Short-term prolactin administration causes expressible galactorrhea but does not affect bone turnover: pilot data for a new lactation agent

Gabrielle Page-Wilson, Patricia C Smith, Corrine K Welt, Gabrielle Page-Wilson, Patricia C Smith, Corrine K Welt

Abstract

Background: Medications used to augment lactation increase prolactin secretion but can have intolerable side effects. We examined the biological activity of recombinant human prolactin (r-hPRL) as preliminary data for its use to augment lactation.

Methods: Healthy, non-postpartum women (n = 21) with regular menstrual cycles underwent a seven day randomized, double-blind, placebo-controlled trial of r-hPRL. Expressible galactorrhea, markers of bone turnover, calcium homeostasis and gonadal function were measured and side effects recorded.

Results: Prolactin levels increased during r-hPRL administration (20.0 +/- 2.8 to 231.7 +/- 48.9 microg/L at 6 hours; p < 0.05). Five of nine participants who received r-hPRL developed expressible galactorrhea (p < 0.001). Urinary deoxypyridinoline decreased and bone specific alkaline phosphatase increased in r-hPRL and placebo groups. Menstrual cycle lengths were not altered and side effects were similar between r-hPRL and placebo groups.

Conclusion: In summary, r-hPRL can cause expressible galactorrhea. Seven days of r-hPRL administration does not adversely affect bone turnover or menstrual cyclicity. Thus, r-hPRL may be a viable option for short-term lactation augmentation.

Trial registration: Clinical Trials.gov NCT00438490.

Figures

Figure 1
Figure 1
Prolactin levels after r-hPRL or placebo injections. Prolactin levels (mean ± SE) after administration of 60 μg/kg recombinant human prolactin (solid lines) or placebo (dotted lines) on the first (closed circles) and 7th day of injections (open squares), over 6 hours. * designates significant differences in r-hPRL and placebo on the same day at p < 0.05.
Figure 2
Figure 2
Reproductive hormone concentrations during r-hPRL or placebo injections. LH, FSH and estradiol (E2) concentrations (mean ± SE) in normal women during 7 days of treatment with placebo (n = 12; black bars) and r-hPRL (n = 9; white bars) in the early (EFP), mid (MFP) and late follicular phase (LFP). There were no differences in hormone concentrations at any cycle stage between the two groups.

References

    1. Breastfeeding and the use of human milk. American Academy of Pediatrics. Work Group on Breastfeeding. Pediatrics. 1997;100:1035–1039. doi: 10.1542/peds.100.6.1035.
    1. Powers NG. Slow weight gain and low milk supply in the breastfeeding dyad. Clin Perinatol. 1999;26:399–430.
    1. Meier PP, Brown LP. State of the science: breastfeeding for mothers of low birth weight infants. Nurs Clin North Am. 1996;31:351–365.
    1. Kauppila A, Chatelain P, Kirkinen P, Kivinen S, Ruokonen A. Isolated prolactin deficiency in a woman with puerperal alactogenesis. J Clin Endocrinol Metab. 1987;64:309–312.
    1. Brun del Re R, del Pozo E, de Grandi P, Friesen H, Hinselmann M, Wyss H. Prolactin inhibition and suppression of puerperal lactation by a Br-ergocryptine (CB 154) Obstet Gynecol. 1973;41:884–890.
    1. Howie PW, McNeilly AS, McArdle T, Smart L, Houston MJ. The relationship between suckling induced prolactin response and lactogenesis. J Clin Endocrinol Metab. 1980;50:670–673.
    1. Ingram JC, Woolridge MW, Greenwood RJ, McGrath L. Maternal predictors of early breast milk output. Acta Paediatr. 1999;88:493–499. doi: 10.1080/08035259950169486.
    1. Hennart P, Delogne-Desnoeck J, Vis H, Robyn C. Serum levels of prolactin and milk production in women during a lactation period of thirty months. Clin Endocrinol. 1981;14:349–353.
    1. Aono T, Shioji T, Shoda T, Kurachi K. The initiation of human lactation and prolactin response to suckling. J Clin Endocrinol Metab. 1977;44:1101–1106.
    1. Uvnas-Moberg K, Widstrom A, Werner S, Matthiesen A, Winberg J. Oxytocin and prolactin levels in breast-feeding women. Acta Obstet Gynecol Scand. 1990;69:301–306.
    1. Ehrenkranz RA, Ackerman BA. Metoclopramide effect on faltering milk production by mothers of premature infants. Pediatrics. 1986;78:614–620.
    1. Kauppila A, Kivinen S, Ylikorkala O. Metoclopramide increases prolactin release and milk secretion in puerperium without stimulating the secretion of thyrotropin and thyroid hormones. J Clin Endocrinol Metab. 1981;52:436–439.
    1. Petraglia F, De L, V, Sardelli S, Pieroni ML, D'Antona N, Genazzani AR. Domperidone in defective and insufficient lactation. Eur J Obstet Gynecol Reprod Biol. 1985;19:281–287. doi: 10.1016/0028-2243(85)90042-5.
    1. da Silva OP, Knoppert DC, Angelini MM, Forret PA. Effect of domperidone on milk production in mothers of premature newborns: a randomized, double-blind, placebo-controlled trial. CMAJ. 2001;164:17–21.
    1. Gabay MP. Galactogogues: medications that induce lactation. J Hum Lact. 2002;18:274–279.
    1. Henderson A. Domperidone. Discovering new choices for lactating mothers. AWHONN Lifelines. 2003;7:54–60. doi: 10.1177/1091592303251726.
    1. Bikle DD. Biochemical markers in the assessment of bone disease. Am J Med. 1997;103:427–436. doi: 10.1016/S0002-9343(97)00137-X.
    1. Sowers M. Pregnancy and lactation as risk factors for subsequent bone loss and osteoporosis. J Bone Miner Res. 1996;11:1052–1060.
    1. Klibanski A, Neer RM, Beitins IZ, Ridgway EC, Zervas NT, McArthur JW. Decreased bone density in hyperprolactinemic women. N Engl J Med. 1980;303:1511–1514.
    1. Sowers MF, Hollis BW, Shapiro B, Randolph J, Janney CA, Zhang D, Schork A, Crutchfield CM, Stanzyck F. Elevated parathyroid hormone-related peptide associated with lactation and bone density loss. JAMA. 1996;276:549–554. doi: 10.1001/jama.276.7.549.
    1. Klibanski A, Biller BMK, Rosenthal DI, Schoenfeld DA, Saxe V. Effects of prolactin and estrogen deficiency in amenorrheic bone loss. J Clin Endocrinol Metab. 1988;67:124–130.
    1. Kovacs CS, Kronenberg HM. Maternal-fetal calcium and bone metabolism during pregnancy, puerperium and lactation. Endocr Rev. 1997;18:832–872. doi: 10.1210/er.18.6.832.
    1. Schlechte JA, Sherman B, Martin R. Bone density in amenorrheic women with and without hyperprolactinemia. J Clin Endocrinol Metab. 1983;56:1120–1123.
    1. Colao A, DiSomma C, Loche S, DiSarno A, Klain M, Pivonello R, Pietrosante M, Salvatore M, Lombardi G. Prolactinomas in adolescents: persistent bone loss after 2 years of prolactin normalization. Clin Endocrinol. 2000;52:319–327. doi: 10.1046/j.1365-2265.2000.00902.x.
    1. Clement-Lacroix P, Ormandy C, Lepescheux L, Ammann P, Damotte D, Goffin B, Bouchard B, Amling M, Gaillard-Kelly M, Binart N, Baron R, Kelly PA. Osteoblasts are a new target for prolactin: Analysis of bone formation in prolactin receptor knockout mice. Endocrinology. 1999;140:96–105. doi: 10.1210/en.140.1.96.
    1. McNeilly AS. Lactational control of reproduction. Reprod Fertil Dev. 2001;13:583–590. doi: 10.1071/RD01056.
    1. Page-Wilson G, Smith PC, Welt CK. Prolactin Suppresses GnRH but Not TSH Secretion. Horm Res. 2006;65:31–38. doi: 10.1159/000090377.
    1. Johnston JM, Amico JA. A prospective longitudinal study of the release of oxytocin and prolactin in response to infant suckling in long term lactation. J Clin Endocrinol Metab. 1986;62:653–657.
    1. Battin DA, Marrs RP, Fleiss PM, Mishell DR. Effect of suckling on serum prolactin, luteinizing hormone, follicle-stimulating hormone, and estradiol during prolonged lactation. Obstet Gynecol. 1985;65:785–788.
    1. Noel GL, Suh HK, Frantz AG. Prolactin release during nursing and breast stimulation in postpartum and nonpostpartum subjects. J Clin Endocrinol Metab. 1974;38(3):413–423.
    1. Price AE, Logvinenko KB, Higgins EA, Cole ES, Richards SM. Studies on the microheterogeneity and in vitro activity of glycosylated and nonglycosylated recombinant human prolactin separated using a novel purification process. Endocrinology. 1995;136:4827–4833. doi: 10.1210/en.136.11.4827.
    1. Jones JR, Gentile GP. Incidence of galactorrhea in ovulatory and anovulatory females. Obstet Gynecol. 1975;45:13–14.
    1. Lippuner K, Zehnder HJ, Casez JP, Takkinen R, Jaeger P. PTH-related protein is released into the mother's bloodstream during lactation: evidence for beneficial effects on maternal calcium-phosphate metabolism. J Bone Miner Res. 1996;11:1394–1399.
    1. Kovacs CS, Chik CL. Hyperprolactinemia caused by lactation and pituitary adenomas is associated with altered serum calcium, phosphate, parathyroid hormone (PTH), and PTH-related peptide levels. J Clin Endocrinol Metab. 1995;80:3036–3042. doi: 10.1210/jc.80.10.3036.
    1. Kleinman R. Protein values of milk samples from mothers without biological pregnancies. J Pediatrics. 1980;97:612–615. doi: 10.1016/S0022-3476(80)80023-0.
    1. Kulski JK, Hartmann PE, Saint WJ, Giles PF, Gutteridge DH. Changes in milk composition of nonpuerperal women. Am J Obstet Gynecol. 1981;139:597–604.
    1. de Gezelle H, Ooghe W, Thiery M, Dhont M. Metoclopramide and breast milk. Eur J Obstet Gynecol Reprod Biol. 1983;15:31–36. doi: 10.1016/0028-2243(83)90294-0.
    1. Zittermann A, Schwarz I, Scheld K, Sudhop T, Berthold HK, von BK, van , V, Stehle P. Physiologic fluctuations of serum estradiol levels influence biochemical markers of bone resorption in young women. J Clin Endocrinol Metab. 2000;85:95–101. doi: 10.1210/jc.85.1.95.
    1. Massafra C, De FC, Agnusdei DP, Gioia D, Bagnoli F. Androgens and osteocalcin during the menstrual cycle. J Clin Endocrinol Metab. 1999;84:971–974. doi: 10.1210/jc.84.3.971.
    1. Gorai I, Taguchi Y, Chaki O, Kikuchi R, Nakayama M, Yang BC, Yokota S, Minaguchi H. Serum soluble interleukin-6 receptor and biochemical markers of bone metabolism show significant variations during the menstrual cycle. J Clin Endocrinol Metab. 1998;83:326–332. doi: 10.1210/jc.83.2.326.
    1. Gorai I, Chaki O, Nakayama M, Minaguchi H. Urinary biochemical markers for bone resorption during the menstrual cycle. Calcif Tissue Int. 1995;57:100–104. doi: 10.1007/BF00298428.
    1. Di SC, Colao A, Di SA, Klain M, Landi ML, Facciolli G, Pivonello R, Panza N, Salvatore M, Lombardi G. Bone marker and bone density responses to dopamine agonist therapy in hyperprolactinemic males. J Clin Endocrinol Metab. 1998;83:807–813. doi: 10.1210/jc.83.3.807.
    1. Burstyn PG, McKillop W, Lloyd IJ. The effects of prolactin on the renal excretion of water, sodium, potassium and calcium in the rabbit. ICRS J Int Res Commun. 1974;2:1474.
    1. Reddy GS, Norman AW, Willis DM, Goltzman D, Guyda H, Solomon S, Philips DR, Bishop JE, Mayer E. Regulation of vitamin D metabolism in normal human pregnancy. J Clin Endocrinol Metab. 1983;56:363–370.
    1. Hillman L, Sateesha S, Haussler M, Wiest W, Slatopolsky E, Haddad J. Control of mineral homeostasis during lactation: interrelationships of 25-hydroxyvitamin D, 24,25-dihydroxyvitamin D, 1,25-dihydroxyvitamin D, parathyroid hormone, calcitonin, prolactin, and estradiol. Am J Obstet Gynecol. 1981;139:471–476.
    1. Kumar R, Abboud CF, Riggs BL. The effect of elevated prolactin levels on plasma 1,25-dihydroxyvitamin D and intestinal absorption of calcium. Mayo Clin Proc. 1980;55:51–53.
    1. Spanos E, Colston KW, Evans IM, Galante LS, Macauley SJ, MacIntyre I. Effect of prolactin on vitamin D metabolism. Mol Cell Endocrinol. 1976;5:163–167. doi: 10.1016/0303-7207(76)90080-0.
    1. Thiede MA. The mRNA encoding a parathyroid hormone-like peptide is produced in mammary tissue in response to elevations in serum prolactin. Mol Endocrinol. 1989;3:1443–1447.
    1. Thompson GE, Ratcliffe WA, Hughes S, Abbas SK, Care AD. Local control of parathyroid hormone-related protein secretion by the mammary gland of the goat. Comp Biochem Physiol Comp Physiol. 1994;108:485–490. doi: 10.1016/0300-9629(94)90331-X.
    1. VanHouten J, Dann P, McGeoch G, Brown EM, Krapcho K, Neville M, Wysolmerski JJ. The calcium-sensing receptor regulates mammary gland parathyroid hormone-related protein production and calcium transport. J Clin Invest. 2004;113:598–608. doi: 10.1172/JCI200418776.
    1. Bucht E, Carlqvist M, Hedlund B, Bremme K, Torring O. Parathyroid hormone-related peptide in human milk measured by a mid-molecule radioimmunoassay. Metabolism. 1992;41:11–16. doi: 10.1016/0026-0495(92)90183-B.
    1. Ratcliffe WA, Green E, Emly J, Norbury S, Lindsay M, Heath DA, Ratcliffe JG. Identification and partial characterization of parathyroid hormone-related protein in human and bovine milk. J Endocrinol. 1990;127:167–176.
    1. Yamamoto M, Fisher JE, Thiede MA, Caulfield MP, Rosenblatt M, Duong LT. Concentrations of parathyroid hormone-related protein in rat milk change with duration of lactation and interval from previous suckling, but not with milk calcium. Endocrinology. 1992;130:741–747. doi: 10.1210/en.130.2.741.
    1. Khosla S, van Heerden JA, Gharib H, Jackson IT, Danks J, Hayman JA, Martin TJ. Parathyroid hormone-related protein and hypercalcemia secondary to massive mammary hyperplasia. N Engl J Med. 1990;322:1157.
    1. Nielsen HK, Brixen K, Bouillon R, Mosekilde L. Changes in biochemical markers of osteoblastic activity during the menstrual cycle. J Clin Endocrinol Metab. 1990;70:1431–1437.

Source: PubMed

Подписаться