Effect of daily oral minodronate on vertebral fractures in Japanese postmenopausal women with established osteoporosis: a randomized placebo-controlled double-blind study

T Matsumoto, H Hagino, M Shiraki, M Fukunaga, T Nakano, K Takaoka, H Morii, Y Ohashi, T Nakamura, T Matsumoto, H Hagino, M Shiraki, M Fukunaga, T Nakano, K Takaoka, H Morii, Y Ohashi, T Nakamura

Abstract

SUMMARY; A randomized placebo-controlled trial was conducted to examine the effect of daily oral 1 mg minodronate on vertebral fractures in 704 postmenopausal women with established osteoporosis for 24 months. Minodronate treatment reduced vertebral fractures by 59% without serious adverse events. Minodronate is a safe and effective bisphosphonate for osteoporosis treatment.

Introduction: Minodronate increases bone mineral density (BMD) in postmenopausal osteoporotic patients. However, its efficacy in reducing osteoporotic fractures has not been tested.

Methods: To examine anti-fracture efficacy and safety of daily oral minodronate in postmenopausal women with established osteoporosis, a randomized, double-blind, placebo-controlled trial was conducted in 704 postmenopausal women (55 to 80 years) with one to five vertebral fractures and low BMD. Subjects were randomly assigned to receive daily oral 1 mg minodronate (n = 359) or placebo (n = 345) for 24 months, with daily supplements of 600 mg calcium and 200 IU vitamin D(3).

Results: Daily 1 mg minodronate for 24 months reduced the risk of vertebral fractures by 59% (95% CI, 36.6-73.3%). Furthermore, when fractures during the first 6 months were eliminated, the risk of vertebral fractures from 6 to 24 months was reduced by 74% in minodronate-treated group. Minodronate treatment also reduced height loss. Bone turnover markers were suppressed by about 50% after 6 months of minodronate treatment and remained suppressed thereafter. The overall safety profile including gastrointestinal safety was similar between the two groups.

Conclusions: Daily oral minodronate is safe, well-tolerated, and is effective in reducing vertebral fracture risk in postmenopausal women with established osteoporosis.

Trial registration: ClinicalTrials.gov NCT00212667.

Figures

Fig. 1
Fig. 1
Enrollment and outcomes. A total of 1,083 subjects were screened, and 704 subjects were randomized to take either minodronate (359 subjects) or placebo (345 subjects)
Fig. 2
Fig. 2
Kaplan–Meier estimates of the effect of daily oral 1 mg minodronate for 24 months on the risk of vertebral fractures in osteoporotic subjects. Cumulative incidence of vertebral fractures from the start of the study. Minodronate treatment reduced relative risk of vertebral fractures by 59%
Fig. 3
Fig. 3
Effect of daily oral 1 mg minodronate for 24 months on height changes of osteoporotic patients. a Minodronate treatment significantly reduced height reduction at both 12 months (*p < 0.05) and 24 months (**p < 0.01). b Height changes in minodronate-treated patients with (closed triangle, n = 27) or without (closed diamond, n = 242) vertebral fracture, and placebo-treated patients with (open triangle, n = 61) or without vertebral fracture (open diamond, n = 200) are shown. Data are means ± SE
Fig. 4
Fig. 4
Effect of daily oral 1 mg minodronate for 24 months on the changes in bone turnover markers in osteoporotic patients. Data are means ± SE

References

    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '1535172', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/1535172/'}]}
    2. Ettinger B, Black DM, Nevitt MC et al (1992) Contribution of vertebral deformities to chronic back pain and disability. The study of osteoporotic fractures research group. J Bone Miner Res 7:449–456
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1093/ije/24.6.1171', 'is_inner': False, 'url': 'https://doi.org/10.1093/ije/24.6.1171'}, {'type': 'PubMed', 'value': '8824859', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/8824859/'}]}
    2. Ross PD, Fujiwara S, Huang C et al (1995) Vertebral fracture prevalence in women in Hiroshima compared to Caucasians or Japanese in the US. Int J Epidemiol 24:1171–1177
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1001/jama.285.3.320', 'is_inner': False, 'url': 'https://doi.org/10.1001/jama.285.3.320'}, {'type': 'PubMed', 'value': '11176842', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11176842/'}]}
    2. Lindsay R, Silverman SL, Cooper C et al (2001) Risk of new vertebral fracture in the year following a fracture. JAMA 285:320–323
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/s001980070075', 'is_inner': False, 'url': 'https://doi.org/10.1007/s001980070075'}, {'type': 'PubMed', 'value': '11069188', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11069188/'}]}
    2. Cauley JA, Thompson DE, Ensrud KC et al (2000) Risk of mortality following clinical fractures. Osteoporos Int 11:556–561
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '10733048', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10733048/'}]}
    2. Ensrud KE, Thompson DE, Cauley JA et al (2000) Prevalent vertebral deformities predict mortality and hospitalization in older women with low bone mass. Fracture intervention trial research group. J Am Geriatr Soc 48:241–249
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1359/jbmr.1998.13.6.1011', 'is_inner': False, 'url': 'https://doi.org/10.1359/jbmr.1998.13.6.1011'}, {'type': 'PubMed', 'value': '9626633', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9626633/'}]}
    2. Yoshida Y, Moriya A, Kitamura K et al (1998) Responses of trabecular and cortical bone turnover and bone mass and strength to bisphosphonate YH529 in ovariohysterectomized beagles with calcium restriction. J Bone Miner Res 13:1011–1022
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '11160603', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11160603/'}]}
    2. Dunford JE, Thompson K, Coxon FP et al (2001) Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J Pharmacol Exp Ther 296:235–242
    1. None
    2. Morii H, Nishizawa Y, Taketani Y et al (2002) A randomized controlled trial with ONO-5920 (Minodronate/YM529) in Japanese patients with postmenopausal osteoporosis. J Bone Miner Res 17(Suppl):S471
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/s007740170001', 'is_inner': False, 'url': 'https://doi.org/10.1007/s007740170001'}, {'type': 'PubMed', 'value': '11685647', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11685647/'}]}
    2. Orimo H, Hayashi Y, Fukunaga M et al (2001) Diagnostic criteria of primary osteoporosis: year 2000 revision. Osteoporosis diagnostic criteria review committee: Japanese society for bone mineral research. J Bone Miner Metab 19:331–937
    1. None
    2. Orimo H, Sugioka Y, Fukunaga M et al (1996) Diagnostic criteria of primary osteoporosis (1996 version). Osteoporosis diagnostic criteria review committee: Japanese society for bone and mineral research. Osteoporosis Jpn 4:643–653
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1001/jama.282.14.1344', 'is_inner': False, 'url': 'https://doi.org/10.1001/jama.282.14.1344'}, {'type': 'PubMed', 'value': '10527181', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10527181/'}]}
    2. Harris ST, Watts NB, Genant HK et al (1999) Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis. A randomized controlled trial. JAMA 282:1344–1352
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '8237484', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/8237484/'}]}
    2. Genant HK, Wu CY, Van Kuijk C et al (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/BF01622258', 'is_inner': False, 'url': 'https://doi.org/10.1007/bf01622258'}, {'type': 'PubMed', 'value': '8800786', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/8800786/'}]}
    2. Wu CY, Li J, Jergas M et al (1995) Comparison of semiquantitative and quantitative techniques for the assessment of prevalent and incident vertebral fractures. Osteoporos Int 5:354–370
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/S0378-4347(00)83378-2', 'is_inner': False, 'url': 'https://doi.org/10.1016/s0378-4347(00)83378-2'}, {'type': 'PubMed', 'value': '2159959', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/2159959/'}]}
    2. James IT, Perrett D, Thompson PW (1990) Rapid assay for hard tissue collagen cross-links using isocratic ion-pair reversed-phase liquid chromatography. J Chromatogr 525:43–57
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1359/JBMR.040325', 'is_inner': False, 'url': 'https://doi.org/10.1359/jbmr.040325'}, {'type': 'PubMed', 'value': '15231010', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15231010/'}]}
    2. Chesnut CH, Skag A, Christiansen C et al (2004) Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J Bone Miner Res 19:1241–1249
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1056/NEJMoa067312', 'is_inner': False, 'url': 'https://doi.org/10.1056/nejmoa067312'}, {'type': 'PubMed', 'value': '17476007', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17476007/'}]}
    2. Black DM, Delmas PD, Eastell R et al (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356:1809–1822

Source: PubMed

Подписаться