Text message interventions for follow up of infants born to mothers positive for Chagas disease in Tucumán, Argentina: a feasibility study

Gabriela Cormick, Alvaro Ciganda, Maria L Cafferata, Michael J Ripple, Sergio Sosa-Estani, Pierre Buekens, José M Belizán, Fernando Althabe, Gabriela Cormick, Alvaro Ciganda, Maria L Cafferata, Michael J Ripple, Sergio Sosa-Estani, Pierre Buekens, José M Belizán, Fernando Althabe

Abstract

Background: Diagnosis of congenital Chagas disease occurs at 9 months of age, making effective treatment challenging due to loss to follow-up. Mobile health (mHealth) has been utilized to improve communication and treatment adherence in many chronic diseases, although no studies of mHealth in Trypanosoma cruzi-infected individuals have been conducted. Text message interventions, a subset of mHealth, has shown to improve appointment attendance and is relatively simple to set up, thus making it an ideal mechanism to facilitate communication with individuals in low-resource settings.

Objective: The aim of this study is to understand the acceptability, utilization, and barriers of an SMS-based appointment reminder to confirm a post-partum home visit to women in Tucumán, Argentina and whether these factors differ in urban and rural populations.

Methods: Women that tested positive for Chagas disease were invited to receive SMS reminders of their follow-up 4-week postpartum home visit. Demographic information and SMS contact preferences were collected at hospital discharge, and variables on mHealth utilization and barriers were recorded at follow-up.

Results: 77 (70.6%) of women possessed a cell phone for personal use. All eligible women owned phones compatible with SMS messages. The appointment reminder SMS was widely accepted with 64/72 (88.9%) enrolled women receiving the SMS message and 58/64 (90.6%) replying. Ninety-two percent of women stated that the text message was a useful reminder for the follow-up home visit. Women living in rural areas were less likely to own a cell phone for personal use and were significantly less likely to have internet access on their phone than women living in urban areas (RR 0.30, 95% CI 0.10-0.89). Furthermore, women from rural areas faced barriers to mHealth uptake such as change of phone number and response to messages from the hospital team at higher rates than women from urban areas, although these differences were not statistically significant.

Conclusions: There is generally widespread acceptance and utilization of mHealth among this group of women with access to cell phones. However, there are still many barriers to overcome before mHealth interventions attain complete penetration in a population, most notably the issue of cell phone for personal use.

Figures

Fig. 1
Fig. 1
Flow chart of patient enrollment in the nested mHealth study

References

    1. Chagas disease (American trypanosomiasis) Fact sheet No. 340. ().
    1. Blanco SB, Segura EL, Cura EN, Chuit R, Tulian L, Flores I, Garbarino G, Villalonga JF, Gurtler RE. Congenital transmission of Trypanosoma cruzi: an operational outline for detecting and treating infected infants in north-western Argentina. Trop Med Int Health. 2000;5(4):293–301. doi: 10.1046/j.1365-3156.2000.00548.x.
    1. Organización Panamericana de la Salud. Estimación cuantitativa de la enfermedad de Chagas en las Americas. OMS 2006, Montevideo, Uruguay. OPS/HDM/CD/425-06.
    1. Fabbro DL, Danesi E, Olivera V, Codebo MO, Denner S, Heredia C, Streiger M, Sosa-Estani S. Trypanocide treatment of women infected with Trypanosoma cruzi and its effect on preventing congenital Chagas. PLoS Negl Trop Dis. 2014;8(11):e3312. doi: 10.1371/journal.pntd.0003312.
    1. Carlier Y, Truyens C, Deloron P, Peyron F. Congenital parasitic infections: a review. Acta Trop. 2012;121(2):55–70. doi: 10.1016/j.actatropica.2011.10.018.
    1. Sosa-Estani S. Congenital transmission of Trypanosoma cruzi infection in Argentina. Rev Soc Bras Med Trop. 2005;38(Suppl 2):29–32.
    1. Diez CN, Manattini S, Zanuttini JC, Bottasso O, Marcipar I. The value of molecular studies for the diagnosis of congenital Chagas disease in northeastern Argentina. Am J Trop Med Hyg. 2008;78(4):624–627.
    1. De Rissio AM, Riarte AR, Garcia MM, Esteva MI, Quaglino M, Ruiz AM. Congenital Trypanosoma cruzi infection. Efficacy of its monitoring in an urban reference health center in a non-endemic area of Argentina. Am J Trop Med Hyg. 2010;82(5):838–845. doi: 10.4269/ajtmh.2010.08-0383.
    1. Pew Research Center. Emerging Nations Embrace internet, Mobile Technology. ().
    1. Head KJ, Noar SM, Iannarino NT, Harrington NG. Efficacy of text messaging-based interventions for health promotion: a meta-analysis. Soc Sci Med. 2013;97:41–48. doi: 10.1016/j.socscimed.2013.08.003.
    1. Cole-Lewis H, Kershaw T. Text messaging as a tool for behavior change in disease prevention and management. Epidemiol Rev. 2010;32:56–69. doi: 10.1093/epirev/mxq004.
    1. Park LG, Howie-Esquivel J, Dracup K. A quantitative systematic review of the efficacy of mobile phone interventions to improve medication adherence. J Adv Nurs. 2014;70(9):1932–1953. doi: 10.1111/jan.12400.
    1. Whittaker R, McRobbie H, Bullen C, Borland R, Rodgers A, Gu Y. Mobile phone-based interventions for smoking cessation. Cochrane Database Syst Rev. 2012;11:CD006611.
    1. Hall AK, Cole-Lewis H, Bernhardt JM. Mobile text messaging for health: a systematic review of reviews. Annu Rev Public Health. 2015;36:393–415. doi: 10.1146/annurev-publhealth-031914-122855.
    1. Leong KC, Chen WS, Leong KW, Mastura I, Mimi O, Sheikh MA, Zailinawati AH, Ng CJ, Phua KL, Teng CL. The use of text messaging to improve attendance in primary care: a randomized controlled trial. Fam Pract. 2006;23(6):699–705. doi: 10.1093/fampra/cml044.
    1. Liew SM, Tong SF, Lee VK, Ng CJ, Leong KC, Teng CL. Text messaging reminders to reduce non-attendance in chronic disease follow-up: a clinical trial. Br J Gen Pract. 2009;59(569):916–920. doi: 10.3399/bjgp09X472250.
    1. da Costa TM, Barbosa BJ, Gomes e Costa DA, Sigulem D, de Fatima Marin H, Filho AC, Pisa IT. Results of a randomized controlled trial to assess the effects of a mobile SMS-based intervention on treatment adherence in HIV/AIDS-infected Brazilian women and impressions and satisfaction with respect to incoming messages. Int J Med Inform. 2012;81(4):257–269. doi: 10.1016/j.ijmedinf.2011.10.002.
    1. Cormick G, Kim NA, Rodgers A, Gibbons L, Buekens PM, Belizan JM, Althabe F. Interest of pregnant women in the use of SMS (short message service) text messages for the improvement of perinatal and postnatal care. Reprod Health. 2012;9:9. doi: 10.1186/1742-4755-9-9.
    1. Bigna JJ, Noubiap JJ, Plottel CS, Kouanfack C, Koulla-Shiro S. Barriers to the implementation of mobile phone reminders in pediatric HIV care: a pre-trial analysis of the Cameroonian MORE CARE study. BMC Health Serv Res. 2014;14:523. doi: 10.1186/s12913-014-0523-3.
    1. Call VR, Erickson LD, Dailey NK, Hicken BL, Rupper R, Yorgason JB, Bair B. Attitudes toward telemedicine in urban, rural, and highly rural communities. Telemed J E Health. 2015;21(8):644–651. doi: 10.1089/tmj.2014.0125.
    1. Buekens P, Cafferata ML, Alger J, Althabe F, Belizan JM, Carlier Y, Ciganda A, Dumonteil E, Gamboa-Leon R, Howard E, Matute ML, Sosa-Estani S, Truyens C, Wesson D, Zuniga C. Congenital transmission of Trypanosoma cruzi in Argentina, Honduras, and Mexico: study protocol. Reprod Health. 2013;10:55. doi: 10.1186/1742-4755-10-55.
    1. Chang LW, Kagaayi J, Arem H, Nakigozi G, Ssempijja V, Serwadda D, Quinn TC, Gray RH, Bollinger RC, Reynolds SJ. Impact of a mHealth intervention for peer health workers on AIDS care in rural Uganda: a mixed methods evaluation of a cluster-randomized trial. AIDS Behav. 2011;15(8):1776–1784. doi: 10.1007/s10461-011-9995-x.
    1. Ben-Zeev D, Schueller SM, Begale M, Duffecy J, Kane JM, Mohr DC. Strategies for mHealth research: lessons from 3 Mobile Intervention Studies. Adm Policy Ment Health. 2015;42(2):157–167. doi: 10.1007/s10488-014-0556-2.
    1. Teng JE, Thomson DR, Lascher JS, Raymond M, Ivers LC. Using mobile health (mHealth) and geospatial mapping technology in a mass campaign for reactive oral cholera vaccination in rural Haiti. PLoS Negl Trop Dis. 2014;8(7):e3050. doi: 10.1371/journal.pntd.0003050.

Source: PubMed

Подписаться