.A., Scheidweiler K.B., Huestis M.A. Free and Glucuronide Whole Blood Cannabinoids’ Pharmacokinetics after Controlled Smoked, Vaporized, and Oral Cannabis Administration in Frequent and Occasional Cannabis Users: Identification of Recent Cannabis Intake. Clin. Chem. 2016;62:1579–1592. doi: 10.1373/clinchem.2016.263475.
    1. Solowij N., Broyd S.J., van Hell H.H., Hazekamp A. A protocol for the delivery of cannabidiol (CBD) and combined CBD and ∆9-tetrahydrocannabinol (THC) by vaporisation. BMC Pharmacol. Toxicol. 2014;15:58. doi: 10.1186/2050-6511-15-58.
    1. Johansson E., Norén K., Sjövall J., Halldin M.M. Determination of Δ1-tetrahydrocannabinol in human fat biopsies from marihuana users by gas chromatography-mass spectrometry. Biomed. Chromatogr. 1989;3:35–38. doi: 10.1002/bmc.1130030109.
    1. Rosado T., Gonçalves J., Luís Â., Malaca S., Soares S., Vieira D.N., Barroso M., Gallardo E. Synthetic cannabinoids in biological specimens: A review of current analytical methods and sample preparation techniques. Bioanalysis. 2018;10:1609–1623. doi: 10.4155/bio-2018-0150.
    1. Huestis M.A. Pharmacokinetics and Metabolism of the Plant Cannabinoids, Δ9-Tetrahydrocannibinol, Cannabidiol and Cannabinol. In: Pertwee R.G., editor. Cannabinoids. Springer; Berlin/Heidelberg, Germany: 2005. pp. 657–690.
    1. Toennes S.W., Ramaekers J.G., Theunissen E.L., Moeller M.R., Kauert G.F. Comparison of cannabinoid pharmacokinetic properties in occasional and heavy users smoking a marijuana or placebo joint. J. Anal. Toxicol. 2008;32:470–477. doi: 10.1093/jat/32.7.470.
    1. Grotenhermen F. Pharmacokinetics and Pharmacodynamics of Cannabinoids. Clin. Pharmacokinet. 2003;42:327–360. doi: 10.2165/00003088-200342040-00003.
    1. Ohlsson A., Lindgren J.E., Andersson S., Agurell S., Gillespie H., Hollister L.E. Single-dose kinetics of deuterium-labelled cannabidiol in man after smoking and intravenous administration. Biomed. Environ. Mass Spectrom. 1986;13:77–83. doi: 10.1002/bms.1200130206.
    1. Huestis M.A., Henningfield J.E., Cone E.J. Blood cannabinoids. I. Absorption of THC and formation of 11-OH-THC and THCCOOH during and after smoking marijuana. J. Anal. Toxicol. 1992;16:276–282. doi: 10.1093/jat/16.5.276.
    1. Kauert G.F., Ramaekers J.G., Schneider E., Moeller M.R., Toennes S.W. Pharmacokinetic Properties of 9-Tetrahydrocannabinol in Serum and Oral Fluid. J. Anal. Toxicol. 2007;31:288–293. doi: 10.1093/jat/31.5.288.
    1. Martin J.H., Schneider J., Lucas C.J., Galettis P. Exogenous Cannabinoid Efficacy: Merely a Pharmacokinetic Interaction? Clin. Pharmacokinet. 2018;57:539–545. doi: 10.1007/s40262-017-0599-0.
    1. Goullé J.-P., Saussereau E., Lacroix C. Pharmacocinétique du delta-9-tétrahydrocannabinol (THC) Ann. Pharm. Françaises. 2008;66:232–244. doi: 10.1016/j.pharma.2008.07.006.
    1. Lindgren J.E., Ohlsson A., Agurell S., Hollister L., Gillespie H. Clinical effects and plasma levels of delta 9-tetrahydrocannabinol (delta 9-THC) in heavy and light users of cannabis. Psychopharmacology. 1981;74:208–212. doi: 10.1007/BF00427095.
    1. Azorlosa J.L., Heishman S.J., Stitzer M.L., Mahaffey J.M. Marijuana smoking: Effect of varying delta 9-tetrahydrocannabinol content and number of puffs. J. Pharmacol. Exp. Ther. 1992;261:114–122.
    1. Agurell S., Carlsson S., Lindgren J.E., Ohlsson A., Gillespie H., Hollister L. Interactions of delta 1-tetrahydrocannabinol with cannabinol and cannabidiol following oral administration in man. Assay of cannabinol and cannabidiol by mass fragmentography. Experientia. 1981;37:1090–1092. doi: 10.1007/BF02085029.
    1. Eichler M., Spinedi L., Unfer-Grauwiler S., Bodmer M., Surber C., Luedi M., Drewe J. Heat Exposure of Cannabis sativa Extracts Affects the Pharmacokinetic and Metabolic Profile in Healthy Male Subjects. Planta Med. 2012;78:686–691. doi: 10.1055/s-0031-1298334.
    1. Grant K.S., Petroff R., Isoherranen N., Stella N., Burbacher T.M. Cannabis use during pregnancy: Pharmacokinetics and effects on child development. Pharmacol. Ther. 2018;182:133–151. doi: 10.1016/j.pharmthera.2017.08.014.
    1. Ohlsson A., Lindgren J.-E., Wahlen A., Agurell S., Hollister L.E., Gillespie H.K. Plasma delta-9-tetrahydrocannabinol concentrations and clinical effects after oral and intravenous administration and smoking. Clin. Pharmacol. Ther. 1980;28:409–416. doi: 10.1038/clpt.1980.181.
    1. Wall M.E., Sadler B.M., Brine D., Taylor H., Perez-Reyes M. Metabolism, disposition, and kinetics of delta-9-tetrahydrocannabinol in men and women. Clin. Pharmacol. Ther. 1983;34:352–363. doi: 10.1038/clpt.1983.179.
    1. Garrett E.R., Hunt C.A. Physicochemical Properties, Solubility, and Protein Binding of Δ9-Tetrahydrocannabinol. J. Pharm. Sci. 1974;63:1056–1064. doi: 10.1002/jps.2600630705.
    1. Law B., Mason P.A., Moffat A.C., Gleadle R.I., King L.J. Forensic aspects of the metabolism and excretion of cannabinoids following oral ingestion of cannabis resin. J. Pharm. Pharmacol. 1984;36:289–294. doi: 10.1111/j.2042-7158.1984.tb04376.x.
    1. Frytak S., Moertel C.G., Rubin J. Metabolic studies of delta-9-tetrahydrocannabinol in cancer patients. Cancer Treat. Rep. 1984;68:1427–1431.
    1. Ahmed A.I.A., van den Elsen G.A.H., Colbers A., Kramers C., Burger D.M., van der Marck M.A., Olde Rikkert M.G.M. Safety, pharmacodynamics, and pharmacokinetics of multiple oral doses of delta-9-tetrahydrocannabinol in older persons with dementia. Psychopharmacology. 2015;232:2587–2595. doi: 10.1007/s00213-015-3889-y.
    1. Schwilke E.W., Schwope D.M., Karschner E.L., Lowe R.H., Darwin W.D., Kelly D.L., Goodwin R.S., Gorelick D.A., Huestis M.A. Delta9-tetrahydrocannabinol (THC), 11-hydroxy-THC, and 11-nor-9-carboxy-THC plasma pharmacokinetics during and after continuous high-dose oral THC. Clin. Chem. 2009;55:2180–2189. doi: 10.1373/clinchem.2008.122119.
    1. Leuschner J.T., Harvey D.J., Bullingham R.E., Paton W.D. Pharmacokinetics of delta 9-tetrahydrocannabinol in rabbits following single or multiple intravenous doses. Drug Metab. Dispos. 1986;14:230–238.
    1. Challapalli P.V., Stinchcomb A.L. In vitro experiment optimization for measuring tetrahydrocannabinol skin permeation. Int. J. Pharm. 2002;241:329–339. doi: 10.1016/S0378-5173(02)00262-4.
    1. Stinchcomb A.L., Valiveti S., Hammell D.C., Ramsey D.R. Human skin permeation of Δ8-tetrahydrocannabinol, cannabidiol and cannabinol. J. Pharm. Pharmacol. 2004;56:291–297. doi: 10.1211/0022357022791.
    1. Valiveti S., Hammell D.C., Earles D.C., Stinchcomb A.L. In vitro/in vivo correlation studies for transdermal Δ8-THC development. J. Pharm. Sci. 2004;93:1154–1164. doi: 10.1002/jps.20036.
    1. Touitou E., Fabin B., Dany S., Almog S. Transdermal delivery of tetrahydrocannabinol. Int. J. Pharm. 1988;43:9–15. doi: 10.1016/0378-5173(88)90052-X.
    1. Elsohly M.A., Stanford D.F., Harland E.C., Hikal A.H., Walker L.A., Little T.L., Rider J.N., Jones A.B. Rectal Bioavailability of Δ-9-Tetrahydrocannabinol from the Hemisuccinate Ester in Monkeys. J. Pharm. Sci. 1991;80:942–945. doi: 10.1002/jps.2600801008.
    1. Brenneisen R., Egli A., Elsohly M.A., Henn V., Spiess Y. The effect of orally and rectally administered delta 9-tetrahydrocannabinol on spasticity: A pilot study with 2 patients. Int. J. Clin. Pharmacol. Ther. 1996;34:446–452.
    1. Chiang C.W., Barnett G., Brine D. Systemic absorption of delta 9-tetrahydrocannabinol after ophthalmic administration to the rabbit. J. Pharm. Sci. 1983;72:136–138. doi: 10.1002/jps.2600720210.
    1. Lucas C., Galettis P., Song S., Solowij N., Reuter S., Schneider J., Martin J. Cannabinoid Disposition After Human Intraperitoneal Use: An Insight Into Intraperitoneal Pharmacokinetic Properties in Metastatic Cancer. Clin. Ther. 2018;40:1442–1447. doi: 10.1016/j.clinthera.2017.12.008.
    1. Gaston T.E., Friedman D. Pharmacology of cannabinoids in the treatment of epilepsy. Epilepsy Behav. 2017;70:313–318. doi: 10.1016/j.yebeh.2016.11.016.
    1. Hunt C., Jones R. Tolerance and disposition of tetrahydrocannabinol in man. J. Pharmacol. Exp. Ther. 1980;215:35–44.
    1. Huestis M.A. Human Cannabinoid Pharmacokinetics. Chem. Biodivers. 2007;4:1770–1804. doi: 10.1002/cbdv.200790152.
    1. Blackard C., Tennes K. Human Placental Transfer of Cannabinoids. N. Engl. J. Med. 1984;311:797.
    1. Perez-Reyes M., Wall M.E. Presence of Δ9-Tetrahydrocannabinol in Human Milk. N. Engl. J. Med. 1982;307:819–820.
    1. Agurell S., Halldin M., Lindgren J.E., Ohlsson A., Widman M., Gillespie H., Hollister L. Pharmacokinetics and metabolism of delta 1-tetrahydrocannabinol and other cannabinoids with emphasis on man. Pharmacol. Rev. 1986;38:21–43.
    1. Matsunaga T., Iwawaki Y., Watanabe K., Yamamoto I., Kageyama T., Yoshimura H. Metabolism of delta 9-tetrahydrocannabinol by cytochrome P450 isozymes purified from hepatic microsomes of monkeys. Life Sci. 1995;56:2089–2095. doi: 10.1016/0024-3205(95)00193-A.
    1. Narimatsu S., Watanabe K., Matsunaga T., Yamamoto I., Imaoka S., Funae Y., Yoshimura H. Cytochrome P-450 isozymes involved in the oxidative metabolism of delta 9-tetrahydrocannabinol by liver microsomes of adult female rats. Drug Metab. Dispos. 1992;20:79–83.
    1. Watanabe K., Matsunaga T., Yamamoto I., Funae Y., Yoshimura H. Involvement of CYP2C in the metabolism of cannabinoids by human hepatic microsomes from an old woman. Biol. Pharm. Bull. 1995;18:1138–1141. doi: 10.1248/bpb.18.1138.
    1. Widman M., Halldin M., Martin B. In vitro metabolism of tetrahydrocannabinol by rhesus monkey liver and human liver. Adv. Biosci. 1979;22–23:101–103.
    1. Huestis M.A., Cone E.J. Differentiating new marijuana use from residual drug excretion in occasional marijuana users. J. Anal. Toxicol. 1998;22:445–454. doi: 10.1093/jat/22.6.445.
    1. Zendulka O., Dovrtělová G., Nosková K., Turjap M., Šulcová A., Hanuš L., Juřica J. Cannabinoids and Cytochrome P450 Interactions. Curr. Drug Metab. 2016;17:206–226. doi: 10.2174/1389200217666151210142051.
    1. Harvey D.J., Martin B.R., Paton W.D.M. Identification and measurement of cannabinoids and their in vivo metabolites in liver by gas chromatography-mass spectrometry. Marihuana Biol. Eff. 1979:45–62. doi: 10.1016/B978-0-08-023759-6.50008-1.
    1. Consroe P., Laguna J., Allender J., Snider S., Stern L., Sandyk R., Kennedy K., Schram K. Controlled clinical trial of cannabidiol in Huntington’s disease. Pharmacol. Biochem. Behav. 1991;40:701–708. doi: 10.1016/0091-3057(91)90386-G.
    1. Maurer H.H., Sauer C., Theobald D.S. Toxicokinetics of Drugs of Abuse: Current Knowledge of the Isoenzymes Involved in the Human Metabolism of Tetrahydrocannabinol, Cocaine, Heroin, Morphine, and Codeine. Ther. Drug Monit. 2006;28:447–453. doi: 10.1097/01.ftd.0000211812.27558.6e.
    1. Halldin M.M., Widman M., Bahr C.V., Lindgren J.E., Martin B.R. Identification of in vitro metabolites of delta 1-tetrahydrocannabinol formed by human livers. Drug Metab. Dispos. 1982;10:297–301.
    1. Harvey D.J. Absorption, Distribution, and Biotransformation of the Cannabinoids. In: Nahas G.G., Sutin K.M., Harvey D., Agurell S., Pace N., Cancro R., editors. Marihuana and Medicine. Humana Press; Totowa, NJ, USA: 1999. pp. 91–103.
    1. Kelly P., Jones R.T. Metabolism of tetrahydrocannabinol in frequent and infrequent marijuana users. J. Anal. Toxicol. 1992;16:228–235. doi: 10.1093/jat/16.4.228.
    1. Alburges M.E., Peat M.A. Profiles of Δ9-Tetrahydrocannabinol Metabolites in Urine of Marijuana Users: Preliminary Observations by High Performance Liquid Chromatography-Radioimmunoassay. J. Forensic Sci. 1986;31:12302J. doi: 10.1520/JFS12302J.
    1. Lu H.C., Mackie K. An Introduction to the Endogenous Cannabinoid System. Biol. Psychiatry. 2016;79:516–525. doi: 10.1016/j.biopsych.2015.07.028.
    1. Pertwee R.G. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol. Ther. 1997;74:129–180. doi: 10.1016/S0163-7258(97)82001-3.
    1. Pertwee R.G. Pharmacology of cannabinoid receptor ligands. Curr. Med. Chem. 1999;6:635–664.
    1. Laprairie R.B., Bagher A.M., Kelly M.E.M., Denovan-Wright E.M. Cannabidiol is a negative allosteric modulator of the cannabinoid CB 1 receptor. Br. J. Pharmacol. 2015;172:4790–4805. doi: 10.1111/bph.13250.
    1. McCarberg B.H., Barkin R.L. The Future of Cannabinoids as Analgesic Agents: A Pharmacologic, Pharmacokinetic, and Pharmacodynamic Overview. Am. J. Ther. 2007;14:475–483. doi: 10.1097/MJT.0b013e3180a5e581.
    1. Di Marzo L., De Petrocellis V. Endocannabinoids as Regulators of Transient Receptor Potential (TRP)Channels: A Further Opportunity to Develop New Endocannabinoid-Based Therapeutic Drugs. Curr. Med. Chem. 2010;17:1430–1449. doi: 10.2174/092986710790980078.
    1. Zygmunt P.M., Petersson J., Andersson D.A., Chuang H., Sørgård M., Di Marzo V., Julius D., Högestätt E.D. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature. 1999;400:452. doi: 10.1038/22761.
    1. O’Sullivan S.E. An update on PPAR activation by cannabinoids. Br. J. Pharmacol. 2016;173:1899–1910. doi: 10.1111/bph.13497.
    1. Ashton C.H. Adverse effects of cannabis and cannabinoids. Br. J. Anaesth. 1999;83:637–649. doi: 10.1093/bja/83.4.637.
    1. Hall W. The health and psychological effects of cannabis use. Curr. Issues Crim. Just. 1994;6:208. doi: 10.1080/10345329.1994.12036647.
    1. Degenhardt L., Hall W. Extent of illicit drug use and dependence, and their contribution to the global burden of disease. Lancet. 2012;379:55–70. doi: 10.1016/S0140-6736(11)61138-0.
    1. Ameri A. The effects of cannabinoids on the brain. Prog. Neurobiol. 1999;58:315–348. doi: 10.1016/S0301-0082(98)00087-2.
    1. Fergusson D.M., Horwood L.J., Swain-Campbell N.R. Cannabis dependence and psychotic symptoms in young people. Psychol. Med. 2003;33:15–21. doi: 10.1017/S0033291702006402.
    1. De Aquino J.P., Sherif M., Radhakrishnan R., Cahill J.D., Ranganathan M., D’Souza D.C. The Psychiatric Consequences of Cannabinoids. Clin. Ther. 2018;40:1448–1456. doi: 10.1016/j.clinthera.2018.03.013.
    1. Swift W., Hall W., Teesson M. Characteristics of DSM-IV and ICD-10 cannabis dependence among Australian adults: Results from the National Survey of Mental Health and Wellbeing. Drug Alcohol Depend. 2001;63:147–153. doi: 10.1016/S0376-8716(00)00197-6.
    1. Swift W., Hall W., Didcott P., Reilly D. Patterns and correlates of cannabis dependence among long-term users in an Australian rural area. Addiction. 1998;93:1149–1160. doi: 10.1046/j.1360-0443.1998.93811493.x.
    1. Anthony J.C., Warner L.A., Kessler R.C. Comparative Epidemiology of Dependence on Tobacco, Alcohol, Controlled Substances, and Inhalants: Basic Findings From the National Comorbidity Survey. Exp. Clin. Psychopharmacol. 1994;2:244–268. doi: 10.1037/1064-1297.2.3.244.
    1. Solowij N. Do cognitive impairments recover following cessation of cannabis use? Life Sci. 1995;56:2119–2126. doi: 10.1016/0024-3205(95)00197-E.
    1. Pope H.G., Jr., Gruber A.J., Hudson J.I., Huestis M.A., Yurgelun-Todd D. Cognitive Measures in Long-Term Cannabis Users. J. Clin. Pharmacol. 2002;42:41S–47S. doi: 10.1002/j.1552-4604.2002.tb06002.x.
    1. Budney A.J., Higgins S.T., Radonovich K.J., Novy P.L. Adding voucher-based incentives to coping skills and motivational enhancement improves outcomes during treatment for marijuana dependence. J. Consult. Clin. Psychol. 2000;68:1051–1061. doi: 10.1037/0022-006X.68.6.1051.
    1. European Monitoring Centre for Drugs and Drug Adiction Cannabis Legislation in Europe. [(accessed on 22 January 2019)]; Available online: .
    1. European Monitoring Centre for Drugs and Drug Adiction 2018 European Drug Report. [(accessed on 11 January 2019)]; Available online: .
    1. Serviço de intervenção nos comportamentos aditivos e nas dependências Relatório Anual 2016 A Situação do País em Matéria de Drogas e Toxicodependências. [(accessed on 17 January 2019)]; Available online: .
    1. European Monitoring Centre for Drugs and Drug Addiction ESPAD Report 2015: Results from the European School Survey Project on Alcohol and Other Drugs. [(accessed on 17 January 2019)]; Available online: .
    1. United Nations The Single Convention on Narcotic Drugs. [(accessed on 18 January 2019)]; Available online: .
    1. Powell B. The 7 Countries With The Strictest Weed Laws. [(accessed on 17 January 2019)]; Available online: .
    1. European Monitoring Centre for Drugs and Addiction Medical Use of Cannabis and Cannabinoids: Questions and Answers for Policymaking. [(accessed on 22 January 2019)]; Available online: .
    1. National Alliance for Model State Drug Laws Use of Marijuana for Medicinal Purposes: Map of State Laws. [(accessed on 21 January 2019)]; Available online: .
    1. National Conference of State Legislatures Marijuana Overview. [(accessed on 18 January 2019)]; Available online: .
    1. Bigand T., Anderson C.L., Roberts M.L., Shaw M.R., Wilson M. Benefits and Adverse Effects of Cannabis use among Adults with Persistent Pain. Nurs. Outlook. 2018 doi: 10.1016/j.outlook.2018.12.014.
    1. Armour M., Sinclair J., Chalmers K.J., Smith C.A. Self-management strategies amongst Australian women with endometriosis: A national online survey. BMC Complement. Altern. Med. 2019;19:17–24. doi: 10.1186/s12906-019-2431-x.
    1. Fitzcharles M.-A., Zahedi Niaki O., Hauser W., Hazlewood G., the Canadian Rheumatology Association Position Statement: A Pragmatic Approach for Medical Cannabis and Patients with Rheumatic Diseases. J. Rheumatol. 2019;46:181120. doi: 10.3899/jrheum.181120.
    1. Palace Z.J., Reingold D.A. Medical Cannabis in the Skilled Nursing Facility: A Novel Approach to Improving Symptom Management and Quality of Life. J. Am. Med. Dir. Assoc. 2019;20:94–98. doi: 10.1016/j.jamda.2018.11.013.
    1. Shin S., Mitchell C., Mannion K., Smolyn J., Meghani S.H. An Integrated Review of Cannabis and Cannabinoids in Adult Oncologic Pain Management. Pain Manag. Nurs. 2018 doi: 10.1016/j.pmn.2018.09.006.
    1. Campbell G., Stockings E., Nielsen S. Understanding the evidence for medical cannabis and cannabis-based medicines for the treatment of chronic non-cancer pain. Eur. Arch. Psychiatry Clin. Neurosci. 2019 doi: 10.1007/s00406-018-0960-9.
    1. Perron B.E., Holt K.R., Yeagley E., Ilgen M. Mental health functioning and severity of cannabis withdrawal among medical cannabis users with chronic pain. Drug Alcohol Depend. 2019;194:401–409. doi: 10.1016/j.drugalcdep.2018.09.029.
    1. National Academies of Sciences Engineering and Medicine . The Health Effects of Cannabis and Cannabinoids: The Current State of Evidence and Recommendations for Research. National Academies Press; Washington, DC, USA: 2017. Therapeutic Effects of Cannabis and Cannabinoids; pp. 94–97.
    1. Whiting P.F., Wolff R.F., Deshpande S., Di Nisio M., Duffy S., Hernandez A.V., Keurentjes J.C., Lang S., Misso K., Ryder S., et al. Cannabinoids for Medical Use: A Systematic Review and Meta-analysis. J. Am. Med. Assoc. 2015;313:2456–2473. doi: 10.1001/jama.2015.6358.
    1. Habib G., Artul S. Medical Cannabis for the Treatment of Fibromyalgia. JCR J. Clin. Rheumatol. 2018;24:255–258. doi: 10.1097/RHU.0000000000000702.
    1. Habib G., Avisar I. The Consumption of Cannabis by Fibromyalgia Patients in Israel. Pain Res. Treat. 2018;2018:7829427. doi: 10.1155/2018/7829427.
    1. van de Donk T., Niesters M., Kowal M.A., Olofsen E., Dahan A., van Velzen M. An experimental randomized study on the analgesic effects of pharmaceutical-grade cannabis in chronic pain patients with fibromyalgia. Pain. 2018 doi: 10.1097/j.pain.0000000000001464. in press.
    1. Yassin M., Robinson D. Effect of Adding Medical Cannabis Treatment (MCT) to Analgesic Treatment in Patients with Low Back Pain related to Fibromyalgia: An Observational Cross-over Single Center Study. Int. J. Anesthesiol. Pain Med. 2017;3:1–8. doi: 10.21767/2471-982X.100016.
    1. Koppel B.S., Brust J.C.M., Fife T., Bronstein J., Youssof S., Gronseth G., Gloss D. Systematic review: Efficacy and safety of medical marijuana in selected neurologic disorders. Neurology. 2014;82:1556–1563. doi: 10.1212/WNL.0000000000000363.
    1. Klumpers L.E., Thacker D.L. A Brief Background on Cannabis: From Plant to Medical Indications. J. AOAC Int. 2018 doi: 10.5740/jaoacint.18-0208.
    1. Jett J., Stone E., Warren G., Cummings K.M. Cannabis Use, Lung Cancer, and Related Issues. J. Thorac. Oncol. 2018;13:480–487. doi: 10.1016/j.jtho.2017.12.013.
    1. Johnson J.R., Burnell-Nugent M., Lossignol D., Ganae-Motan E.D., Potts R., Fallon M.T. Multicenter, Double-Blind, Randomized, Placebo-Controlled, Parallel-Group Study of the Efficacy, Safety, and Tolerability of THC:CBD Extract and THC Extract in Patients with Intractable Cancer-Related Pain. J. Pain Symptom Manag. 2010;39:167–179. doi: 10.1016/j.jpainsymman.2009.06.008.
    1. Portenoy R.K., Ganae-Motan E.D., Allende S., Yanagihara R., Shaiova L., Weinstein S., McQuade R., Wright S., Fallon M.T. Nabiximols for opioid-treated cancer patients with poorly-controlled chronic pain: A randomized, placebo-controlled, graded-dose trial. J. Pain. 2012;13:438–449. doi: 10.1016/j.jpain.2012.01.003.
    1. Fiest K.M., Sauro K.M., Wiebe S., Patten S.B., Kwon C.-S., Dykeman J., Pringsheim T., Lorenzetti D.L., Jetté N. Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology. 2017;88:296–303. doi: 10.1212/WNL.0000000000003509.
    1. Schuele S.U., Lüders H.O. Intractable epilepsy: Management and therapeutic alternatives. Lancet Neurol. 2008;7:514–524. doi: 10.1016/S1474-4422(08)70108-X.
    1. Brodie M.J., Barry S.J.E., Bamagous G.A., Norrie J.D., Kwan P. Patterns of treatment response in newly diagnosed epilepsy. Neurology. 2012;78:1548–1554. doi: 10.1212/WNL.0b013e3182563b19.
    1. Carlini E.A., Leite J.R., Tannhauser M., Berardi A.C. Cannabidiol and Cannabis sativa extract protect mice and rats against convulsive agents. J. Pharm. Pharmacol. 1973;25:664–665. doi: 10.1111/j.2042-7158.1973.tb10660.x.
    1. Consroe P., Wolkin A. Cannabidiol–antiepileptic drug comparisons and interactions in experimentally induced seizures in rats. J. Pharmacol. Exp. Ther. 1977;201:26–32.
    1. Consroe P., Benedito M.A.C., Leite J.R., Carlini E.A., Mechoulam R. Effects of cannabidiol on behavioral seizures caused by convulsant drugs or current in mice. Eur. J. Pharmacol. 1982;83:293–298. doi: 10.1016/0014-2999(82)90264-3.
    1. Wallace M.J., Wiley J.L., Martin B.R., DeLorenzo R.J. Assessment of the role of CB1 receptors in cannabinoid anticonvulsant effects. Eur. J. Pharmacol. 2001;428:51–57. doi: 10.1016/S0014-2999(01)01243-2.
    1. Jones N., Hill T., Stott C., Wright S. Assessment of the anticonvulsant effects and tolerability of GW Pharmaceuticals’ cannabidiol in the anticonvulsant screening program; Proceedings of the American Epilepsy Society Annual Meeting; Philadelphia, PA, USA. 3–7 December 2015; pp. 4–8.
    1. Jones N.A., Hill A.J., Smith I., Bevan S.A., Williams C.M., Whalley B.J., Stephens G.J. Cannabidiol displays antiepileptiform and antiseizure properties in vitro and in vivo. J. Pharmacol. Exp. Ther. 2010;332:569–577. doi: 10.1124/jpet.109.159145.
    1. Jones N.A., Glyn S.E., Akiyama S., Hill T.D.M., Hill A.J., Weston S.E., Burnett M.D.A., Yamasaki Y., Stephens G.J., Whalley B.J., et al. Cannabidiol exerts anti-convulsant effects in animal models of temporal lobe and partial seizures. Seizure. 2012;21:344–352. doi: 10.1016/j.seizure.2012.03.001.
    1. Thomas A., Baillie G.L., Phillips A.M., Razdan R.K., Ross R.A., Pertwee R.G. Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro. Br. J. Pharmacol. 2007;150:613–623. doi: 10.1038/sj.bjp.0707133.
    1. Puffenbarger R.A., Boothe A.C., Cabral G.A. Cannabinoids inhibit LPS-inducible cytokine mRNA expression in rat microglial cells. Glia. 2000;29:58–69. doi: 10.1002/(SICI)1098-1136(20000101)29:1<58::AID-GLIA6>;2-W.
    1. Facchinetti F., Del Giudice E., Furegato S., Passarotto M., Leon A. Cannabinoids ablate release of TNFα in rat microglial cells stimulated with lypopolysaccharide. Glia. 2003;41:161–168. doi: 10.1002/glia.10177.
    1. Molina-Holgado E., Vela J.M., Arévalo-Martín A., Almazán G., Molina-Holgado F., Borrell J., Guaza C. Cannabinoids Promote Oligodendrocyte Progenitor Survival: Involvement of Cannabinoid Receptors and Phosphatidylinositol-3 Kinase/Akt Signaling. J. Neurosci. 2002;22:9742–9753. doi: 10.1523/JNEUROSCI.22-22-09742.2002.
    1. Benito C., Tolón R.M., Pazos M.R., Núñez E., Castillo A.I., Romero J. Cannabinoid CB2 receptors in human brain inflammation. Br. J. Pharmacol. 2008;153:277–285. doi: 10.1038/sj.bjp.0707505.
    1. Bisogno T., Hanus L., De Petrocellis L., Tchilibon S., Ponde D.E., Brandi I., Moriello A.S., Davis J.B., Mechoulam R., Di Marzo V. Molecular targets for cannabidiol and its synthetic analogues: Effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br. J. Pharmacol. 2001;134:845–852. doi: 10.1038/sj.bjp.0704327.
    1. Ross H.R., Napier I., Connor M. Inhibition of recombinant human T-type calcium channels by Delta9-tetrahydrocannabinol and cannabidiol. J. Biol. Chem. 2008;283:16124–16134. doi: 10.1074/jbc.M707104200.
    1. Russo E.B., Burnett A., Hall B., Parker K.K. Agonistic Properties of Cannabidiol at 5-HT1a Receptors. Neurochem. Res. 2005;30:1037–1043. doi: 10.1007/s11064-005-6978-1.
    1. Liou G.I., Auchampach J.A., Hillard C.J., Zhu G., Yousufzai B., Mian S., Khan S., Khalifa Y. Mediation of Cannabidiol Anti-inflammation in the Retina by Equilibrative Nucleoside Transporter and A2A Adenosine Receptor. Investig. Ophthalmol. Vis. Sci. 2008;49:5526–5531. doi: 10.1167/iovs.08-2196.
    1. Rimmerman N., Ben-Hail D., Porat Z., Juknat A., Kozela E., Daniels M.P., Connelly P.S., Leishman E., Bradshaw H.B., Shoshan-Barmatz V., et al. Direct modulation of the outer mitochondrial membrane channel, voltage-dependent anion channel 1 (VDAC1) by cannabidiol: A novel mechanism for cannabinoid-induced cell death. Cell Death Dis. 2013;4:e949. doi: 10.1038/cddis.2013.471.
    1. Hill A.J., Mercier M.S., Hill T.D.M., Glyn S.E., Jones N.A., Yamasaki Y., Futamura T., Duncan M., Stott C.G., Stephens G.J., et al. Cannabidivarin is anticonvulsant in mouse and rat. Br. J. Pharmacol. 2012;167:1629–1642. doi: 10.1111/j.1476-5381.2012.02207.x.
    1. Hill T.D.M., Cascio M.-G., Romano B., Duncan M., Pertwee R.G., Williams C.M., Whalley B.J., Hill A.J. Cannabidivarin-rich cannabis extracts are anticonvulsant in mouse and rat via a CB1 receptor-independent mechanism. Br. J. Pharmacol. 2013;170:679–692. doi: 10.1111/bph.12321.
    1. Hill A.J., Weston S.E., Jones N.A., Smith I., Bevan S.A., Williamson E.M., Stephens G.J., Williams C.M., Whalley B.J. Δ9-Tetrahydrocannabivarin suppresses in vitro epileptiform and in vivo seizure activity in adult rats. Epilepsia. 2010;51:1522–1532. doi: 10.1111/j.1528-1167.2010.02523.x.
    1. Mechoulam R., Carlini E.A. Toward drugs derived from cannabis. Naturwissenschaften. 1978;65:174–179. doi: 10.1007/BF00450585.
    1. Cunha J.M., Carlini E.A., Pereira A.E., Ramos O.L., Pimentel C., Gagliardi R., Sanvito W.L., Lander N., Mechoulam R. Chronic Administration of Cannabidiol to Healthy Volunteers and Epileptic Patients. Pharmacology. 1980;21:175–185. doi: 10.1159/000137430.
    1. Gloss D., Vickrey B. Cannabinoids for epilepsy. Cochrane Database Syst. Rev. 2012;6:CD009270.
    1. Szaflarski J.P., Bebin E.M., Comi A.M., Patel A.D., Joshi C., Checketts D., Beal J.C., Laux L.C., De Boer L.M., Wong M.H., et al. Long-term safety and treatment effects of cannabidiol in children and adults with treatment-resistant epilepsies: Expanded access program results. Epilepsia. 2018;59:1540–1548. doi: 10.1111/epi.14477.
    1. Thiele E.A., Marsh E.D., French J.A., Mazurkiewicz-Beldzinska M., Benbadis S.R., Joshi C., Lyons P.D., Taylor A., Roberts C., Sommerville K., et al. Cannabidiol in patients with seizures associated with Lennox-Gastaut syndrome (GWPCARE4): A randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2018;391:1085–1096. doi: 10.1016/S0140-6736(18)30136-3.
    1. Devinsky O., Marsh E., Friedman D., Thiele E., Laux L., Sullivan J., Miller I., Flamini R., Wilfong A., Filloux F., et al. Cannabidiol in patients with treatment-resistant epilepsy: An open-label interventional trial. Lancet Neurol. 2016;15:270–278. doi: 10.1016/S1474-4422(15)00379-8.
    1. Devinsky O., Cross J.H., Laux L., Marsh E., Miller I., Nabbout R., Scheffer I.E., Thiele E.A., Wright S. Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome. N. Engl. J. Med. 2017;376:2011–2020. doi: 10.1056/NEJMoa1611618.
    1. Devinsky O., Nabbout R., Miller I., Laux L., Zolnowska M., Wright S., Roberts C. Long-term cannabidiol treatment in patients with Dravet syndrome: An open-label extension trial. Epilepsia. 2019;60:294–302. doi: 10.1111/epi.14628.
    1. Devinsky O., Patel A.D., Cross J.H., Villanueva V., Wirrell E.C., Privitera M., Greenwood S.M., Roberts C., Checketts D., VanLandingham K.E., et al. Effect of Cannabidiol on Drop Seizures in the Lennox–Gastaut Syndrome. N. Engl. J. Med. 2018;378:1888–1897. doi: 10.1056/NEJMoa1714631.
    1. Gaston T.E., Bebin E.M., Cutter G.R., Liu Y., Szaflarski J.P. Interactions between cannabidiol and commonly used antiepileptic drugs. Epilepsia. 2017;58:1586–1592. doi: 10.1111/epi.13852.
    1. Geffrey A.L., Pollack S.F., Bruno P.L., Thiele E.A. Drug–drug interaction between clobazam and cannabidiol in children with refractory epilepsy. Epilepsia. 2015;56:1246–1251. doi: 10.1111/epi.13060.
    1. Devinsky O., Patel A.D., Thiele E.A., Wong M.H., Appleton R., Harden C.L., Greenwood S., Morrison G., Sommerville K., Group G.P.A.S. Randomized, dose-ranging safety trial of cannabidiol in Dravet syndrome. Neurology. 2018;90:e1204–e1211. doi: 10.1212/WNL.0000000000005254.
    1. Maa E., Figi P. The case for medical marijuana in epilepsy. Epilepsia. 2014;55:783–786. doi: 10.1111/epi.12610.
    1. Porter B.E., Jacobson C. Report of a parent survey of cannabidiol-enriched cannabis use in pediatric treatment-resistant epilepsy. Epilepsy Behav. 2013;29:574–577. doi: 10.1016/j.yebeh.2013.08.037.
    1. Hussain S.A., Zhou R., Jacobson C., Weng J., Cheng E., Lay J., Hung P., Lerner J.T., Sankar R. Perceived efficacy of cannabidiol-enriched cannabis extracts for treatment of pediatric epilepsy: A potential role for infantile spasms and Lennox–Gastaut syndrome. Epilepsy Behav. 2015;47:138–141. doi: 10.1016/j.yebeh.2015.04.009.
    1. Press C.A., Knupp K.G., Chapman K.E. Parental reporting of response to oral cannabis extracts for treatment of refractory epilepsy. Epilepsy Behav. 2015;45:49–52. doi: 10.1016/j.yebeh.2015.02.043.
    1. Hausman-Kedem M., Menascu S., Kramer U. Efficacy of CBD-enriched medical cannabis for treatment of refractory epilepsy in children and adolescents—An observational, longitudinal study. Brain Dev. 2018;40:544–551. doi: 10.1016/j.braindev.2018.03.013.
    1. McCoy B., Wang L., Zak M., Al-Mehmadi S., Kabir N., Alhadid K., McDonald K., Zhang G., Sharma R., Whitney R., et al. A prospective open-label trial of a CBD/THC cannabis oil in dravet syndrome. Ann. Clin. Transl. Neurol. 2018;5:1077–1088. doi: 10.1002/acn3.621.
    1. Tzadok M., Uliel-Siboni S., Linder I., Kramer U., Epstein O., Menascu S., Nissenkorn A., Yosef O.B., Hyman E., Granot D., et al. CBD-enriched medical cannabis for intractable pediatric epilepsy: The current Israeli experience. Seizure. 2016;35:41–44. doi: 10.1016/j.seizure.2016.01.004.
    1. Mhyre T.R., Boyd J.T., Hamill R.W., Maguire-Zeiss K.A. Parkinson’s disease. Subcell. Biochem. 2012;65:389–455.
    1. Zipp F., Aktas O. The brain as a target of inflammation: Common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci. 2006;29:518–527. doi: 10.1016/j.tins.2006.07.006.
    1. Benarroch E. Endocannabinoids in basal ganglia circuits Implications for Parkinson disease. Neurology. 2007;69:306–309. doi: 10.1212/01.wnl.0000267407.79757.75.
    1. Van Sickle M.D., Duncan M., Kingsley P.J., Mouihate A., Urbani P., Mackie K., Stella N., Makriyannis A., Piomelli D., Davison J.S., et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science. 2005;310:329–332. doi: 10.1126/science.1115740.
    1. Nunez E., Benito C., Tolon R.M., Hillard C.J., Griffin W.S.T., Romero J. Glial expression of cannabinoid CB2 receptors and fatty acid amide hydrolase are beta amyloid–linked events in Down’s syndrome. Neuroscience. 2008;151:104–110. doi: 10.1016/j.neuroscience.2007.10.029.
    1. Lastres-Becker I., Molina-Holgado F., Ramos J.A., Mechoulam R., Fernández-Ruiz J. Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: Relevance to Parkinson’s disease. Neurobiol. Dis. 2005;19:96–107. doi: 10.1016/j.nbd.2004.11.009.
    1. Peres F.F., Levin R., Suiama M.A., Diana M.C., Gouvêa D.A., Almeida V., Santos C.M., Lungato L., Zuardi A.W., Hallak J.E.C. Cannabidiol prevents motor and cognitive impairments induced by reserpine in rats. Front. Pharmacol. 2016;7:343. doi: 10.3389/fphar.2016.00343.
    1. García-Arencibia M., García C., Kurz A., Rodríguez-Navarro J.A., Gispert-Sánchez S., Mena M.A., Auburger G., de Yébenes J.G., Fernández-Ruiz J. Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra. Springer; New York, NY, USA: 2009. Cannabinoid CB 1 receptors are early downregulated followed by a further upregulation in the basal ganglia of mice with deletion of specific park genes; pp. 269–275.
    1. Consroe P., Sandyk R., Snider S.R. Open label evaluation of cannabidiol in dystonic movement disorders. Int. J. Neurosci. 1986;30:277–282. doi: 10.3109/00207458608985678.
    1. Zuardi A.W., Crippa J.A.S., Hallak J.E.C., Pinto J.P., Chagas M.H.N., Rodrigues G.G.R., Dursun S.M., Tumas V. Cannabidiol for the treatment of psychosis in Parkinson’s disease. J. Psychopharmacol. 2009;23:979–983. doi: 10.1177/0269881108096519.
    1. Chagas M.H.N., Zuardi A.W., Tumas V., Pena-Pereira M.A., Sobreira E.T., Bergamaschi M.M., dos Santos A.C., Teixeira A.L., Hallak J.E.C., Crippa J.A.S. Effects of cannabidiol in the treatment of patients with Parkinson’s disease: An exploratory double-blind trial. J. Psychopharmacol. 2014;28:1088–1098. doi: 10.1177/0269881114550355.
    1. Venderová K., Růžička E., Voříšek V., Višňovský P. Survey on cannabis use in Parkinson’s disease: Subjective improvement of motor symptoms. Mov. Disord. 2004;19:1102–1106. doi: 10.1002/mds.20111.
    1. Balash Y., Schleider L.B.-L., Korczyn A.D., Shabtai H., Knaani J., Rosenberg A., Baruch Y., Djaldetti R., Giladi N., Gurevich T. Medical Cannabis in Parkinson Disease: Real-Life Patients’ Experience. Clin. Neuropharmacol. 2017;40:268–272. doi: 10.1097/WNF.0000000000000246.
    1. Lotan I., Treves T.A., Roditi Y., Djaldetti R. Cannabis (medical marijuana) treatment for motor and non–motor symptoms of Parkinson disease: An open-label observational study. Clin. Neuropharmacol. 2014;37:41–44. doi: 10.1097/WNF.0000000000000016.
    1. Kindred J.H., Li K., Ketelhut N.B., Proessl F., Fling B.W., Honce J.M., Shaffer W.R., Rudroff T. Cannabis use in people with Parkinson’s disease and Multiple Sclerosis: A web-based investigation. Complement. Ther. Med. 2017;33:99–104. doi: 10.1016/j.ctim.2017.07.002.
    1. Shohet A., Khlebtovsky A., Roizen N., Roditi Y., Djaldetti R. Effect of medical cannabis on thermal quantitative measurements of pain in patients with Parkinson’s disease. Eur. J. Pain. 2017;21:486–493. doi: 10.1002/ejp.942.
    1. Frankel J.P., Hughes A., Lees A.J., Stern G.M. Marijuana for parkinsonian tremor. J. Neurol. Neurosurg. Psychiatry. 1990;53:436. doi: 10.1136/jnnp.53.5.436.
    1. Carroll C.B., Bain P.G., Teare L., Liu X., Joint C., Wroath C., Parkin S.G., Fox P., Wright D., Hobart J. Cannabis for dyskinesia in Parkinson disease: A randomized double-blind crossover study. Neurology. 2004;63:1245–1250. doi: 10.1212/01.WNL.0000140288.48796.8E.
    1. Cannabis Oil for Pain in Parkinson’s Disease. [(accessed on 20 January 2019)]; Available online: .
    1. Wang J., Gu B.J., Masters C.L., Wang Y.-J. A systemic view of Alzheimer disease—Insights from amyloid-β metabolism beyond the brain. Nat. Rev. Neurol. 2017;13:612. doi: 10.1038/nrneurol.2017.111.
    1. Eubanks L.M., Rogers C.J., Beuscher IV A.E., Koob G.F., Olson A.J., Dickerson T.J., Janda K.D. A molecular link between the active component of marijuana and Alzheimer’s disease pathology. Mol. Pharm. 2006;3:773–777. doi: 10.1021/mp060066m.
    1. Iuvone T., Esposito G., Esposito R., Santamaria R., Di Rosa M., Izzo A.A. Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on β-amyloid-induced toxicity in PC12 cells. J. Neurochem. 2004;89:134–141. doi: 10.1111/j.1471-4159.2003.02327.x.
    1. Esposito G., De Filippis D., Maiuri M.C., De Stefano D., Carnuccio R., Iuvone T. Cannabidiol inhibits inducible nitric oxide synthase protein expression and nitric oxide production in β-amyloid stimulated PC12 neurons through p38 MAP kinase and NF-κB involvement. Neurosci. Lett. 2006;399:91–95. doi: 10.1016/j.neulet.2006.01.047.
    1. Esposito G., Scuderi C., Savani C., Steardo Jr L., De Filippis D., Cottone P., Iuvone T., Cuomo V., Steardo L. Cannabidiol in vivo blunts β-amyloid induced neuroinflammation by suppressing IL-1β and iNOS expression. Br. J. Pharmacol. 2007;151:1272–1279. doi: 10.1038/sj.bjp.0707337.
    1. Cheng D., Spiro A.S., Jenner A.M., Garner B., Karl T. Long-term cannabidiol treatment prevents the development of social recognition memory deficits in Alzheimer’s disease transgenic mice. J. Alzheimer’s Dis. 2014;42:1383–1396. doi: 10.3233/JAD-140921.
    1. Walther S., Mahlberg R., Eichmann U., Kunz D. Delta-9-tetrahydrocannabinol for nighttime agitation in severe dementia. Psychopharmacology. 2006;185:524–528. doi: 10.1007/s00213-006-0343-1.
    1. Shelef A., Barak Y., Berger U., Paleacu D., Tadger S., Plopsky I., Baruch Y. Safety and efficacy of medical cannabis oil for behavioral and psychological symptoms of dementia: An-open label, add-on, pilot study. J. Alzheimer’s Dis. 2016;51:15–19. doi: 10.3233/JAD-150915.
    1. Walther S., Schüpbach B., Seifritz E., Homan P., Strik W. Randomized, controlled crossover trial of dronabinol, 2.5 mg, for agitation in 2 patients with dementia. J. Clin. Psychopharmacol. 2011;31:256–258. doi: 10.1097/JCP.0b013e31820e861c.
    1. van den Elsen G.A.H., Ahmed A.I.A., Verkes R.-J., Feuth T., van der Marck M.A., Rikkert M.G.M.O. Tetrahydrocannabinol in behavioral disturbances in dementia: A crossover randomized controlled trial. Am. J. Geriatr. Psychiatry. 2015;23:1214–1224. doi: 10.1016/j.jagp.2015.07.011.
    1. Volicer L., Stelly M., Morris J., McLAUGHLIN J., Volicer B.J. Effects of dronabinol on anorexia and disturbed behavior in patients with Alzheimer’s disease. Int. J. Geriatr. Psychiatry. 1997;12:913–919. doi: 10.1002/(SICI)1099-1166(199709)12:9<913::AID-GPS663>;2-D.
    1. Mahlberg R., Walther S. Actigraphy in agitated patients with dementia. Z. Gerontol. Geriatr. 2007;40:178–184. doi: 10.1007/s00391-007-0420-z.
    1. Woodward M.R., Harper D.G., Stolyar A., Forester B.P., Ellison J.M. Dronabinol for the treatment of agitation and aggressive behavior in acutely hospitalized severely demented patients with noncognitive behavioral symptoms. Am. J. Geriatr. Psychiatry. 2014;22:415–419. doi: 10.1016/j.jagp.2012.11.022.
    1. Calabresi P.A. Diagnosis and management of multiple sclerosis. Am. Fam. Phys. 2004;70:1935–1944.
    1. Hauser S.L., Goodwin D.S. Multiple sclerosis and other demyelinating diseases. In: Fauci A.S., Braunwald E., Kasper D.L., Hauser S., editors. Harrison’s Principles of Internal Medicine. McGraw-Hill Medical; New York, NY, USA: 2008. pp. 2611–2621.
    1. Global, regional, and national burden of neurological disorders during 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet. Neurol. 2017;16:877–897. doi: 10.1016/S1474-4422(17)30299-5.
    1. Comi G., Radaelli M., Soelberg Sorensen P. Evolving concepts in the treatment of relapsing multiple sclerosis. Lancet. 2017;389:1347–1356. doi: 10.1016/S0140-6736(16)32388-1.
    1. Brownlee W.J., Hardy T.A., Fazekas F., Miller D.H. Diagnosis of multiple sclerosis: Progress and challenges. Lancet. 2017;389:1336–1346. doi: 10.1016/S0140-6736(16)30959-X.
    1. Pertwee R.G. Cannabinoids and multiple sclerosis. Mol. Neurobiol. 2007;36:45–59. doi: 10.1007/s12035-007-0005-2.
    1. Lyman W.D., Sonett J.R., Brosnan C.F., Elkin R., Bornstein M.B. Delta 9-tetrahydrocannabinol: A novel treatment for experimental autoimmune encephalomyelitis. J. Neuroimmunol. 1989;23:73–81. doi: 10.1016/0165-5728(89)90075-1.
    1. Baker D., Pryce G., Croxford J.L., Brown P., Pertwee R.G., Huffman J.W., Layward L. Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature. 2000;404:84–87. doi: 10.1038/35003583.
    1. Maresz K., Pryce G., Ponomarev E.D., Marsicano G., Croxford J.L., Shriver L.P., Ledent C., Cheng X., Carrier E.J., Mann M.K., et al. Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB1 on neurons and CB2 on autoreactive T cells. Nat. Med. 2007;13:492–497. doi: 10.1038/nm1561.
    1. Pryce G., Baker D. Control of spasticity in a multiple sclerosis model is mediated by CB1, not CB2, cannabinoid receptors. Br. J. Pharmacol. 2007;150:519–525. doi: 10.1038/sj.bjp.0707003.
    1. Croxford J.L., Pryce G., Jackson S.J., Ledent C., Giovannoni G., Pertwee R.G., Yamamura T., Baker D. Cannabinoid-mediated neuroprotection, not immunosuppression, may be more relevant to multiple sclerosis. J. Neuroimmunol. 2008;193:120–129. doi: 10.1016/j.jneuroim.2007.10.024.
    1. Baker D., Jackson S.J., Pryce G. Cannabinoid control of neuroinflammation related to multiple sclerosis. Br. J. Pharmacol. 2007;152:649–654. doi: 10.1038/sj.bjp.0707458.
    1. Sanchez A.J., Garcia-Merino A. Neuroprotective agents: Cannabinoids. Clin. Immunol. 2012;142:57–67. doi: 10.1016/j.clim.2011.02.010.
    1. Cofield S.S., Salter A.R., Tyry T., Mcneal S., Cutter G.R., Marrie R.A., Fox R.J. Current Marijuana Usage By MS Status and Disability in the NARCOMS Registry. Int. J. Mult. Scler. Care. 2015;17(Suppl. S1):1–9.
    1. Chong M.S., Wolff K., Wise K., Tanton C., Winstock A., Silber E. Cannabis use in patients with multiple sclerosis. Mult. Scler. 2006;12:646–651. doi: 10.1177/1352458506070947.
    1. GW Pharmaceuticals Plc Sativex® (Delta-9-Tetrahydrocannibinol and Cannabidiol in the EU) (Nabiximols in the USA) [(accessed on 20 January 2019)]; Available online: .
    1. Torres-Moreno M.C., Papaseit E., Torrens M., Farré M. Assessment of Efficacy and Tolerability of Medicinal Cannabinoids in Patients With Multiple Sclerosis: A Systematic Review and Meta-analysisAssessment of Efficacy and Tolerability of Cannabinoids in Patients With Multiple SclerosisAssessment of Efficacy a. JAMA Netw. Open. 2018;1:e183485. doi: 10.1001/jamanetworkopen.2018.3485.
    1. Kansagara D., O’Neil M., Nugent S., Freeman M., Low A., Kondo K., Elven C., Zakher B., Motu’apuaka M., Paynter R. Benefits and Harms of Cannabis in Chronic Pain or Post-Traumatic Stress Disorder: A Systematic Review. Department of Veterans Affairs; Washington, DC, USA: 2017.
    1. O’neil M.E., Nugent S.M., Morasco B.J., Freeman M., Low A., Kondo K., Zakher B., Elven C., Motu’apuaka M., Paynter R. Benefits and harms of plant-based cannabis for posttraumatic stress disorder: A systematic review. Ann. Intern. Med. 2017;167:332–340. doi: 10.7326/M17-0477.
    1. Bitencourt R.M., Takahashi R.N. Cannabidiol as a therapeutic alternative for post-traumatic stress disorder: From bench research to confirmation in human trials. Front. Neurosci. 2018;12:502. doi: 10.3389/fnins.2018.00502.
    1. Elms L., Shannon S., Hughes S., Lewis N. Cannabidiol in the Treatment of Post-Traumatic Stress Disorder: A Case Series. J. Altern. Complement. Med. 2018 doi: 10.1089/acm.2018.0437.
    1. Steenkamp M.M., Blessing E.M., Galatzer-Levy I.R., Hollahan L.C., Anderson W.T. Marijuana and other cannabinoids as a treatment for posttraumatic stress disorder: A literature review. Depress. Anxiety. 2017;34:207–216. doi: 10.1002/da.22596.
    1. Fahn S., Bruun R.D., Caine E., Cohen D.J., Comings D.E., Como P.G., Conneally P.M., Gancher S.T., Goetz C., Golden G.S., et al. Definitions and Classification of Tic Disorders. Arch. Neurol. 1993;50:1013–1016.
    1. Gerard E., Peterson B.S. Developmental processes and brain imaging studies in Tourette syndrome. J. Psychosom. Res. 2003;55:13–22. doi: 10.1016/S0022-3999(02)00581-0.
    1. Mink J.W. Neurobiology of basal ganglia circuits in Tourette syndrome: Faulty inhibition of unwanted motor patterns? Adv. Neurol. 2001;85:113–122.
    1. Mechoulam R., Parker L.A. The Endocannabinoid System and the Brain. Annu. Rev. Psychol. 2013;64:21–47. doi: 10.1146/annurev-psych-113011-143739.
    1. Abrahamov A., Abrahamov A., Mechoulam R. An efficient new cannabinoid antiemetic in pediatric oncology. Life Sci. 1995;56:2097–2102. doi: 10.1016/0024-3205(95)00194-B.
    1. Giuffrida A., Parsons L.H., Kerr T.M., de Fonseca F.R., Navarro M., Piomelli D. Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat. Neurosci. 1999;2:358–363. doi: 10.1038/7268.
    1. Di Marzo V., Hill M.P., Bisogno T., Crossman A.R., Brotchie J.M. Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson’s disease. FASEB J. 2000;14:1432–1438.
    1. Müller-Vahl K.R. Cannabinoids reduce symptoms of Tourette’s syndrome. Expert Opin. Pharmacother. 2003;4:1717–1725. doi: 10.1517/14656566.4.10.1717.
    1. Sandyk R., Awerbuch G. Marijuana and Tourette’s syndrome. J. Clin. Psychopharmacol. 1988;8:444–445. doi: 10.1097/00004714-198812000-00021.
    1. Hemming M., Yellowlees P.M. Effective treatment of Tourette’s syndrome with marijuana. J. Psychopharmacol. 1993;7:389–391. doi: 10.1177/026988119300700411.
    1. Müller-Vahl K.R., Kolbe H., Schneider U., Emrich H.M. Cannabinoids: Possible role in patho-physiology and therapy of Gilles de la Tourette syndrome. Acta Psychiatr. Scand. 1998;98:502–506. doi: 10.1111/j.1600-0447.1998.tb10127.x.
    1. Müller-Vahl K., Schneider U., Koblenz A., Jöbges M., Kolbe H., Daldrup T., Emrich H. Treatment of Tourette’s Syndrome with Δ9-Tetrahydrocannabinol (THC): A Randomized Crossover Trial. Pharmacopsychiatry. 2002;35:57–61. doi: 10.1055/s-2002-25028.
    1. Muller-Vahl K.R., Schneider U., Prevedel H., Theloe K., Kolbe H., Daldrup T., Emrich H.M. Delta 9-Tetrahydrocannabinol (THC) is Effective in the Treatment of Tics in Tourette Syndrome. J. Clin. Psychiatry. 2003;64:459–465. doi: 10.4088/JCP.v64n0417.
    1. Abi-Jaoude E., Chen L., Cheung P., Bhikram T., Sandor P. Preliminary Evidence on Cannabis Effectiveness and Tolerability for Adults With Tourette Syndrome. J. Neuropsychiatry Clin. Neurosci. 2017;29:391–400. doi: 10.1176/appi.neuropsych.16110310.
    1. Safety and Efficacy of Cannabis in Tourette Syndrome. [(accessed on 20 January 2019)]; Available online:
    1. CANNAbinoids in the Treatment of TICS (CANNA-TICS)—Full Text View—. [(accessed on 20 January 2019)]; Available online: .
    1. Efficacy of a Therapeutic Combination of Dronabinol and PEA for Tourette Syndrome—Full Text View—. [(accessed on 20 January 2019)]; Available online: .
    1. A Study to Examine the Efficacy of a Therapeutic THX-110 for Tourette Syndrome—Full Text View—. [(accessed on 20 January 2019)]; Available online: .
    1. Navari R.M. Pharmacological Management of Chemotherapy-Induced Nausea and Vomiting. Drugs. 2009;69:515–533. doi: 10.2165/00003495-200969050-00002.
    1. Hornby P.J. Central neurocircuitry associated with emesis. Am. J. Med. 2001;111:106–112. doi: 10.1016/S0002-9343(01)00849-X.
    1. Darmani N.A., Janoyan J.J., Crim J., Ramirez J. Receptor mechanism and antiemetic activity of structurally-diverse cannabinoids against radiation-induced emesis in the least shrew. Eur. J. Pharmacol. 2007;563:187–196. doi: 10.1016/j.ejphar.2007.01.093.
    1. Parker L.A., Rock E.M., Limebeer C.L. Regulation of nausea and vomiting by cannabinoids. Br. J. Pharmacol. 2011;163:1411–1422. doi: 10.1111/j.1476-5381.2010.01176.x.
    1. Darmani N.A. The cannabinoid CB1 receptor antagonist SR 141716A reverses the antiemetic and motor depressant actions of WIN 55, 212-2. Eur. J. Pharmacol. 2001;430:49–58. doi: 10.1016/S0014-2999(01)01355-3.
    1. Barann M., Molderings G., Brüss M., Bönisch H., Urban B.W., Göthert M. Direct inhibition by cannabinoids of human 5-HT3A receptors: Probable involvement of an allosteric modulatory site. Br. J. Pharmacol. 2002;137:589–596. doi: 10.1038/sj.bjp.0704829.
    1. US Food and Drug Administration . MARINOL (Dronabinol) Capsules, for Oral Use. US Food and Drug Administration; Silver Spring, MD, USA: 2017.
    1. US Food and Drug Administration . Cesamet FDA Approval. US Food and Drug Administration; Silver Spring, MD, USA: 2006.
    1. Hesketh P.J., Kris M.G., Basch E., Bohlke K., Barbour S.Y., Clark-Snow R.A., Danso M.A., Dennis K., Dupuis L.L., Dusetzina S.B., et al. Antiemetics: American Society of Clinical Oncology Clinical Practice Guideline Update. J. Clin. Oncol. 2017;35:3240–3261. doi: 10.1200/JCO.2017.74.4789.
    1. Vinciguerra V., Moore T., Brennan E. Inhalation marijuana as an antiemetic for cancer chemotherapy. N. Y. State J. Med. 1988;88:525–527.
    1. Musty R.E., Rossi R. Effects of Smoked Cannabis and Oral ∆9-Tetrahydrocannabinol on Nausea and Emesis After Cancer Chemotherapy: A Review of State Clinical Trials. J. Cannabis Ther. 2001;1:29–56. doi: 10.1300/J175v01n01_03.
    1. Söderpalm A.H. V., Schuster A., de Wit H. Antiemetic efficacy of smoked marijuana: Subjective and behavioral effects on nausea induced by syrup of ipecac. Pharmacol. Biochem. Behav. 2001;69:343–350. doi: 10.1016/S0091-3057(01)00533-0.
    1. Roila F., Feyer P., Hesketh P.J., Jordan K., Olver I., Rapoport B.L., Roscoe J., Walsh D., Warr D., van der Wetering M., et al. 2016 MASCC and ESMO guideline update for the prevention of chemotherapy- and radiotherapy-induced nausea and vomiting and of nausea and vomiting in advanced cancer patients. Ann. Oncol. 2016;27:v119–v133. doi: 10.1093/annonc/mdw270.
    1. Lutge E.E., Gray A., Siegfried N. The medical use of cannabis for reducing morbidity and mortality in patients with HIV/AIDS. Cochrane Database Syst. Rev. 2013;30:CD005175. doi: 10.1002/14651858.CD005175.pub3.
    1. Badowski M.E., Yanful P.K. Dronabinol oral solution in the management of anorexia and weight loss in AIDS and cancer. Ther. Clin. Risk Manag. 2018;14:643–651. doi: 10.2147/TCRM.S126849.
    1. Andries A., Frystyk J., Flyvbjerg A., Støving R.K. Dronabinol in severe, enduring anorexia nervosa: A randomized controlled trial. Int. J. Eat. Disord. 2014;47:18–23. doi: 10.1002/eat.22173.
    1. Scheffler F., Kilian S., Chiliza B., Asmal L., Phahladira L., du Plessis S., Kidd M., Murray R.M., Di Forti M., Seedat S., et al. Effects of cannabis use on body mass, fasting glucose and lipids during the first 12months of treatment in schizophrenia spectrum disorders. Schizophr. Res. 2018;199:90–95. doi: 10.1016/j.schres.2018.02.050.
    1. Marks D.H., Friedman A. The Therapeutic Potential of Cannabinoids in Dermatology. Skin Ther. Lett. 2018;23:1–5.
    1. Mounessa J.S., Siegel J.A., Dunnick C.A., Dellavalle R.P. The role of cannabinoids in dermatology. J. Am. Acad. Dermatol. 2017;77:188–190. doi: 10.1016/j.jaad.2017.02.056.
    1. Theroux Z., Cropley T. Cannabis and Dr Piffard—A Century Ahead of the Curve. JAMA Dermatol. 2016;152:972. doi: 10.1001/jamadermatol.2015.6120.
    1. Wilkinson J.D., Williamson E.M. Cannabinoids inhibit human keratinocyte proliferation through a non-CB1/CB2 mechanism and have a potential therapeutic value in the treatment of psoriasis. J. Dermatol. Sci. 2007;45:87–92. doi: 10.1016/j.jdermsci.2006.10.009.
    1. Ali A., Akhtar N. The safety and efficacy of 3% Cannabis seeds extract cream for reduction of human cheek skin sebum and erythema content. Pak. J. Pharm. Sci. 2015;28:1389–1395.
    1. Callaway J., Schwab U., Harvima I., Halonen P., Mykkänen O., Hyvönen P., Järvinen T. Efficacy of dietary hempseed oil in patients with atopic dermatitis. J. Dermatolog. Treat. 2005;16:87–94. doi: 10.1080/09546630510035832.
    1. Citti C., Pacchetti B., Vandelli M.A., Forni F., Cannazza G. Analysis of cannabinoids in commercial hemp seed oil and decarboxylation kinetics studies of cannabidiolic acid (CBDA) J. Pharm. Biomed. Anal. 2018;149:532–540. doi: 10.1016/j.jpba.2017.11.044.
    1. Eberlein B., Eicke C., Reinhardt H.-W., Ring J. Adjuvant treatment of atopic eczema: Assessment of an emollient containing N-palmitoylethanolamine (ATOPA study) J. Eur. Acad. Dermatol. Venereol. 2008;22:73–82. doi: 10.1111/j.1468-3083.2007.02351.x.
    1. Chelliah M.P., Zinn Z., Khuu P., Teng J.M.C. Self-initiated use of topical cannabidiol oil for epidermolysis bullosa. Pediatr. Dermatol. 2018;35:e224–e227. doi: 10.1111/pde.13545.
    1. Maor Y., Yu J., Kuzontkoski P.M., Dezube B.J., Zhang X., Groopman J.E. Cannabidiol Inhibits Growth and Induces Programmed Cell Death in Kaposi Sarcoma-Associated Herpesvirus-Infected Endothelium. Genes Cancer. 2012;3:512–520. doi: 10.1177/1947601912466556.
    1. Armstrong J.L., Hill D.S., McKee C.S., Hernandez-Tiedra S., Lorente M., Lopez-Valero I., Eleni Anagnostou M., Babatunde F., Corazzari M., Redfern C.P.F., et al. Exploiting Cannabinoid-Induced Cytotoxic Autophagy to Drive Melanoma Cell Death. J. Investig. Dermatol. 2015;135:1629–1637. doi: 10.1038/jid.2015.45.
    1. Li J.Y., Kampp J.T. Review of Common Alternative Herbal “Remedies” for Skin Cancer. Dermatol. Surg. 2019;45:58–67. doi: 10.1097/DSS.0000000000001622.
    1. Maida V., Corban J. Topical Medical Cannabis: A New Treatment for Wound Pain—Three Cases of Pyoderma Gangrenosum. J. Pain Symptom Manag. 2017;54:732–736. doi: 10.1016/j.jpainsymman.2017.06.005.
    1. Eagleston L.R.M., Kalani N.K., Patel R.R., Flaten H.K., Dunnick C.A., Dellavalle R.P. Cannabinoids in dermatology: A scoping review. Dermatol. Online J. 2018;24:1–17.
    1. Milando R., Friedman A. Cannabinoids: Potential Role in Inflammatory and Neoplastic Skin Diseases. Am. J. Clin. Dermatol. 2018 doi: 10.1007/s40257-018-0410-5. in press.
    1. Campos A.C., Brant F., Miranda A.S., Machado F.S., Teixeira A.L. Cannabidiol increases survival and promotes rescue of cognitive function in a murine model of cerebral malaria. Neuroscience. 2015;289:166–180. doi: 10.1016/j.neuroscience.2014.12.051.
    1. Meza A., Lehmann C. Betacaryophyllene—A phytocannabinoid as potential therapeutic modality for human sepsis? Med. Hypotheses. 2018;110:68–70. doi: 10.1016/j.mehy.2017.10.025.
    1. National Academies of Sciences Engineering and Medicine . The Health Effects of Cannabis and Cannabinoids: The Current State of Evidence and Recommendations for Research. The National Academies Press; Washington, DC, USA: 2017.
    1. Green K. Marijuana smoking vs cannabinoids for glaucoma therapy. Arch. Ophthalmol. 1998;116:1433–1437. doi: 10.1001/archopht.116.11.1433.
    1. Tomida I., Azuara-Blanco A., House H., Flint M., Pertwee R.G., Robson P.J. Effect of Sublingual Application of Cannabinoids on Intraocular Pressure: A Pilot Study. J. Glaucoma. 2006;15:349–353. doi: 10.1097/01.ijg.0000212260.04488.60.
    1. Miller S., Daily L., Leishman E., Bradshaw H., Straiker A. Δ9-Tetrahydrocannabinol and Cannabidiol Differentially Regulate Intraocular Pressure. Investig. Opthalmol. Vis. Sci. 2018;59:5904–5911. doi: 10.1167/iovs.18-24838.
    1. Belendiuk K.A., Babson K.A., Vandrey R., Bonn-Miller M.O. Cannabis species and cannabinoid concentration preference among sleep-disturbed medicinal cannabis users. Addict. Behav. 2015;50:178–181. doi: 10.1016/j.addbeh.2015.06.032.
    1. Nicholson A.N., Turner C., Stone B.M., Robson P.J. Effect of Δ-9-tetrahydrocannabinol and cannabidiol on nocturnal sleep and early-morning behavior in young adults. J. Clin. Psychopharmacol. 2004;24:305–313. doi: 10.1097/01.jcp.0000125688.05091.8f.
    1. Tringale R., Jensen C. Cannabis and insomnia. Depression. 2011;4:0–68.
    1. Babson K.A., Sottile J., Morabito D. Cannabis, Cannabinoids, and Sleep: A Review of the Literature. Curr. Psychiatry Rep. 2017;19:1–12. doi: 10.1007/s11920-017-0775-9.
    1. Crippa J., Zuardi A., Mertín-Santos R., Bhattacharyya S., Atakan Z., McGuire P., Fusar-Poli P. Cannabis and anxiety: A critical review of the evidence. Hum. Psychopharmacol. Clin. Exp. 2009;24:515–523. doi: 10.1002/hup.1048.
    1. Bergamaschi M.M., Queiroz R.H.C., Chagas M.H.N., De Oliveira D.C.G., De Martinis B.S., Kapczinski F., Quevedo J., Roesler R., Schröder N., Nardi A.E., et al. Cannabidiol reduces the anxiety induced by simulated public speaking in treatment-nave social phobia patients. Neuropsychopharmacology. 2011;36:1219–1226. doi: 10.1038/npp.2011.6.
    1. Russo E.B. Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br. J. Pharmacol. 2011;163:1344–1364. doi: 10.1111/j.1476-5381.2011.01238.x.
    1. Gambelunghe C., Fucci N., Aroni K., Bacci M., Marcelli A., Rossi R. Cannabis Use Surveillance by Sweat Analysis. Ther. Drug Monit. 2016;38:634–639. doi: 10.1097/FTD.0000000000000327.
    1. Jain R., Singh R. Microextraction techniques for analysis of cannabinoids. TrAC Trends Anal. Chem. 2016;80:156–166. doi: 10.1016/j.trac.2016.03.012.
    1. De Giovanni N., Fucci N. The Current Status of Sweat Testing For Drugs of Abuse: A Review. Curr. Med. Chem. 2013;20:545–561.
    1. Gallardo E., Queiroz J.A. The role of alternative specimens in toxicological analysis. Biomed. Chromatogr. 2008;22:795–821. doi: 10.1002/bmc.1009.
    1. Meier S.I., Koelzer S.C., Schubert-Zsilavecz M., Toennes S.W. Analysis of drugs of abuse in Cerumen—correlation of postmortem analysis results with those for blood, urine and hair. Drug Test. Anal. 2017;9:1572–1585. doi: 10.1002/dta.2177.
    1. Gallardo E., Barroso M., Queiroz J.A. LC-MS: A powerful tool in workplace drug testing. Drug Test. Anal. 2009;1:109–115. doi: 10.1002/dta.26.
    1. Samyn N., Van Haeren C. On-site testing of saliva and sweat with Drugwipe and determination of concentrations of drugs of abuse in saliva, plasma and urine of suspected users. Int. J. Legal Med. 2000;113:150–154. doi: 10.1007/s004140050287.
    1. Queiroz J.A., Gallardo E., Barroso M. What are the recent advances in forensic oral fluid bioanalysis? Bioanalysis. 2013;5:2077–2079. doi: 10.4155/bio.13.186.
    1. Gallardo E., Barroso M., Queiroz J.A. Current technologies and considerations for drug bioanalysis in oral fluid. Bioanalysis. 2009;1:637–667. doi: 10.4155/bio.09.23.
    1. Desrosiers N.A., Scheidweiler K.B., Huestis M.A. Quantification of six cannabinoids and metabolites in oral fluid by liquid chromatography-tandem mass spectrometry. Drug Test. Anal. 2015;7:684–694. doi: 10.1002/dta.1753.
    1. Lee D., Vandrey R., Milman G., Bergamaschi M., Mendu D.R., Murray J.A., Barnes A.J., Huestis M.A. Oral fluid/plasma cannabinoid ratios following controlled oral THC and smoked cannabis administration. Anal. Bioanal. Chem. 2013;405:7269–7279. doi: 10.1007/s00216-013-7159-8.
    1. Lee D., Milman G., Barnes A.J., Goodwin R.S., Hirvonen J., Huestis M.A. Oral fluid cannabinoids in chronic, daily cannabis smokers during sustained, monitored abstinence. Clin. Chem. 2011;57:1127–1136. doi: 10.1373/clinchem.2011.164822.
    1. Niedbala R.S., Kardos K.W., Fritch D.F., Kunsman K.P., Blum K.A., Newland G.A., Waga J., Kurtz L., Bronsgeest M., Cone E.J. Passive cannabis smoke exposure and oral fluid testing. II. Two studies of extreme cannabis smoke exposure in a motor vehicle. J. Anal. Toxicol. 2005;29:607–615. doi: 10.1093/jat/29.7.607.
    1. Saito T., Wtsadik A., Scheidweiler K.B., Fortner N., Takeichi S., Huestis M.A. Validated gas chromatographic-negative ion chemical ionization mass spectrometric method for Δ9-tetrahydrocannabinol in sweat patches. Clin. Chem. 2004;50:2083–2090. doi: 10.1373/clinchem.2004.034868.
    1. Drummer O.H. Drug testing in oral fluid. Clin. Biochem. Rev. 2006;27:147–159.
    1. Balabanova S., Schneider E. Detection of drugs in sweat. Beitr. Gerichtl. Med. 1990;48:45–49.
    1. Samyn N., De Boeck G., Verstraete A.G. The use of oral fluid and sweat wipes for the detection of drugs of abuse in drivers. J. Forensic Sci. 2002;47:1380–1387. doi: 10.1520/JFS15579J.
    1. De La Torre R., Pichini S. Usefulness of sweat testing for the detection of cannabis smoke. Clin. Chem. 2004;50:1961–1962. doi: 10.1373/clinchem.2004.040758.
    1. Kieliba T., Lerch O., Andresen-Streichert H., Rothschild M.A., Beike J. Simultaneous quantification of THC-COOH, OH-THC, and further cannabinoids in human hair by gas chromatography–tandem mass spectrometry with electron ionization applying automated sample preparation. Drug Test. Anal. 2018 doi: 10.1002/dta.2490. in press.
    1. Barroso M., Gallardo E. Hair analysis for forensic applications: Is the future bright? Bioanalysis. 2013;6:1–3. doi: 10.4155/bio.13.291.
    1. Barroso M., Gallardo E., Vieira D.N., López-Rivadulla M., Queiroz J.A. Hair: A complementary source of bioanalytical information in forensic toxicology. Bioanalysis. 2010;3:67–79. doi: 10.4155/bio.10.171.
    1. Beasley E., Francese S., Bassindale T. Detection and Mapping of Cannabinoids in Single Hair Samples through Rapid Derivatization and Matrix-Assisted Laser Desorption Ionization Mass Spectrometry. Anal. Chem. 2016;88:10328–10334. doi: 10.1021/acs.analchem.6b03551.
    1. Aamir M., Hafeez A., Ijaz A., Khan S.A., Chaudhry N., Ahmed N. Development and validation of a liquid chromatography–tandem mass spectrometry method for cannabis detection in hair of chronic cannabis users under surveillance. Pakistan J. Pathol. 2016;27:61–70.
    1. Pichini S., Marchei E., Martello S., Gottardi M., Pellegrini M., Svaizer F., Lotti A., Chiarotti M., Pacifici R. Identification and quantification of 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid glucuronide (THC-COOH-glu) in hair by ultra-performance liquid chromatography tandem mass spectrometry as a potential hair biomarker of cannabis use. Forensic Sci. Int. 2015;249:47–51. doi: 10.1016/j.forsciint.2015.01.011.
    1. Concheiro M., Huestis M.A. Drug exposure during pregnancy: Analytical methods and toxicological findings. Bioanalysis. 2018;10:587–606. doi: 10.4155/bio-2017-0260.
    1. Kim J., de Castro A., Lendoiro E., Cruz-Landeira A., López-Rivadulla M., Concheiro M. Detection of in utero cannabis exposure by umbilical cord analysis. Drug Test. Anal. 2018;10:636–643. doi: 10.1002/dta.2307.
    1. Lamy S., Hennart B., Houivet E., Dulaurent S., Delavenne H., Benichou J., Allorge D., Marret S., Thibaut F. Assessment of tobacco, alcohol and cannabinoid metabolites in 645 meconium samples of newborns compared to maternal self-reports. J. Psychiatr. Res. 2017;90:86–93. doi: 10.1016/j.jpsychires.2017.02.012.
    1. Chittamma A., Marin S.J., Williams J.A., Clark C., McMillin G.A. Detection of in utero marijuana exposure by GC–MS, ultra-sensitive ELISA and LC–TOF–MS using umbilical cord tissue. J. Anal. Toxicol. 2013;37:391–394. doi: 10.1093/jat/bkt052.
    1. Prego-Meleiro P., Lendoiro E., Concheiro M., Cruz A., López-Rivadulla M., de Castro A. Development and validation of a liquid chromatography tandem mass spectrometry method for the determination of cannabinoids and phase I and II metabolites in meconium. J. Chromatogr. A. 2017;1497:118–126. doi: 10.1016/j.chroma.2017.03.066.
    1. Brighenti V., Pellati F., Steinbach M., Maran D., Benvenuti S. Development of a new extraction technique and HPLC method for the analysis of non-psychoactive cannabinoids in fibre-type Cannabis sativa L. (hemp) J. Pharm. Biomed. Anal. 2017;143:228–236. doi: 10.1016/j.jpba.2017.05.049.
    1. Pellati F., Brighenti V., Sperlea J., Marchetti L., Bertelli D., Benvenuti S. New methods for the comprehensive analysis of bioactive compounds in Cannabis sativa L. (hemp) Molecules. 2018;23:2639. doi: 10.3390/molecules23102639.
    1. Richins R.D., Rodriguez-Uribe L., Lowe K., Ferral R., O’Connell M.A., Prego-Meleiro P., Lendoiro E., Concheiro M., Cruz A., López-Rivadulla M., et al. Accumulation of bioactive metabolites in cultivated medical Cannabis. PLoS ONE. 2018;113:e0201119. doi: 10.1371/journal.pone.0201119.
    1. Namdar D., Mazuz M., Ion A., Koltai H. Variation in the compositions of cannabinoid and terpenoids in Cannabis sativa derived from inflorescence position along the stem and extraction methods. Ind. Crops Prod. 2018;113:376–382. doi: 10.1016/j.indcrop.2018.01.060.
    1. Ciolino L.A., Ranieri T.L., Taylor A.M. Commercial cannabis consumer products part 2: HPLC-DAD quantitative analysis of cannabis cannabinoids. Forensic Sci. Int. 2018;289:438–447. doi: 10.1016/j.forsciint.2018.05.033.
    1. Kabir A., Holness H., Furton K.G., Almirall J.R. Recent advances in micro-sample preparation with forensic applications. TrAC Trends Anal. Chem. 2013;45:264–279. doi: 10.1016/j.trac.2012.11.013.
    1. Dulaurent S., Gaulier J.M., Imbert L., Morla A., Lachâtre G. Simultaneous determination of δ9-tetrahydrocannabinol, cannabidiol, cannabinol and 11-nor-δ9-tetrahydrocannabinol-9-carboxylic acid in hair using liquid chromatography-tandem mass spectrometry. Forensic Sci. Int. 2014;236:151–156. doi: 10.1016/j.forsciint.2014.01.004.
    1. Mackuľak T., Brandeburová P., Grenčíková A., Bodík I., Staňová A.V., Golovko O., Koba O., Mackuľaková M., Špalková V., Gál M., et al. Music festivals and drugs: Wastewater analysis. Sci. Total Environ. 2019;659:326–334. doi: 10.1016/j.scitotenv.2018.12.275.
    1. González-Mariño I., Thomas K.V., Reid M.J. Determination of cannabinoid and synthetic cannabinoid metabolites in wastewater by liquid–liquid extraction and ultra-high performance supercritical fluid chromatography-tandem mass spectrometry. Drug Test. Anal. 2018;10:222–228. doi: 10.1002/dta.2199.
    1. Petrović M., Debeljak Ž., Kezić N., Džidara P. Relationship between cannabinoids content and composition of fatty acids in hempseed oils. Food Chem. 2015;170:218–225. doi: 10.1016/j.foodchem.2014.08.039.
    1. Rotolo M.C., Pellegrini M., Martucci P., Giacobbe R., De Palma A., Pacifici R., Pichini S., Busardò F.P., Bisconti M. Cannabinoids determination in bronchoalveolar lavages of cannabis smokers with lung disease. Clin. Chem. Lab. Med. 2018 doi: 10.1515/cclm-2018-0426. in press.
    1. Ottaviani G., Cameriere R., Cippitelli M., Froldi R., Tassoni G., Zampi M., Cingolani M. Determination of drugs of abuse in a single sample of human teeth by a gas chromatography-mass spectrometry method. J. Anal. Toxicol. 2017;41:32–36. doi: 10.1093/jat/bkw105.
    1. Kataoka H., Saito K. Recent advances in SPME techniques in biomedical analysis. J. Pharm. Biomed. Anal. 2011;54:926–950. doi: 10.1016/j.jpba.2010.12.010.
    1. Barroso M., Gallardo E., Queiroz J.A. The role of liquid-phase microextraction techniques in bioanalysis. Bioanalysis. 2015;7:2195–2201. doi: 10.4155/bio.15.136.
    1. Barroso M., Moreno I., da Fonseca B., Queiroz J.A., Gallardo E. Role of microextraction sampling procedures in forensic toxicology. Bioanalysis. 2012;4:1805–1826. doi: 10.4155/bio.12.139.
    1. Hall B.J., Satterfield-Doerr M., Parikh A.R., Brodbelt J.S. Determination of cannabinoids in water and human saliva by solid-phase microextraction and quadrupole ion trap gas chromatography/mass spectrometry. Anal. Chem. 1998;70:1788–1796. doi: 10.1021/ac971228g.
    1. Strano-Rossi S., Chiarotti M. Solid-phase microextraction for cannabinoids analysis in hair and its possible application to other drugs. J. Anal. Toxicol. 1999;23:7–10. doi: 10.1093/jat/23.1.7.
    1. Musshoff F., Junker H.P., Lachenmeier D.W., Kroener L., Madea B. Fully automated determination of cannabinoids in hair samples using headspace solid-phase microextraction and gas chromatography-mass spectrometry. J. Anal. Toxicol. 2002;26:554–560. doi: 10.1093/jat/26.8.554.
    1. Emídio E.S., de Menezes Prata V., Dórea H.S. Validation of an analytical method for analysis of cannabinoids in hair by headspace solid-phase microextraction and gas chromatography–ion trap tandem mass spectrometry. Anal. Chim. Acta. 2010;670:63–71. doi: 10.1016/j.aca.2010.04.023.
    1. Lachenmeier D.W., Kroener L., Musshoff F., Madea B. Determination of cannabinoids in hemp food products by use of headspace solid-phase microextraction and gas chromatography–mass spectrometry. Anal. Bioanal. Chem. 2004;378:183–189. doi: 10.1007/s00216-003-2268-4.
    1. Racamonde I., Villaverde-de-Sáa E., Rodil R., Quintana J.B., Cela R. Determination of Δ9-tetrahydrocannabinol and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol in water samples by solid-phase microextraction with on-fiber derivatization and gas chromatography–mass spectrometry. J. Chromatogr. A. 2012;1245:167–174. doi: 10.1016/j.chroma.2012.05.017.
    1. Dizioli Rodrigues de Oliveira C., Yonamine M., de Moraes Moreau R.L. Headspace solid-phase microextraction of cannabinoids in human head hair samples. J. Sep. Sci. 2007;30:128–134. doi: 10.1002/jssc.200600192.
    1. Musshoff F., Lachenmeier D.W., Kroener L., Madea B. Automated headspace solid-phase dynamic extraction for the determination of cannabinoids in hair samples. Forensic Sci. Int. 2003;133:32–38. doi: 10.1016/S0379-0738(03)00047-1.
    1. Lachenmeier D.W., Kroener L., Musshoff F., Madea B. Application of tandem mass spectrometry combined with gas chromatography and headspace solid-phase dynamic extraction for the determination of drugs of abuse in hair samples. Rapid Commun. Mass Spectrom. 2003;17:472–478. doi: 10.1002/rcm.945.
    1. Sergi M., Montesano C., Odoardi S., Rocca L.M., Fabrizi G., Compagnone D., Curini R. Micro extraction by packed sorbent coupled to liquid chromatography tandem mass spectrometry for the rapid and sensitive determination of cannabinoids in oral fluids. J. Chromatogr. A. 2013;1301:139–146. doi: 10.1016/j.chroma.2013.05.072.
    1. Rosado T., Fernandes L., Barroso M., Gallardo E. Sensitive determination of THC and main metabolites in human plasma by means of microextraction in packed sorbent and gas chromatography–tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017;1043:63–73. doi: 10.1016/j.jchromb.2016.09.007.
    1. Moradi M., Yamini Y., Baheri T. Analysis of abuse drugs in urine using surfactant-assisted dispersive liquid-liquid microextraction. J. Sep. Sci. 2011;34:1722–1729. doi: 10.1002/jssc.201100132.
    1. Gonçalves A., Gallardo E., Barroso M. Variations in headspace microextraction procedures and current applications in bioanalysis. Bioanalysis. 2015;7:2235–2240. doi: 10.4155/bio.15.128.
    1. Wang Y.H., Avula B., Elsohly M.A., Radwan M.M., Wang M., Wanas A.S., Mehmedic Z., Khan I.A. Quantitative Determination of Δ9-THC, CBG, CBD, Their Acid Precursors and Five Other Neutral Cannabinoids by UHPLC-UV-MS. Planta Med. 2018;84:260–266. doi: 10.1055/s-0043-124873.
    1. Gul W., Gul S.W., Radwan M.M., Wanas A.S., Mehmedic Z., Khan I.I., Sharaf M.H.M., ElSohly M.A. Determination of 11 cannabinoids in biomass and extracts of different varieties of Cannabis using high-performance liquid chromatography. J. AOAC Int. 2015;98:1523–1528. doi: 10.5740/jaoacint.15-095.
    1. Sharma P., Murthy P., Bharath M.M.S. Chemistry, metabolism, and toxicology of cannabis: Clinical implications. Iran. J. Psychiatry. 2012;7:149.
    1. Citti C., Ciccarella G., Braghiroli D., Parenti C., Vandelli M.A., Cannazza G. Medicinal cannabis: Principal cannabinoids concentration and their stability evaluated by a high performance liquid chromatography coupled to diode array and quadrupole time of flight mass spectrometry method. J. Pharm. Biomed. Anal. 2016;128:201–209. doi: 10.1016/j.jpba.2016.05.033.
    1. Patel B., Wene D., Fan Z. (Tina) Qualitative and quantitative measurement of cannabinoids in cannabis using modified HPLC/DAD method. J. Pharm. Biomed. Anal. 2017;146:15–23. doi: 10.1016/j.jpba.2017.07.021.
    1. De Backer B., Debrus B., Lebrun P., Theunis L., Dubois N., Decock L., Verstraete A., Hubert P., Charlier C. Innovative development and validation of an HPLC/DAD method for the qualitative and quantitative determination of major cannabinoids in cannabis plant material. J. Chromatogr. B. 2009;877:4115–4124. doi: 10.1016/j.jchromb.2009.11.004.
    1. Cardenia V., Gallina Toschi T., Scappini S., Rubino R.C., Rodriguez-Estrada M.T. Development and validation of a Fast gas chromatography/mass spectrometry method for the determination of cannabinoids in Cannabis sativa L. J. Food Drug Anal. 2018;26:1283–1292. doi: 10.1016/j.jfda.2018.06.001.
    1. Baciu T., Borrull F., Aguilar C., Calull M. Recent trends in analytical methods and separation techniques for drugs of abuse in hair. Anal. Chim. Acta. 2015;856:1–26. doi: 10.1016/j.aca.2014.06.051.
    1. Rosado T., Soares S., Malaca S., Gonçalves J., Barroso M., Gallardo E. The role of liquid chromatography in toxicological analysis. In: Lucero I., editor. High-Performance Liquid Chromatography: Types, Parameters and Applications. Nova Science Publishers; New York, NY, USA: 2018. pp. 1–120.
    1. Calvi L., Pentimalli D., Panseri S., Giupponi L., Gelmini F., Beretta G., Vitali D., Bruno M., Zilio E., Pavlovic R., et al. Comprehensive quality evaluation of medical Cannabis sativa L. inflorescence and macerated oils based on HS-SPME coupled to GC–MS and LC-HRMS (q-exactive orbitrap®) approach. J. Pharm. Biomed. Anal. 2018;150:208–219. doi: 10.1016/j.jpba.2017.11.073.

Source: PubMed

Подписаться