Scapula alata in early breast cancer patients enrolled in a randomized clinical trial of post-surgery short-course image-guided radiotherapy

Nele Adriaenssens, Mark De Ridder, Pierre Lievens, Hilde Van Parijs, Marian Vanhoeij, Geertje Miedema, Mia Voordeckers, Harijati Versmessen, Guy Storme, Jan Lamote, Stephanie Pauwels, Vincent Vinh-Hung, Nele Adriaenssens, Mark De Ridder, Pierre Lievens, Hilde Van Parijs, Marian Vanhoeij, Geertje Miedema, Mia Voordeckers, Harijati Versmessen, Guy Storme, Jan Lamote, Stephanie Pauwels, Vincent Vinh-Hung

Abstract

Background: Scapula alata (SA) is a known complication of breast surgery associated with palsy of the serratus anterior, but it is seldom mentioned. We evaluated the risk factors associated with SA and the relationship of SA with ipsilateral shoulder/arm morbidity in a series of patients enrolled in a trial of post-surgery radiotherapy (RT).

Methods: The trial randomized women with completely resected stage I-II breast cancer to short-course image-guided RT, versus conventional RT. SA, arm volume and shoulder-arm mobility were measured prior to RT and at one to three months post-RT. Shoulder/arm morbidities were computed as a post-RT percentage change relative to pre-RT measurements.

Results: Of 119 evaluable patients, 13 (= 10.9%) had pre-RT SA. Age younger than 50 years old, a body mass index less than 25 kg/m2, and axillary lymph node dissection were significant risk factors, with odds ratios of 4.8 (P = 0.009), 6.1 (P = 0.016), and 6.1 (P = 0.005), respectively. Randomization group was not significant. At one to three months' post-RT, mean arm volume increased by 4.1% (P = 0.036) and abduction decreased by 8.6% (P = 0.046) among SA patients, but not among non-SA patients. SA resolved in eight, persisted in five, and appeared in one patient.

Conclusion: The relationship of SA with lower body mass index suggests that SA might have been underestimated in overweight patients. Despite apparent resolution of SA in most patients, pre-RT SA portended an increased risk of shoulder/arm morbidity. We argue that SA warrants further investigation. Incidentally, the observation of SA occurring after RT in one patient represents the second case of post-RT SA reported in the literature.

Trial registration: ClinicalTrials.gov NCT00459628.

Figures

Figure 1
Figure 1
Physical measurements. Measured at five locations (marked with a dermographic pencil but not visible in the picture). The tape box has a push button to maintain the same tension. Abduction: running angle by lateral elevation, measured between the midline of the hemibody (goniometer’s arm in line with the ipsilateral posterior superior iliac spine), and the midline of the upper arm (goniometer’s arm in line with the lateral epicondyle of the humerus). Retroflexion: running angle by posterior elevation, measured between the midline of the body (goniometer’s arm in line downward with the trochanter major), and the midline of the upper arm (goniometer’s arm in line with the lateral epicondyle of the humerus). Anteflexion: running angle by anterior elevation, measured between the midline of the body (goniometer’s arm in line downward with the trochanter major), and the midline of the upper arm (goniometer’s arm in line with the lateral epicondyle of the humerus). Endorotation: the thumb as close as possible to C7. The number of vertebrae between C7 and the vertebra that can be reached with the thumb is marked as endorotation measurement. Scapular distance: with the patient’s arms held actively at 90° anteflexion, the distance of the scapula inferior angle to the spine, perpendicularly to the spine, is measured with a tape.
Figure 2
Figure 2
Scapular winging. Scapula alata assessed in TomoBreast patients. (A) Patient 1 pre-RT arms relaxed, (B) Patient 1 pre-RT arms elevated, (C) Patient 2 pre-RT arms relaxed, (D) Patient 2 pre-RT arms elevated, (E) Patient 2 post-RT arms relaxed, (F) Patient 2 post-RT arms elevated, (G) Patient 3 pre-RT arms relaxed and (H) Patient 3 pre-RT arms elevated.
Figure 3
Figure 3
Histograms of shoulder/arm percent changes, according to scapula alata status. Curves, continuous density estimates; SA, scapula alata status pre-radiotherapy, Y-axis, relative frequency density.
Figure 4
Figure 4
Toxicity grades according to scapula alata status. SA, scapula alata pre-radiotherapy status, 0 = absent, 1 = present.

References

    1. Vanderstraeten J. Scapula alata. Rev Med Gen. 2010;269:32–33.
    1. Martin RM, Fish DE. Scapular winging: anatomical review, diagnosis, and treatments. Curr Rev Musculoskelet Med. 2008;1:1–11. doi: 10.1007/s12178-007-9000-5.
    1. Kauppila LI, Vastamaki M. Iatrogenic serratus anterior paralysis. Long-term outcome in 26 patients. Chest. 1996;109:31–34. doi: 10.1378/chest.109.1.31.
    1. Paim CR, de Paula Lima ED, Fu MR, de Paula LA, Cassali GD. Post lymphadenectomy complications and quality of life among breast cancer patients in Brazil. Cancer Nurs. 2008;31:302–309. doi: 10.1097/01.NCC.0000305747.49205.b1.
    1. Velpeau AALM. Traite d’anatomie chirurgicale ou anatomie des regions, consideree dans ses rapports avec la chirurgie. Paris, France: Crevot; 1825.
    1. Lotze MT, Duncan MA, Gerber LH, Woltering EA, Rosenberg SA. Early versus delayed shoulder motion following axillary dissection: a randomized prospective study. Ann Surg. 1981;193:288–295. doi: 10.1097/00000658-198103000-00007.
    1. Roses DF, Brooks AD, Harris MN, Shapiro RL, Mitnick J. Complications of level I and II axillary dissection in the treatment of carcinoma of the breast. Ann Surg. 1999;230:194–201. doi: 10.1097/00000658-199908000-00009.
    1. Saied GM, Kamel RM, Dessouki NR. The effect of mastectomy and radiotherapy for breast carcinoma on soft tissues of the shoulder and its joint mobility among Egyptian patients. Tanzan Health Res Bull. 2007;9:121–125.
    1. de Oliveira JF, Bezerra T, Ribeiro ACP, Dias RA, Abrahao F, Silva JG, Bergmann A. Incidence and risk factors of winged scapula after axillary lymph node dissection in breast cancer surgery. Appl Cancer Res. 2009;29:69–73.
    1. de Sousa Mastrella A, Freitas-Junior R, Paulinelli RR, Soares LR. Escápula alada pós-linfadenectomia no tratamento do câncer de mama. Rev Bras Cancerologia. 2009;55:397–404.
    1. Efron B. Forcing a sequential experiment to be balanced. Biometrika. 1971;58:403–417. doi: 10.1093/biomet/58.3.403.
    1. Karges JR, Mark BE, Stikeleather SJ, Worrell TW. Concurrent validity of upper-extremity volume estimates: comparison of calculated volume derived from girth measurements and water displacement volume. Phys Ther. 2003;83:134–145.
    1. Nijs J, Roussel N, Vermeulen K, Souvereyns G. Scapular positioning in patients with shoulder pain: a study examining the reliability and clinical importance of 3 clinical tests. Arch Phys Med Rehabil. 2005;86:1349–1355. doi: 10.1016/j.apmr.2005.03.021.
    1. Kibler WB. Role of the scapula in the overhead throwing motion. Contemp Orthop. 1991;22:525–532.
    1. Kibler WB. The role of the scapula in athletic shoulder function. Am J Sports Med. 1998;26:325–337.
    1. Mottram SL. Dynamic stability of the scapula. Man Ther. 1997;2:123–131. doi: 10.1054/math.1997.0292.
    1. de Groot JH. The scapulo-humeral rhythm: effects of 2-D roentgen projection. Clin Biomech (Bristol, Avon) 1999;14:63–68. doi: 10.1016/S0268-0033(98)00027-8.
    1. National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE). Version 4.0. NIH Publication No. 09-5410. 2010. Revised June 2010.
    1. Adriaenssens N, Vinh-Hung V, Miedema G, Versmessen H, Lamote J, Vanhoeij M, Lievens P, Van Parijs H, Storme G, Voordeckers M. Early contralateral shoulder-arm morbidity in breast cancer patients enrolled in a randomized trial of post-surgery radiation therapy. Breast Cancer. 2012. in press.
    1. Riddle DL, Rothstein JM, Lamb RL. Goniometric reliability in a clinical setting. Shoulder measurements. Phys Ther. 1987;67:668–673.
    1. Barnes CJ, Van Steyn SJ, Fischer RA. The effects of age, sex, and shoulder dominance on range of motion of the shoulder. J Shoulder Elbow Surg. 2001;10:242–246. doi: 10.1067/mse.2001.115270.
    1. Conte AL, Marques AP, Casarotto RA, Amado-Joao SM. Handedness influences passive shoulder range of motion in nonathlete adult women. J Manipulative Physiol Ther. 2009;32:149–153. doi: 10.1016/j.jmpt.2008.12.006.
    1. Roy JS, MacDermid JC, Boyd KU, Faber KJ, Drosdowech D, Athwal GS. Rotational strength, range of motion, and function in people with unaffected shoulders from various stages of life. Sports Med Arthrosc Rehabil Ther Technol. 2009;1:4. doi: 10.1186/1758-2555-1-4.
    1. Mullaney MJ, McHugh MP, Johnson CP, Tyler TF. Reliability of shoulder range of motion comparing a goniometer to a digital level. Physiother Theory Pract. 2010;26:327–333. doi: 10.3109/09593980903094230.
    1. Van Hoof T, Vangestel C, Shacklock M, Kerckaert I, D’Herde K. Asymmetry of the ULNT1 elbow extension range-of-motion in a healthy population: Consequences for clinical practice and research. Phys Ther Sport. 2012. in press.
    1. Agresti A. Categorical data analysis. 2. Hoboken NJ: Wiley; 2002.
    1. Armitage P, Berry G, Matthews JNS. Statistical Methods in Medical Research. Malden, MA: Blackwell Science; 2002. Reprinted 2007. ISBN Fourth.
    1. Brown MB. A method for combining non-independent, one-sided tests of significance. Biometrics. 1975;31:987–992. doi: 10.2307/2529826.
    1. R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria;
    1. van Buuren S. Multiple imputation of discrete and continuous data by fully conditional specification. Stat Methods Med Res. 2007;16:219–242. doi: 10.1177/0962280206074463.
    1. Venables WN, Ripley BD. Modern Applied Statistics with S. 4. New York: Springer-Verlag; 2002.
    1. Meininger AK, Figuerres BF, Goldberg BA. Scapular winging: an update. J Am Acad Orthop Surg. 2011;19:453–462.
    1. Auchincloss H. Significance of location and number of axillary metastases in carcinoma of the breast: a justification for a conservative operation. Ann Surg. 1963;158:37–46. doi: 10.1097/00000658-196307000-00008.
    1. Petrek JA, Blackwood MM. Axillary dissection: current practice and technique. Curr Probl Surg. 1995;32:257–323. doi: 10.1016/S0011-3840(05)80015-2.
    1. Martin JK. Axillary dissection. Oper Tech Gen Surg. 2000;2:152–160. doi: 10.1053/otgn.2000.7064.
    1. Mostafa A, Mokbel K, Engledow A, Leris AC, Choy C, Wells C, Carpenter R. Is dissection of the internerve tissue during axillary lymphadenectomy for breast cancer necessary? Eur J Surg Oncol. 2000;26:153–154. doi: 10.1053/ejso.1999.0760.
    1. Overpeck DO, Ghormley RK. Paralysis of the serratus magnus muscle, caused by lesions of the long thoracic nerve. JAMA. 1940;114:1994–1996.
    1. Ilfeld FW, Holder HG. Winged scapula: case occurring in soldier from knapsack. JAMA. 1942;120:448–449. doi: 10.1001/jama.1942.82830410004008a.
    1. Duncan MA, Lotze MT, Gerber LH, Rosenberg SA. Incidence, recovery, and management of serratus anterior muscle palsy after axillary node dissection. Phys Ther. 1983;63:1243–1247.
    1. Pugliese GN, Green RF, Antonacci A. Radiation-induced long thoracic nerve palsy. Cancer. 1987;60:1247–1248. doi: 10.1002/1097-0142(19870915)60:6<1247::AID-CNCR2820600615>;2-R.
    1. Post M. Pectoralis major transfer for winging of the scapula. J Shoulder Elbow Surg. 1995;4:1–9. doi: 10.1016/S1058-2746(10)80001-1.
    1. Watson CJ, Schenkman M. Physical therapy management of isolated serratus anterior muscle paralysis. Phys Ther. 1995;75:194–202.
    1. Kibler WB, Uhl TL, Maddux JW, Brooks PV, Zeller B, McMullen J. Qualitative clinical evaluation of scapular dysfunction: a reliability study. J Shoulder Elbow Surg. 2002;11:550–556. doi: 10.1067/mse.2002.126766.
    1. Wiater JM, Flatow EL. Long thoracic nerve injury. Clin Orthop Relat Res. 1999;368:17–27.
    1. Dumontier C, Soubeyran M, Lascar T, Laulan J. Compression du nerf thoracicus longus (Nerf de Charles-Bell) Chir Main. 2004;23:S63–S76.
    1. Sherman SC, O’Connor M. An unusual cause of shoulder pain: Winged scapula. J Emerg Med. 2005;28:329–331. doi: 10.1016/j.jemermed.2004.08.022.
    1. Lee SG, Kim JH, Lee SY, Choi IS, Moon ES. Winged scapula caused by rhomboideus and trapezius muscles rupture associated with repetitive minor trauma: a case report. J Korean Med Sci. 2006;21:581–584. doi: 10.3346/jkms.2006.21.3.581.
    1. Vinson EN. Clinical images: scapular winging. Arthritis Rheum. 2006;54:4027. doi: 10.1002/art.22274.
    1. Daubinet G, Graveleau N, Rousseau D. L’epaule du sportif. The athletes shoulder. Rev Rhum. 2007;74:581–586. doi: 10.1016/j.rhum.2007.04.003.
    1. Nath RK, Melcher SE. Rapid recovery of serratus anterior muscle function after microneurolysis of long thoracic nerve injury. J Brachial Plex Peripher Nerve Inj. 2007;2:4. doi: 10.1186/1749-7221-2-4.
    1. Noel E. Les syndromes canalaires de l’epaule. Nerve entrapment of the shoulder. Rev Rhum. 2007;74:339–343. doi: 10.1016/j.rhum.2007.02.019.
    1. Galano GJ, Bigliani LU, Ahmad CS, Levine WN. Surgical treatment of winged scapula. Clin Orthop Relat Res. 2008;466:652–660. doi: 10.1007/s11999-007-0086-2.
    1. Aksoy IA, Schrader SL, Ali MS, Borovansky JA, Ross MA. Spinal accessory neuropathy associated with deep tissue massage: a case report. Arch Phys Med Rehabil. 2009;90:1969–1972. doi: 10.1016/j.apmr.2009.06.015.
    1. Cerqueira WA, Barbosa LA, Bergmann A. Proposta de conduta fisioterapêutica para o atendimento ambulatorial nas pacientes com escápula alada após linfadenectomia axilar. Rev Bras Cancerologia. 2009;55:115–120.
    1. McClure P, Tate AR, Kareha S, Irwin D, Zlupko E. A clinical method for identifying scapular dyskinesis, part 1: reliability. J Athl Train. 2009;44:160–164. doi: 10.4085/1062-6050-44.2.160.
    1. Sivan M, Hassan A. Images in emergency medicine. Winged scapula as the presenting symptom of Guillain-Barre syndrome. Emerg Med J. 2009;26:790. doi: 10.1136/emj.2008.066613.
    1. Blum A, Lecocq S, Louis M, Wassel J, Moisei A, Teixeira P. The nerves around the shoulder. Eur J Radiol. 2011. [epub ahead of print]
    1. Pereira TB, Bergmann A, Ribeiro AC, Da Silva JG, Dias R, Ribeiro MJ, Thuler LC. Myoeletric activity pattern of scapular muscles after axillary lymphadenectomy in breast cancer. Rev Bras Ginecol Obstet. 2009;31:224–229.
    1. Ribeiro A, Bergmann A, Bezerra T, Silva M, Silva J, Ribeiro M, Dias R. Incidência de escápula alada no pós-operatório de linfadenectomia axilar [abstract] Rev Bras Cancerologia. 2007;53:491.
    1. Vastamaki M, Kauppila LI. Etiologic factors in isolated paralysis of the serratus anterior muscle: a report of 197 cases. J Shoulder Elbow Surg. 1993;2:240–243. doi: 10.1016/S1058-2746(09)80082-7.
    1. May S, Chance-Larsen K, Littlewood C, Lomas D, Saad M. Reliability of physical examination tests used in the assessment of patients with shoulder problems: a systematic review. Physiotherapy. 2010;96:179–190. doi: 10.1016/j.physio.2009.12.002.
    1. Nijs J, Roussel N, Struyf F, Mottram S, Meeusen R. Clinical assessment of scapular positioning in patients with shoulder pain: state of the art. J Manipulative Physiol Ther. 2007;30:69–75. doi: 10.1016/j.jmpt.2006.11.012.
    1. Struyf F, Nijs J, De CK, Giunta M, Mottram S, Meeusen R. Clinical assessment of scapular positioning in musicians: an intertester reliability study. J Athl Train. 2009;44:519–526. doi: 10.4085/1062-6050-44.5.519.
    1. Struyf F, Nijs J, Horsten S, Mottram S, Truijen S, Meeusen R. Scapular positioning and motor control in children and adults: a laboratory study using clinical measures. Man Ther. 2011;16:155–160. doi: 10.1016/j.math.2010.09.002.

Source: PubMed

Подписаться