Methods to label, image, and analyze the complex structural architectures of microvascular networks

Bruce A Corliss, Corbin Mathews, Richard Doty, Gustavo Rohde, Shayn M Peirce, Bruce A Corliss, Corbin Mathews, Richard Doty, Gustavo Rohde, Shayn M Peirce

Abstract

Microvascular networks play key roles in oxygen transport and nutrient delivery to meet the varied and dynamic metabolic needs of different tissues throughout the body, and their spatial architectures of interconnected blood vessel segments are highly complex. Moreover, functional adaptations of the microcirculation enabled by structural adaptations in microvascular network architecture are required for development, wound healing, and often invoked in disease conditions, including the top eight causes of death in the Unites States. Effective characterization of microvascular network architectures is not only limited by the available techniques to visualize microvessels but also reliant on the available quantitative metrics that accurately delineate between spatial patterns in altered networks. In this review, we survey models used for studying the microvasculature, methods to label and image microvessels, and the metrics and software packages used to quantify microvascular networks. These programs have provided researchers with invaluable tools, yet we estimate that they have collectively attained low adoption rates, possibly due to limitations with basic validation, segmentation performance, and nonstandard sets of quantification metrics. To address these existing constraints, we discuss opportunities to improve effectiveness, rigor, and reproducibility of microvascular network quantification to better serve the current and future needs of microvascular research.

Keywords: blood vessels; image analysis; image quantification; microvasculature; vascular network; vessel architecture.

© 2018 John Wiley & Sons Ltd.

Figures

Figure 1
Figure 1
The significance of the microvasculature in top causes of death and disease in United States. Top eight classes of fatal disease or injury with the fraction of annual deaths in the United States. Included with each malady are three highlighted fundamental roles the microvasculature plays with initiation, maintenance, or treatment (see main text for references)
Figure 2
Figure 2
Both endothelial cells and pericytes share markers used in the literature for labeling endothelial cells, and Col‐IV tracks, assumed to be regressed vessels, lack a pixel intensity profile indicative of a lumen. (A) Retina capillary with pericyte (NG2, red), IB4 lectin (green), endothelial cells (CD31, yellow), and cell nuclei (DAPI, cyan). (B) Retina capillary with pericyte and endothelial cells labeled with Col‐IV (green; scale bar 10 μm). (C) High‐resolution image of Col‐IV off‐vessel track (star) and lumenized blood vessel (arrow; scale bar 5 μm). (D) Comparison of Col‐IV relative pixel intensity profile across cross‐section of blood vessels and collagen tracks (P = 8.11E‐6, 2‐way analysis of variance, N = 10 vessels and tracks, error bars are standard deviation)
Figure 3
Figure 3
Basic metrics quantifying the complexities of the microvascular architecture. Visual explanation of metrics that have been used to quantify various aspects of microvessel network architecture, including (A) VAF, (B) vessel length density, (C) vessel diameter, (D) branchpoints density, (E) tortuosity, (F) lacranuity and fractal dimension, (G) extra‐vascular diffusion distance, and (H) vessel segment partitioning
Figure 4
Figure 4
Heterogeneity of blood vessel network structure across and within tissue. IB4 lectin Perfused microvessels of (A) heart, (B) diaphragm, (C) skeletal muscle, (D) liver, (E) peritoneal cavity, (F) inguinal fat, and of the three distinct vascular layers of the retina (G‐I; scale bar 50 μm)
Figure 5
Figure 5
Bridging form and function: correspondence between microvasculature architecture metrics and biological behaviors. Schematized microvasculature network with various cellular and acellular components (multicolored font) mapped to quantitative image analysis metrics that indicate different aspects of microvascular function (black font)
Figure 6
Figure 6
Novel image analysis metrics by analyzing the microvasculature with graph theory. A, Confocal microscopy image of the murine retinal deep vasculature, with CD105 marking ECs (white; scale bar = 50 μm). B, Image analyzed with basic segmentation, skeletonization, and branchpoints classification, with vessel centerline/skeleton (white), branchpoints (red), and EP (turquoise). C, Conversion of vasculature into a graph, with branchpoints indicated as “nodes” (blue) and vessel segments as “edges” (gray). D, Visual summary of types of metrics to quantify graphs, with removed edges representing change to network after a blood vessel has regressed or experiences obstructed flow

References

    1. Jacob M, Chappell D, Becker BF. Regulation of blood flow and volume exchange across the microcirculation. Crit Care. 2016;20:319.
    1. Nourshargh S, Alon R. Leukocyte migration into inflamed tissues. Immunity. 2014;41(5):694‐707.
    1. Tonnesen MG, Feng X, Clark RAF. Angiogenesis in wound healing. J Investig Dermatol Symp Proc. 2000;5(1):40‐46.
    1. Chambers R, Zweifach BW. Intercellular cement and capillary permeability. Physiol Rev. 1947;27(3):436‐463.
    1. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9(7):689‐701.
    1. Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med. 2007;356(8):830‐840.
    1. Tooke JE. Microvascular function in human diabetes. A physiological perspective. Diabetes. 1995;44(7):721‐726.
    1. Centers for Disease Control and Prevention . Deaths: Final Data for 2015. National Vital Statistics Reports. 2017; 66(6):75.
    1. Zhang H, van Olden C, Sweeney D, Martin‐Rendon E. Blood vessel repair and regeneration in the ischaemic heart. Open Heart. 2014;1(1):e000016.
    1. Ostergaard L, Kristiansen SB, Angleys H, et al. The role of capillary transit time heterogeneity in myocardial oxygenation and ischemic heart disease. Basic Res Cardiol. 2014;109(3):409.
    1. Rosenkranz S, Gibbs JSR, Wachter R, De Marco T, Vonk‐Noordegraaf A, Vachiéry J‐L. Left ventricular heart failure and pulmonary hypertension. Eur Heart J. 2016;37(12):942‐954.
    1. Nishida N, Yano H, Nishida T, Kamura T, Kojiro M. Angiogenesis in cancer. Vasc Health Risk Manag. 2006;2(3):213‐219.
    1. García‐Román J, Zentella‐Dehesa A. Vascular permeability changes involved in tumor metastasis. Cancer Lett. 2013;335(2):259‐269.
    1. Au SH, Storey BD, Moore JC, et al. Clusters of circulating tumor cells traverse capillary‐sized vessels. Proc Natl Acad Sci USA. 2016;113(18):4947‐4952.
    1. Voelkel NF, Cool CD. Pulmonary vascular involvement in chronic obstructive pulmonary disease. Eur Respir J. 2003;22(46 suppl):28s‐32s.
    1. Eliason G, Abdel‐Halim SM, Piehl‐Aulin K, Kadi F. Alterations in the muscle‐to‐capillary interface in patients with different degrees of chronic obstructive pulmonary disease. Respir Res. 2010;11(1):97.
    1. Widdicombe JG. Asthma. Tracheobronchial vasculature. Br Med Bull. 1992;48(1):108‐119.
    1. Østergaard L, Jespersen SN, Mouridsen K, et al. The role of the cerebral capillaries in acute ischemic stroke: the extended penumbra model. J Cereb Blood Flow Metab. 2013;33(5):635‐648.
    1. Østergaard L, Jespersen SN, Engedahl T, et al. Capillary dysfunction: its detection and causative role in dementias and stroke. Curr Neurol Neurosci Rep. 2015;15(6):37.
    1. Yemisci M, Gursoy‐Ozdemir Y, Vural A, Can A, Topalkara K, Dalkara T. Pericyte contraction induced by oxidative‐nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med. 2009;15(9):1031‐1037.
    1. Gjedde A, Kuwabara H, Hakim AM. Reduction of functional capillary density in human brain after stroke. J Cereb Blood Flow Metab. 1990;10(3):317‐326.
    1. Adair TH, Montani J‐P. Overview of Angiogenesis. Morgan & Claypool Life Sciences; 2010. . Accessed July 30, 2018.
    1. Fogelson AL, Neeves KB. Fluid mechanics of blood clot formation. Annu Rev Fluid Mech. 2015;47:377‐403.
    1. Muller WA. Getting leukocytes to the site of inflammation. Vet Pathol. 2013;50(1):7‐22.
    1. Østergaard L, Nagenthiraja K, Gyldensted L, et al. Capillary dysfunction in Alzheimer's disease. Alzheimers Dement. 2013;9(4):P269‐P270.
    1. Hecht M, Krämer LM, von Arnim CAF, Otto M, Thal DR. Capillary cerebral amyloid angiopathy in Alzheimer's disease: association with allocortical/hippocampal microinfarcts and cognitive decline. Acta Neuropathol. 2018;135(5):681‐694.
    1. Beltramo E, Porta M. Pericyte loss in diabetic retinopathy: mechanisms and consequences. Curr Med Chem. 2013;20(26):3218‐3225.
    1. Moldoveanu B, Otmishi P, Jani P, et al. Inflammatory mechanisms in the lung. J Inflamm Res. 2008;2:1‐11.
    1. Gurka DP, Balk RA. Acute respiratory failure In: Parrillo JE, Dellinger RP, eds. Critical Care Medicine, 3rd edn Philadelphia, PA: Mosby; 2008:773‐794. . Accessed July 30, 2018.
    1. Azzi S, Hebda JK, Gavard J. Vascular permeability and drug delivery in cancers. Front Oncol. 2013;3:211.
    1. Simone E, Ding B‐S, Muzykantov V. Targeted delivery of therapeutics to endothelium. Cell Tissue Res. 2009;335(1):283‐300.
    1. Germain RN. Maintaining system homeostasis: the third law of Newtonian immunology. Nat Immunol. 2012;13:902‐906.
    1. Opferman JT, Korsmeyer SJ. Apoptosis in the development and maintenance of the immune system. Nat Immunol. 2003;4(5):410‐415.
    1. Parkin J, Cohen B. An overview of the immune system. Lancet. 2001;357(9270):1777‐1789.
    1. Gramatikov BI. Modern technologies for retinal scanning and imaging: an introduction for the biomedical engineer. BioMed Eng OnLine. 2014;13:52.
    1. Fabrikant SI, Maggi S, Montello DR. 3D network spatialization: does it add depth to 2D representations of semantic proximity? In: Duckham M, Pebesma E, Stewart K, Frank AU, eds. Geographic Information Science. Basel: Springer International Publishing; 2014:34‐47. (Lecture Notes in Computer Science).
    1. Miolane N, Pennec X. A survey of mathematical structures for extending 2D neurogeometry to 3D image processing; 2015. . Accessed July 30, 2018.
    1. Combs CA. Fluorescence microscopy: a concise guide to current imaging methods. Curr Protoc Neurosci. 2010;Chapter 2:Unit2.1.
    1. Nuzzo R. Scientific method: statistical errors. Nature. 2014;506(7487):150.
    1. Bergijk EC, Van Alderwegen IE, Baelde HJ, et al. Differential expression of collagen IV isoforms in experimental glomerulosclerosis. J Pathol. 1998;184(3):307‐315.
    1. Daly SM, Leahy MJ. ‘Go with the flow ‘: a review of methods and advancements in blood flow imaging. J Biophotonics. 2013;6(3):217‐255.
    1. Hoffmann A, Bredno J, Wendland M, Derugin N, Ohara P, Wintermark M. High and low molecular weight fluorescein isothiocyanate (FITC)–dextrans to assess blood‐brain barrier disruption: technical considerations. Transl Stroke Res. 2011;2(1):106‐111.
    1. Robertson RT, Levine ST, Haynes SM, et al. Use of labeled tomato lectin for imaging vasculature structures. Histochem Cell Biol. 2015;143(2):225‐234.
    1. Gurevich DB, Severn CE, Twomey C, et al. Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression. EMBO J. 2018;4:e97786.
    1. Siegenthaler JA, Choe Y, Patterson KP, et al. Foxc1 is required by pericytes during fetal brain angiogenesis. Biol Open. 2013;2(7):647‐659.
    1. Boscia F, Esposito CL, Casamassa A, de Franciscis V, Annunziato L, Cerchia L. The isolectin IB4 binds RET receptor tyrosine kinase in microglia. J Neurochem. 2013;126(4):428‐436.
    1. Allinson KR, Lee HS, Fruttiger M, McCarty J, Arthur HM. Endothelial expression of TGFβ type II receptor is required to maintain vascular integrity during postnatal development of the central nervous system Chen J, editor. PLoS ONE. 2012;7(6):e39336.
    1. Hu J, Popp R, Frömel T, et al. Müller glia cells regulate Notch signaling and retinal angiogenesis via the generation of 19,20‐dihydroxydocosapentaenoic acid. J Exp Med. 2014;211(2):281‐295.
    1. Dominguez E, Raoul W, Calippe B, et al. Experimental branch retinal vein occlusion induces upstream pericyte loss and vascular destabilization. PLoS ONE. 2015;10(7):e0132644.
    1. Fan J, Ponferrada VG, Sato T, et al. Crim1 maintains retinal vascular stability during development by regulating endothelial cell Vegfa autocrine signaling. Development (Cambridge, England). 2014;141(2):448‐459.
    1. Lam S, van der Geest RN, Verhagen NAM, Daha MR, van Kooten C. Secretion of collagen type IV by human renal fibroblasts is increased by high glucose via a TGF‐beta‐independent pathway. Nephrol Dial Transplant. 2004;19(7):1694‐1701.
    1. Baluk P, Morikawa S, Haskell A, Mancuso M, McDonald DM. Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol. 2003;163(5):1801‐1815.
    1. Brown WR. A review of string vessels or collapsed, empty basement membrane tubes. J Alzheimers Dis. 2010;21(3):725‐739.
    1. McVicar CM, Ward M, Colhoun LM, et al. Role of the receptor for advanced glycation endproducts (RAGE) in retinal vasodegenerative pathology during diabetes in mice. Diabetologia. 2015;58(5):1129‐1137.
    1. Yang P, Pavlovic D, Waldvogel H, et al. String vessel formation is increased in the brain of parkinson disease. J Parkinsons Dis. 2015;5(4):821‐836.
    1. Abramsson A, Lindblom P, Betsholtz C. Endothelial and nonendothelial sources of PDGF‐B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Investig. 2003;112(8):1142‐1151.
    1. Winkler EA, Sengillo JD, Bell RD, Wang J, Zlokovic BV. Blood–spinal cord barrier pericyte reductions contribute to increased capillary permeability. J Cereb Blood Flow Metab. 2012;32(10):1841‐1852.
    1. Kelly‐Goss MR, Sweat RS, Stapor PC, Peirce SM, Murfee WL. Targeting perciytes for angiogenic therapies. Microcirculation (New York, N.Y. : 1994). 2014;21(4):345‐357.
    1. He L, Vanlandewijck M, Raschperger E, et al. Analysis of the brain mural cell transcriptome. Sci Rep. 2016;6:35108.
    1. Hughes S, Chan‐Ling T. Characterization of smooth muscle cell and pericyte differentiation in the rat retina in vivo. Invest Ophthalmol Vis Sci. 2004;45(8):2795‐2806.
    1. Alarcon‐Martinez L, Yilmaz‐Ozcan S, Yemisci M, et al. Capillary pericytes express α‐smooth muscle actin, which requires prevention of filamentous‐actin depolymerization for detection. eLife. 2017;7:1‐17.
    1. Cai J, Kehoe O, Smith GM, Hykin P, Boulton ME. The angiopoietin/Tie‐2 system regulates pericyte survival and recruitment in diabetic retinopathy. Invest Opthalmol Vis Sci. 2008;49(5):2163.
    1. Park DY, Lee J, Kim J, et al. Plastic roles of pericytes in the blood–retinal barrier. Nat Commun. 2017;8:15296.
    1. Teichert M, Milde L, Holm A, et al. Pericyte‐expressed Tie2 controls angiogenesis and vessel maturation. Nat Commun. 2017;8:16106.
    1. Fe Lanfranco M, Loane DJ, Mocchetti I, Burns MP, Villapol S. Combination of fluorescent in situ hybridization (FISH) and immunofluorescence imaging for detection of cytokine expression in microglia/macrophage cells. Bio Protoc. 2017;7(22):1‐17.
    1. Arai F, Hirao A, Ohmura M, et al. Tie2/angiopoietin‐1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 2004;118(2):149‐161.
    1. Patel AS, Smith A, Nucera S, et al. TIE2‐expressing monocytes/macrophages regulate revascularization of the ischemic limb. EMBO Mol Med. 2013;5(6):858‐869.
    1. Wolfram JA, Diaconu D, Hatala DA, et al. Keratinocyte but not endothelial cell‐specific overexpression of Tie2 leads to the development of psoriasis. Am J Pathol. 2009;174(4):1443‐1458.
    1. Hillen F, Kaijzel EL, Castermans K, oude Egbrink MGA, Löwik CWGM, Griffioen AW. A transgenic Tie2‐GFP athymic mouse model; a tool for vascular biology in xenograft tumors. Biochem Biophys Res Commun. 2008;368(2):364‐367.
    1. Saeidnia S, Manayi A, Abdollahi M. From in vitro experiments to in vivo and clinical studies; pros and cons. Curr Drug Discov Technol. 2015;12(4):218‐224.
    1. Katt ME, Placone AL, Wong AD, Xu ZS, Searson PC. In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. Front Bioeng Biotechnol. 2016;4:12.
    1. Holmgaard A, Askou AL, Benckendorff JNE, et al. In vivo knockout of the vegfa gene by lentiviral delivery of CRISPR/Cas9 in mouse retinal pigment epithelium cells. Mol Ther Nucleic Acids. 2017;9:89‐99.
    1. Crauciuc A, Tripon F, Gheorghiu A, Nemes G, Boglis A, Banescu C. Review. Development, applications, benefits, challenges and limitations of the new genome engineering technique. An update study. Acta Med Marisiensis. 2017;63(1):4‐9.
    1. Wang LV, Gao L. Photoacoustic microscopy and computed tomography: from bench to bedside. Annu Rev Biomed Eng. 2014;16(1):155‐185.
    1. Mahmud MS, Cadotte DW, Vuong B, et al. Review of speckle and phase variance optical coherence tomography to visualize microvascular networks. J Biomed Optics. 2013;18(5):050901.
    1. Sydor AM, Czymmek KJ, Puchner EM, Mennella V. Super‐resolution microscopy: from single molecules to supramolecular assemblies. Trends Cell Biol. 2015;25(12):730‐748.
    1. Dellian M, Witwer BP, Salehi HA, Yuan F, Jain RK. Quantitation and physiological characterization of angiogenic vessels in mice: effect of basic fibroblast growth factor, vascular endothelial growth factor/vascular permeability factor, and host microenvironment. Am J Pathol. 1996;149(1):59‐71.
    1. Zudaire E, Gambardella L, Kurcz C, Vermeren S. A computational tool for quantitative analysis of vascular networks. PLoS ONE. 2011;6(11):e27385.
    1. Strahler AN. Quantitative analysis of watershed geomorphology. Trans Am Geophys Union. 1957;38(6):913.
    1. Fenton BM, Zweifach BW. Microcirculatory model relating geometrical variation to changes in pressure and flow rate. Ann Biomed Eng. 1981;9(4):303‐321.
    1. Seaman ME, Peirce SM, Kelly K. Rapid analysis of vessel elements (RAVE): a tool for studying physiologic, pathologic and tumor angiogenesis. PLoS ONE. 2011;6(6):e20807.
    1. Stamatelos SK, Kim E, Pathak AP, Popel AS. A bioimage informatics based reconstruction of breast tumor microvasculature with computational blood flow predictions. Microvasc Res. 2014;91:8‐21.
    1. Niemisto A, Dunmire V, Yli‐Harja O, Zhang W, Shmulevich I. Robust quantification of in vitro angiogenesis through image analysis. IEEE Trans Med Imaging. 2005;24(4):549‐553.
    1. Sové RJ, Goldman D, Fraser GM. A computational model of the effect of capillary density variability on oxygen transport, glucose uptake, and insulin sensitivity in prediabetes. Microcirculation. 2017;24(2):e12342.
    1. Nolan DJ, Ginsberg M, Israely E, et al. Molecular signatures of tissue‐specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev Cell. 2013;26(2):204‐219.
    1. Chi J‐T, Chang HY, Haraldsen G, et al. Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci USA. 2003;100(19):10623‐10628.
    1. Banavar JR, Cooke TJ, Rinaldo A, Maritan A. Form, function, and evolution of living organisms. Proc Natl Acad Sci. 2014;111(9):3332‐3337.
    1. Fraser GM, Goldman D, Ellis CG. Comparison of generated parallel capillary arrays to three‐dimensional reconstructed capillary networks in modeling oxygen transport in discrete microvascular volumes. Microcirculation (New York, N.Y. : 1994). 2013;20(8):748‐763.
    1. Fraser GM, Goldman D, Ellis CG. Microvascular flow modeling using in vivo hemodynamic measurements in reconstructed 3D capillary networks. Microcirculation (New York, N.Y. : 1994). 2012;19(6):510‐520.
    1. Davis GE, Norden PR, Bowers SLK. Molecular control of capillary morphogenesis and maturation by recognition and remodeling of the extracellular matrix: functional roles of endothelial cells and pericytes in health and disease. Connect Tissue Res. 2015;56(5):392‐402.
    1. Han H‐C. Twisted blood vessels: symptoms, etiology and biomechanical mechanisms. J Vasc Res. 2012;49(3):185‐197.
    1. Tykocki NR, Boerman EM, Jackson WF. Smooth muscle ion channels and regulation of vascular tone in resistance arteries and arterioles. Compr Physiol. 2017;7(2):485‐581.
    1. Hamilton NB, Attwell D, Hall CN. Pericyte‐mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front Neuroenergetics. 2010;2:1‐15.
    1. Carroll RG. Elsevier's Integrated Physiology. Philadelphia, PA: Mosby Elsevier; 2007.
    1. Granger DN, Senchenkova E. Inflammation and the Microcirculation. San Rafael, CA: Morgan & Claypool Life Sciences; 2010. (Integrated Systems Physiology—From Cell to Function).
    1. Pfister F, Feng Y, vom Hagen F, et al. Pericyte migration: a novel mechanism of pericyte loss in experimental diabetic retinopathy. Diabetes. 2008;57(9):2495‐2502.
    1. Morin KT, Carlson PD, Tranquillo RT. Automated image analysis programs for the quantification of microvascular network characteristics. Methods (San Diego, Calif.). 2015;84:76‐83.
    1. Ding L, Cheng R, Hu Y, et al. Peroxisome proliferator–activated receptor α protects capillary pericytes in the retina. Am J Pathol. 2014;184(10):2709‐2720.
    1. Shami A, Knutsson A, Dunér P, et al. Dystrophin deficiency reduces atherosclerotic plaque development in ApoE‐null mice. Sci Rep. 2015;5(1):13904.
    1. Seaman SA, Cao Y, Campbell CA, Peirce SM. Macrophage recruitment and polarization during collateral vessel remodeling in murine adipose tissue. Microcirculation (New York, N.Y. : 1994). 2016;23(1):75‐87.
    1. Corliss BA, Azimi MS, Munson JM, Peirce SM, Murfee WL. Macrophages: an inflammatory link between angiogenesis and lymphangiogenesis. Microcirculation (New York, N.Y.: 1994). 2016;23(2):95‐121.
    1. Wu J, Hadoke PW, Takov K, Korczak A, Denvir M, Smith L. Influence of androgen receptor in vascular cells on reperfusion following hindlimb ischaemia. PLoS ONE. 2016;11:e0154987.
    1. Rueden CT, Schindelin J, Hiner MC, et al. Image J2: ImageJ for the next generation of scientific image data. BMC Bioinformatics. 2017;18:529.
    1. Schindelin J, Arganda‐Carreras I, Frise E, et al. Fiji: an open‐source platform for biological‐image analysis. Nat Methods. 2012;9(7):676‐682.
    1. Manjunathan R, Ragunathan M. Chicken chorioallantoic membrane as a reliable model to evaluate osteosarcoma—an experimental approach using SaOS2 cell line. Biol Proced Online. 2015;17:10.
    1. Sprindzuk M, Dmitruk A, Kovalev V, et al. Computer‐aided image processing of angiogenic histological. J Clin Med Res. 2009;1(5):249‐261.
    1. Peirce SM. Computational and mathematical modeling of angiogenesis. Microcirculation (New York, N.Y. : 1994). 2008;15(8):739‐751.
    1. Hira ZM, Gillies DF. A review of feature selection and feature extraction methods applied on microarray data. Adv Bioinformatics. 2015;2015:1‐13.
    1. Hoover AD, Kouznetsova V, Goldbaum M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imaging. 2000;19(3):203‐210.
    1. Staal J, Abramoff MD, Niemeijer M, Viergever MA, van Ginneken B. Ridge‐based vessel segmentation in color images of the retina. IEEE Trans Med Imaging. 2004;23(4):501‐509.
    1. Goel R, Kumar V, Srivastava S, Sinha AK. A review of feature extraction techniques for image analysis. IJARCET. 2017;6(2):3.
    1. Pries AR, Secomb TW. Making microvascular networks work: angiogenesis, remodeling, and pruning. Physiology. 2014;29(6):446‐455.
    1. Fry BC, Lee J, Smith NP, Secomb TW. Estimation of blood flow rates in large microvascular networks. Microcirculation. 2012;19(6):530‐538.
    1. Secomb TW. Theoretical models for regulation of blood flow. Microcirculation. 2015;15(8):765‐775.
    1. Gould IG, Linninger AA. Hematocrit distribution and tissue oxygenation in large microcirculatory networks. Microcirculation. 2015;22(1):1‐18.
    1. Kuliga KZ, McDonald EF, Gush R, Michel C, Chipperfield AJ, Clough GF. Dynamics of microvascular blood flow and oxygenation measured simultaneously in human skin. Microcirculation. 2014;21(6):562‐573.
    1. Paradowski M, Kwasnicka H, Borysewicz K. Capillary blood vessel tortuosity measurement using graph analysis In: Setchi R, Jordanov I, eds.Knowledge‐Based and Intelligent Information and Engineering Systems. Berlin, Heidelberg: Springer; 2009:135‐142. (Lecture Notes in Computer Science).
    1. Vargas R, Waldron A, Sharma A, Flórez R, Narayan DA. A graph theoretic analysis of leverage centrality. AKCE Int J Graphs Comb. 2017;14(3):295‐306.
    1. Di Lanzo C, Marzetti L, Zappasodi F, De Vico Fallani F, Pizzella V. Redundancy as a graph‐based index of frequency specific MEG functional connectivity. Comput Math Methods Med. 2012;2012:207305.
    1. Malliaros FD, Rossi M‐EG, Vazirgiannis M. Locating influential nodes in complex networks. Sci Rep. 2016;6:19307.
    1. Zhang W, Chien J, Yong J, Kuang R. Network‐based machine learning and graph theory algorithms for precision oncology. NPJ Precis Oncol. 2017;1(1):25.
    1. Niepert M, Ahmed M, Kutzkov K. Learning Convolutional Neural Networks for Graphs. Proceedings of The 33rd International Conference on Machine Learning, in PMLR 48 2016:2014‐2023.
    1. Lawrence E, Michailidis G, Nair VN, Xi B. Network tomography: a review and recent developments In: Fan J, Koul H, eds. Frontiers in Statistics. London: Imperial College Press; 2006:345‐366.
    1. Coates A, Hero AO III, Nowak R, Yu B. Internet tomography. IEEE Signal Process Mag. 2002;19(3):47‐65.
    1. Abramoff MD, Garvin MK, Sonka M. Retinal imaging and image analysis. IEEE Rev Biomed Eng. 2010;3:169‐208.
    1. Trucco E, Ruggeri A, Karnowski T, et al. Validating retinal fundus image analysis algorithms: issues and a proposal. Invest Ophthalmol Vis Sci. 2013;54(5):3546‐3559.
    1. van der Heijden AA, Abramoff MD, Verbraak F, van Hecke MV, Liem A, Nijpels G. Validation of automated screening for referable diabetic retinopathy with the IDx‐DR device in the Hoorn Diabetes Care System. Acta Ophthalmol. 2018;96(1):63‐68.
    1. Batabyal T, Vaccari A, Acton ST. NeuroBFD: Size‐independent automated classification of neurons using conditional distributions of morphological features. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018); 2018:912‐915.
    1. Batabyal T, Acton ST. ElasticPath2Path: Automated morphological classification of neurons by elastic path matching. arXiv:1802.06913 [eess, q‐bio]; 2018. . Accessed August 22. 2018
    1. Vasquez SX, Gao F, Su F, et al. Optimization of MicroCT imaging and blood vessel diameter quantitation of preclinical specimen vasculature with radiopaque polymer injection medium. PLoS ONE. 2011;6(4):e19099.
    1. Bruyninckx P, Loeckx D, Vandermeulen D, Suetens P. Segmentation of lung vessel trees by global optimization. In: Pluim JPW, Dawant BM, eds. . Proceedings of SPIE 7259, Medical ImagingLake Buena Vista, FL; 2009.
    1. Corliss BA, Ray HC, Patrie J, et al. CIRCOAST: a statistical hypothesis test for cellular colocalization with network structures. Bioinformatics. 2018;1‐9.
    1. Stintzing S, Ocker M, Hartner A, Amann K, Barbera L, Neureiter D. Differentiation patterning of vascular smooth muscle cells (VSMC) in atherosclerosis. Virchows Arch. 2009;455(2):171‐185.
    1. Liu L, Shi G‐P. CD31: beyond a marker for endothelial cells. Cardiovasc Res. 2012;94(1):3‐5.
    1. Yu QC, Song W, Wang D, Zeng YA. Identification of blood vascular endothelial stem cells by the expression of protein C receptor. Cell Res. 2016;26(10):1079‐1098.
    1. Kumar A, D'Souza SS, Moskvin OV, et al. Specification and diversification of pericytes and smooth muscle cells from mesenchymoangioblasts. Cell Rep. 2017;19(9):1902‐1916.
    1. Fang X, Djouhri L, McMullan S, et al. Intense isolectin‐B4 binding in rat dorsal root ganglion neurons distinguishes C‐fiber nociceptors with broad action potentials and high Nav1.9 expression. J Neurosci. 2006;26(27):7281‐7292.
    1. Kubo A, Katanosaka K, Mizumura K. Extracellular matrix proteoglycan plays a pivotal role in sensitization by low pH of mechanosensitive currents in nociceptive sensory neurones. J Physiol. 2012;590(13):2995‐3007.
    1. Ismail JA, Poppa V, Kemper LE, et al. Immunohistologic labeling of murine endothelium. Cardiovasc Pathol. 2003;12(2):82‐90.
    1. Zakharova IS, Zhiven’ MK, Saaya SB, et al. Endothelial and smooth muscle cells derived from human cardiac explants demonstrate angiogenic potential and suitable for design of cell‐containing vascular grafts. J Transl Med. 2017;15:54.
    1. Lünemann A, Ullrich O, Diestel A, et al. Macrophage/microglia activation factor expression is restricted to lesion‐associated microglial cells after brain trauma. Glia. 2006;53(4):412‐419.
    1. Wattananit S, Tornero D, Graubardt N, et al. Monocyte‐derived macrophages contribute to spontaneous long‐term functional recovery after stroke in mice. J Neurosci. 2016;36(15):4182‐4195.
    1. Bahramsoltani M, Slosarek I, De Spiegelaere W, Plendl J. Angiogenesis and collagen type IV expression in different endothelial cell culture systems. Anat Histol Embryol. 2014;43(2):103‐115.
    1. Sava P, Cook IO, Mahal RS, Gonzalez AL. Human microvascular pericyte basement membrane remodeling regulates neutrophil recruitment. Microcirculation. 2015;22(1):54‐67.
    1. Katsuda S, Okada Y, Minamoto T, Nakanishi I. Enhanced synthesis of type IV collagen in cultured arterial smooth muscle cells associated with phenotypic modulation by dimethyl sulfoxide. Cell Biol Int Rep. 1987;11(12):861‐870.
    1. Feru J, Delobbe E, Ramont L, et al. Aging decreases collagen IV expression in vivo in the dermo‐epidermal junction and in vitro in dermal fibroblasts: possible involvement of TGF‐β1. Eur J Dermatol. 2016;26(4):350‐360.
    1. Sillat T, Saat R, Pöllänen R, Hukkanen M, Takagi M, Konttinen YT. Basement membrane collagen type IV expression by human mesenchymal stem cells during adipogenic differentiation. J Cell Mol Med. 2012;16(7):1485‐1495.
    1. Kim H, Yoon CS, Kim H, Rah B. Expression of extracellular matrix components fibronectin and laminin in the human fetal heart. Cell Struct Funct. 1999;24(1):19‐26.
    1. Yousif LF, Di Russo J, Sorokin L. Laminin isoforms in endothelial and perivascular basement membranes. Cell Adh Migr. 2013;7(1):101‐110.
    1. Godin LM, Sandri BJ, Wagner DE, et al. Decreased laminin expression by human lung epithelial cells and fibroblasts cultured in acellular lung scaffolds from aged mice. PLoS ONE. 2016;11(3):e0150966.
    1. Ekblom M, Falk M, Salmivirta K, Durbeej M, Ekblom P. Laminin isoforms and epithelial development. Ann N Y Acad Sci. 1998;857:194‐211.
    1. Fina L, Molgaard HV, Robertson D, et al. Expression of the CD34 gene in vascular endothelial cells. Blood. 1990;75(12):2417‐2426.
    1. Armulik A, Genové G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21(2):193‐215.
    1. Hindle P, Khan N, Biant L, Péault B. The infrapatellar fat pad as a source of perivascular stem cells with increased chondrogenic potential for regenerative medicine. Stem Cells Transl Med. 2017;6(1):77‐87.
    1. Sidney LE, Branch MJ, Dunphy SE, Dua HS, Hopkinson A. Concise review: evidence for CD34 as a common marker for diverse progenitors. Stem Cells (Dayton, Ohio). 2014;32(6):1380‐1389.
    1. Giampietro C, Taddei A, Corada M, et al. Overlapping and divergent signaling pathways of N‐cadherin and VE‐cadherin in endothelial cells. Blood. 2012;119(9):2159‐2170.
    1. Chang L, Noseda M, Higginson M, et al. Differentiation of vascular smooth muscle cells from local precursors during embryonic and adult arteriogenesis requires Notch signaling. Proc Natl Acad Sci. 2012;109(18):6993‐6998.
    1. Gavard J. Endothelial permeability and VE‐cadherin. Cell Adh Migr. 2014;8(2):158‐164.
    1. Zahr A, Alcaide P, Yang J, et al. Endomucin prevents leukocyte–endothelial cell adhesion and has a critical role under resting and inflammatory conditions. Nat Commun. 2016;7:10363.
    1. Liu C, Shao ZM, Zhang L, et al. Human endomucin is an endothelial marker. Biochem Biophys Res Commun. 2001;288(1):129‐136.
    1. Samulowitz U, Kuhn A, Brachtendorf G, et al. Human endomucin. Am J Pathol. 2002;160(5):1669‐1681.
    1. Brachtendorf G, Kuhn A, Samulowitz U, et al. Early expression of endomucin on endothelium of the mouse embryo and on putative hematopoietic clusters in the dorsal aorta. Dev Dyn. 2001;222(3):410‐419.
    1. Zanetta L, Marcus SG, Vasile J, et al. Expression of Von Willebrand factor, an endothelial cell marker, is up‐regulated by angiogenesis factors: a potential method for objective assessment of tumor angiogenesis. Int J Cancer. 2000;85(2):281‐288.
    1. Trost A, Lange S, Schroedl F, et al. Brain and retinal pericytes: origin, function and role. Front Cell Neurosci. 2016;10:20.
    1. Balabanov R, Dore‐Duffy P. Role of the CNS microvascular pericyte in the blood‐brain barrier. J Neurosci Res. 1998;53(6):637‐644.
    1. Strauss O, Phillips A, Ruggiero K, Bartlett A, Dunbar PR. Immunofluorescence identifies distinct subsets of endothelial cells in the human liver. Sci Rep. 2017;7:44356.
    1. Bergers G, Song S. The role of pericytes in blood‐vessel formation and maintenance. Neuro Oncol. 2005;7(4):452‐464.
    1. Merkulova‐Rainon T, Broqueres‐You D, Kubis N, Silvestre J‐S, Levy BI. Towards the therapeutic use of vascular smooth muscle progenitor cells. Cardiovasc Res. 2012;95(2):205‐214.
    1. Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C. Alpha‐smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell. 2001;12(9):2730‐2741.
    1. Lindskog H, Athley E, Larsson E, Lundin S, Hellström M, Lindahl P. New insights to vascular smooth muscle cell and pericyte differentiation of mouse embryonic stem cells in vitro. Arterioscler Thromb Vasc Biol. 2006;26(7):1457‐1464.
    1. Haskins RM, Nguyen AT, Alencar GF, et al. Klf4 has an unexpected protective role in perivascular cells within the microvasculature. Am J Physiol Heart Circ Physiol. 2018;315:H402‐H414.
    1. Shankman LS, Gomez D, Cherepanova OA, et al. KLF4 dependent phenotypic modulation of SMCs plays a key role in atherosclerotic plaque pathogenesis. Nat Med. 2015;21(6):628‐637.
    1. Fukushi J, Makagiansar IT, Stallcup WB. NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin‐3 and α3β1 integrin. Mol Biol Cell. 2004;15(8):3580‐3590.
    1. Zhu L, Xiang P, Guo K, et al. Microglia/monocytes with NG2 expression have no phagocytic function in the cortex after LPS focal injection into the rat brain. Glia. 2012;60(9):1417‐1426.
    1. Yan X, Yan L, Liu S, Shan Z, Tian Y, Jin Z. N‐cadherin, a novel prognostic biomarker, drives malignant progression of colorectal cancer. Mol Med Rep. 2015;12(2):2999‐3006.
    1. Tsuchiya B, Sato Y, Kameya T, Okayasu I, Mukai K. Differential expression of N‐cadherin and E‐cadherin in normal human tissues. Arch Histol Cytol. 2006;69(2):135‐145.
    1. Sun Z, Parrish AR, Hill MA, Meininger GA. N‐cadherin, a vascular smooth muscle cell‐cell adhesion molecule: function and signaling for vasomotor control. Microcirculation. 2014;21(3):208‐218.
    1. Ishimine H, Yamakawa N, Sasao M, et al. N‐Cadherin is a prospective cell surface marker of human mesenchymal stem cells that have high ability for cardiomyocyte differentiation. Biochem Biophys Res Commun. 2013;438(4):753‐759.
    1. Council L, Hameed O. Differential expression of immunohistochemical markers in bladder smooth muscle and myofibroblasts, and the potential utility of desmin, smoothelin, and vimentin in staging of bladder carcinoma. Mod Pathol. 2009;22(5):639‐650.
    1. Gerhardt H, Betsholtz C. Endothelial‐pericyte interactions in angiogenesis. Cell Tissue Res. 2003;314(1):15‐23.
    1. Hewitt KJ, Shamis Y, Knight E, et al. PDGFRβ expression and function in fibroblasts derived from pluripotent cells is linked to DNA demethylation. J Cell Sci. 2012;125(9):2276‐2287.
    1. Lindblom P, Gerhardt H, Liebner S, et al. Endothelial PDGF‐B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev. 2003;17(15):1835‐1840.
    1. Damisah EC, Hill RA, Tong L, Murray KN, Grutzendler J. A fluoro‐Nissl dye identifies pericytes as distinct vascular mural cells during in vivo brain imaging. Nat Neurosci. 2017;20(7):1023‐1032.
    1. Hill M, Davis M. Local Control of Microvascular Perfusion. San Rafael, CA: Morgan & Claypool Publishers; 2012.
    1. Clemetson KJ, Clemetson JM. Platelet receptors A2 In: Michelson AD, ed. Platelets, 3rd edn San Diego, CA: Academic Press; 2013:169‐194.
    1. Fukuhara S, Sako K, Noda K, Nagao K, Miura K, Mochizuki N. Tie2 is tied at the cell‐cell contacts and to extracellular matrix by Angiopoietin‐1. Exp Mol Med. 2009;41(3):133‐139.
    1. Ito K, Turcotte R, Cui J, et al. Self‐renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance. Science (New York, N.Y.). 2016;354(6316):1156‐1160.
    1. Li S, Li T, Luo Y, et al. Retro‐orbital injection of FITC‐dextran is an effective and economical method for observing mouse retinal vessels. Mol Vis. 2011;17:3566‐3573.
    1. Roberts JJ, Martens PJ. Engineering biosynthetic cell encapsulation systems In: Poole‐Warren L, Martens P, Green R, eds. Biosynthetic Polymers for Medical Applications. London: Woodhead Publishing; 2016:205‐239. (Woodhead Publishing Series in Biomaterials).
    1. Kappel A, Rönicke V, Damert A, Flamme I, Risau W, Breier G. Identification of vascular endothelial growth factor (VEGF) receptor‐2 (Flk‐1) promoter/enhancer sequences sufficient for angioblast and endothelial cell‐specific transcription in transgenic mice. Blood. 1999;93(12):4284‐4292.
    1. Haruta H, Nagata Y, Todokoro K. Role of Flk‐1 in mouse hematopoietic stem cells. FEBS Lett. 2001;507(1):45‐48.
    1. Choi J‐S, Kim H‐Y, Cha J‐H, et al. Upregulation of vascular endothelial growth factor receptors Flt‐1 and Flk‐1 following acute spinal cord contusion in rats. J Histochem Cytochem. 2007;55(8):821‐830.
    1. Yang S‐Z, Zhang L‐M, Huang Y‐L, Sun F‐Y. Distribution of Flk‐1 and Flt‐1 receptors in neonatal and adult rat brains. Anat Rec A Discov Mol Cell Evol Biol. 2003;274(1):851‐856.
    1. Miettinen M, Rikala M‐S, Rysz J, Lasota J, Wang Z‐F. Vascular endothelial growth factor receptor 2 (VEGFR2) as a marker for malignant vascular tumors and mesothelioma – immunohistochemical study of 262 vascular endothelial and 1640 nonvascular tumors. Am J Surg Pathol. 2012;36(4):629‐639.
    1. Eilken HM, Diéguez‐Hurtado R, Schmidt I, et al. Pericytes regulate VEGF‐induced endothelial sprouting through VEGFR1. Nat Commun. 2017;8(1):1574.
    1. Motoike T, Loughna S, Perens E, et al. Universal GFP reporter for the study of vascular development. Genesis (New York, N.Y.: 2000). 2000;28(2):75‐81.
    1. Cha YR, Weinstein BM. Visualization and experimental analysis of blood vessel formation using transgenic zebrafish. Birth Defects Res C Embryo Today. 2007;81(4):286‐296.
    1. Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M. Tie2‐Cre transgenic mice: a new model for endothelial cell‐lineage analysis in vivo. Dev Biol. 2001;230(2):230‐242.
    1. Constien R, Forde A, Liliensiek B, et al. Characterization of a novel EGFP reporter mouse to monitor Cre recombination as demonstrated by a Tie2 Cre mouse line. Genesis (New York, N.Y.: 2000). 2001;30(1):36‐44.
    1. Forde A, Constien R, Gröne H‐J, Hämmerling G, Arnold B. Temporal Cre‐mediated recombination exclusively in endothelial cells using Tie2 regulatory elements. Genesis. 2002;33(4):191‐197.
    1. Hartmann DA, Underly RG, Watson AN, Shih AY. A murine toolbox for imaging the neurovascular unit. Microcirculation (New York, N.Y. : 1994). 2015;22(3):168‐182.
    1. Alva JA, Zovein AC, Monvoisin A, et al. VE‐Cadherin‐Cre‐recombinase transgenic mouse: a tool for lineage analysis and gene deletion in endothelial cells. Dev Dyn. 2006;235(3):759‐767.
    1. Chen Q, Zhang H, Liu Y, et al. Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nat Commun. 2016;7:12422.
    1. Zhong W, Gao X, Wang S, et al. Prox1‐GFP/Flt1‐DsRed transgenic mice: an animal model for simultaneous live imaging of angiogenesis and lymphangiogenesis. Angiogenesis. 2017;20(4):581‐598.
    1. Lawson ND, Weinstein BM. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol. 2002;248(2):307‐318.
    1. Poché RA, Larina IV, Scott ML, Saik JE, West JL, Dickinson ME. The Flk1‐myr:mCherry mouse as a useful reporter to characterize multiple aspects of ocular blood vessel development and disease. Dev Dyn. 2009;238(9):2318‐2326.
    1. Jin S‐W, Herzog W, Santoro MM, et al. A transgene‐assisted genetic screen identifies essential regulators of vascular development in vertebrate embryos. Dev Biol. 2007;307(1):29‐42.
    1. Larina IV, Shen W, Kelly OG, Hadjantonakis A‐K, Baron MH, Dickinson ME. A membrane associated mCherry fluorescent reporter line for studying vascular remodeling and cardiac function during murine embryonic development. Anat Rec (Hoboken, N.J.: 2007). 2009;292(3):333‐341.
    1. Cuervo H, Pereira B, Nadeem T, et al. PDGFRβ‐P2A‐CreERT2 mice: a genetic tool to target pericytes in angiogenesis. Angiogenesis. 2017;20(4):655‐662.
    1. Zhu X, Bergles DE, Nishiyama A. NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development. 2008;135(1):145‐157.
    1. Volz KS, Jacobs AH, Chen HI, et al. Pericytes are progenitors for coronary artery smooth muscle. eLife. 2015;4:1‐22.
    1. Iljin K, Petrova TV, Veikkola T, Kumar V, Poutanen M, Alitalo K. A fluorescent Tie1 reporter allows monitoring of vascular development and endothelial cell isolation from transgenic mouse embryos. FASEB J. 2002;16(13):1764‐1774.
    1. Claxton S, Kostourou V, Jadeja S, Chambon P, Hodivala‐Dilke K, Fruttiger M. Efficient, inducible Cre‐recombinase activation in vascular endothelium. Genesis (New York, N.Y.: 2000). 2008;46(2):74‐80.
    1. Fernández‐Klett F, Offenhauser N, Dirnagl U, Priller J, Lindauer U. Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proc Natl Acad Sci USA. 2010;107(51):22290‐22295.
    1. Proebstl D, Voisin M‐B, Woodfin A, et al. Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J Exp Med. 2012;209(6):1219‐1234.
    1. Yokota T, Kawakami Y, Nagai Y, et al. Bone marrow lacks a transplantable progenitor for smooth muscle type alpha‐actin‐expressing cells. Stem Cells (Dayton, Ohio). 2006;24(1):13‐22.
    1. Wendling O, Bornert J‐M, Chambon P, Metzger D. Efficient temporally‐controlled targeted mutagenesis in smooth muscle cells of the adult mouse. Genesis (New York, N.Y.: 2000). 2009;47(1):14‐18.
    1. Nguyen M, Shing Y, Folkman J. Quantitation of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane. Microvasc Res. 1994;47(1):31‐40.
    1. Gavins FNE, Chatterjee BE. Intravital microscopy for the study of mouse microcirculation in anti‐inflammatory drug research: focus on the mesentery and cremaster preparations. J Pharmacol Toxicol Methods. 2004;49(1):1‐14.
    1. Boerman EM, Segal SS. Depressed perivascular sensory innervation of mouse mesenteric arteries with advanced age. J Physiol. 2016;594(8):2323‐2338.
    1. Lipowsky HH, Zweifach BW. Network analysis of microcirculation of cat mesentery. Microvasc Res. 1974;7(1):73‐83.
    1. Sinkler SY, Segal SS. Aging alters reactivity of microvascular resistance networks in mouse gluteus maximus muscle. Am J Physiol Heart Circ Physiol. 2014;307(6):H830‐H839.
    1. Socha MJ, Segal SS. Isolation of microvascular endothelial tubes from mouse resistance arteries. J Vis Exp. 2013;81:e50759.
    1. Jackson WF, Huebner JM, Rusch NJ. Enzymatic isolation and characterization of single vascular smooth muscle cells from cremasteric arterioles. Microcirculation (New York, N.Y.: 1994). 1997;4(1):35‐50.
    1. Asai A, Sahani N, Ouchi Y, Martyn J, Yasuhara S. In vivo micro‐circulation measurement in skeletal muscle by intra‐vital microscopy. J Vis Exp. 2007;4:210.
    1. Menth‐Chiari WA, Curl WW, Rosencrance E, Smith TL. Contusion of skeletal muscle increases leukocyte‐endothelial cell interactions: an intravital‐microscopy study in rats. J Trauma. 1998;45(4):709‐714.
    1. Bagher P, Segal SS. The mouse cremaster muscle preparation for intravital imaging of the microcirculation. J Vis Exp. 2011;(52):10.3791/2874.
    1. Gaber MW, Yuan H, Killmar JT, Naimark MD, Kiani MF, Merchant TE. An intravital microscopy study of radiation‐induced changes in permeability and leukocyte–endothelial cell interactions in the microvessels of the rat pia mater and cremaster muscle. Brain Res Protoc. 2004;13(1):1‐10.
    1. Eisen JS, Smith JC. Controlling morpholino experiments: don't stop making antisense. Development. 2008;135(10):1735‐1743.
    1. Coonrod SA, Bolling LC, Wright PW, Visconti PE, Herr JC. A morpholino phenocopy of the mouse MOS mutation. Genesis. 2001;30(3):198‐200.
    1. Clark ER. Studies on the growth of blood‐vessels in the tail of the frog larva?by observation and experiment on the living animal. Am J Anat. 1918;23(1):37‐88.
    1. Kelly‐Goss MR, Ning B, Bruce AC, et al. Dynamic, heterogeneous endothelial Tie2 expression and capillary blood flow during microvascular remodeling. Sci Rep. 2017;7(1):9049.
    1. van Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T. Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotechnol. 2015;35:118‐126.
    1. Sánchez‐Palencia DM, Bigger‐Allen A, Saint‐Geniez M, Arboleda‐Velásquez JF, D'Amore PA. Coculture assays for endothelial cells‐mural cells interactions. Methods Mol Biol (Clifton, N.J.). 2016;1464:35‐47.
    1. Waters J, Kluger M, Graham M, Chang W, Bradley J, Pober J. In vitro self‐assembly of human pericyte‐supported endothelial microvessels in three‐dimensional co‐culture: a simple model for interrogating endothelial:pericyte interactions. J Vascular Res. 2013;50(4):324‐331.
    1. Stahl A, Connor KM, Sapieha P, et al. The mouse retina as an angiogenesis model. Invest Ophthalmol Vis Sci. 2010;51(6):2813‐2826.
    1. Jackson M, Taylor AH, Jones EA, Forrester LM. The culture of mouse embryonic stem cells and formation of embryoid bodies. Methods Mol Biol (Clifton, N.J.). 2010;633:1‐18.
    1. Humpel C. Organotypic brain slice cultures: a review. Neuroscience. 2015;305:86‐98.
    1. Johnson TV, Martin KR. Development and characterization of an adult retinal explant organotypic tissue culture system as an in vitro intraocular stem cell transplantation model. Invest Ophthalmol Vis Sci. 2008;49(8):3503‐3512.
    1. Sawamiphak S, Ritter M, Acker‐Palmer A. Preparation of retinal explant cultures to study ex vivo tip endothelial cell responses. Nat Protoc. 2010;5(10):1659‐1665.
    1. Bull N, Johnson T, Martin K. Organotypic explant culture of adult rat retina for in vitro investigations of neurodegeneration, neuroprotection and cell transplantation; 2011. . Accessed July 20, 2018.
    1. Downs KM, Temkin R, Gifford S, McHugh J. Study of the murine allantois by allantoic explants. Dev Biol. 2001;233(2):347‐364.
    1. Nakatsu MN, Hughes CCW. An optimized three‐dimensional in vitro model for the analysis of angiogenesis. Methods Enzymol. 2008;443:65‐82.
    1. Huang B, Babcock H, Zhuang X. Breaking the diffraction barrier: super‐resolution imaging of cells. Cell. 2010;143(7):1047‐1058.
    1. Thorn K. A quick guide to light microscopy in cell biology. Mol Biol Cell. 2016;27(2):219‐222.
    1. Heintzmann R, Ficz G. Breaking the resolution limit in light microscopy. Brief Funct Genomics. 2006;5(4):289‐301.
    1. Fernández‐Suárez M, Ting AY. Fluorescent probes for super‐resolution imaging in living cells. Nat Rev Mol Cell Biol. 2008;9(12):929‐943.
    1. Graf BW, Boppart SA. Imaging and analysis of three‐dimensional cell culture models. Methods Mol Biol (Clifton, N.J.). 2010;591:211‐227.
    1. Jonkman J, Brown CM. Any way you slice it—a comparison of confocal microscopy techniques. J Biomol Tech. 2015;26(2):54‐65.
    1. Carter M, Shieh J. Microscopy In: Carter M, Shieh J, eds. Guide to Research Techniques in Neuroscience, 2nd edn San Diego, CA: Academic Press; 2015:117‐144.
    1. Helmchen F, Denk W. Deep tissue two‐photon microscopy. Nat Methods. 2005;2(12):932‐940.
    1. Patterson GH, Piston DW. Photobleaching in two‐photon excitation microscopy. Biophys J . 2000;78(4):2159‐2162.
    1. Xia J, Yao J, Wang LV. Photoacoustic tomography: principles and advances. Electromagn Waves (Cambridge, Mass.). 2014;147:1‐22.
    1. Wang L, Maslov K, Xing W, Garcia‐Uribe A, Wang LV. Video‐rate functional photoacoustic microscopy at depths. J Biomed Optics. 2012;17(10):106007.
    1. Xu M, Wang LV. Photoacoustic imaging in biomedicine. Rev Sci Instrum. 2006;77(4):041101.
    1. Rajan V, Varghese B, van Leeuwen TG, Steenbergen W. Review of methodological developments in laser Doppler flowmetry. Lasers Med Sci. 2009;24(2):269‐283.
    1. Imaging Won R. Mapping blood flow. Nat Photonics. 2011;5(7):393.
    1. Senarathna J, Rege A, Li N, Thakor NV. Laser speckle contrast imaging: theory, instrumentation and applications. IEEE Rev Biomed Eng. 2013;6:99‐110.
    1. Zeller‐Plumhoff B, Roose T, Clough GF, Schneider P. Image‐based modelling of skeletal muscle oxygenation. J R Soc Interface. 2017;14(127):20160992.
    1. Gnyawali SC, Blum K, Pal D, et al. Retooling laser speckle contrast analysis algorithm to enhance non‐invasive high resolution laser speckle functional imaging of cutaneous microcirculation. Sci Rep. 2017;7:41048.
    1. Campbell KR, Chaudhary R, Handel JM, Patankar MS, Campagnola PJ. Polarization‐resolved second harmonic generation imaging of human ovarian cancer. J Biomed Optics. 2018;23(6):066501.
    1. Campagnola P. Second harmonic generation imaging microscopy: applications to diseases diagnostics. Anal Chem. 2011;83(9):3224‐3231.
    1. Cox G, Sheppard CJR. Practical limits of resolution in confocal and non‐linear microscopy. Microsc Res Tech. 2004;63(1):18‐22.
    1. Vuillemin N, Mahou P, Débarre D, et al. Efficient second‐harmonic imaging of collagen in histological slides using Bessel beam excitation. Sci Rep. 2016;6:29863.
    1. Bueno JM, Ávila FJ, Artal P. Comparison of second harmonic microscopy images of collagen‐based ocular tissues with 800 and 1045 nm. Biomed Opt Express. 2017;8(11):5065‐5074.
    1. Fujimoto JG. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol. 2003;21(11):1361‐1367.
    1. Mazlin V, Xiao P, Dalimier E, et al. In vivo imaging through the entire thickness of human cornea by full‐field optical coherence tomography. In: Ophthalmic Technologies XXVIII. Vol. 10474. International Society for Optics and Photonics; 2018:104740S . Accessed July 30, 2018.
    1. de Amorim Garcia Filho CA, Yehoshua Z, Gregori G, Puliafito CA, Rosenfeld PJ. Optical coherence tomography In: Ryan SJ, Sadda SR, Hinton DR, Schachat AP, Sadda SR, Wilkinson CP, Wiedemann P, Schachat AP, eds. Retina, 5th edn London: W.B. Saunders; 2013:82‐110.
    1. Tan ACS, Tan GS, Denniston AK, et al. An overview of the clinical applications of optical coherence tomography angiography. Eye. 2018;32(2):262‐286.
    1. Watanabe S, Punge A, Hollopeter G, et al. Protein localization in electron micrographs using fluorescence nanoscopy. Nat Methods. 2011;8(1):80‐84.
    1. Wu R, Zhan Q, Liu H, Wen X, Wang B, He S. Optical depletion mechanism of upconverting luminescence and its potential for multi‐photon STED‐like microscopy. Opt Express. 2015;23(25):32401.
    1. Ramachandra R, de Jonge N. Optimized deconvolution for maximum axial resolution in three‐dimensional aberration‐corrected scanning transmission electron microscopy. Microsc Microanal. 2012;18(1):218‐228.
    1. Trépout S, Bastin P, Marco S. Preparation and observation of thick biological samples by scanning transmission electron tomography. J Vis Exp. 2017;121:e55215.
    1. Kanemaru T, Hirata K, Takasu S, et al. A fluorescence scanning electron microscope. Ultramicroscopy. 2009;109(4):344‐349.
    1. Reynaud EG, Kržič U, Greger K, Stelzer EHK. Light sheet‐based fluorescence microscopy: more dimensions, more photons, and less photodamage. HFSP J. 2008;2(5):266‐275.
    1. Colombelli J, Lorenzo C. Light sheet fluorescence microscopy applications for multicellular systems In: Cornea A, Conn PM, eds. Fluorescence Microscopy. Boston, MA: Academic Press; 2014:109‐120.
    1. Doukas CN, Maglogiannis I, Chatziioannou AA. Computer‐supported angiogenesis quantification using image analysis and statistical averaging. IEEE Trans Inf Technol Biomed. 2008;12(5):650‐657.
    1. Vickerman MB, Keith PA, McKay TL, et al. VESGEN 2D: automated, user‐interactive software for quantification and mapping of angiogenic and lymphangiogenic trees and networks. Anat Rec. 2009;292(3):320‐332.
    1. Palachanis D, Szabó A, Merks RMH. Particle‐based simulation of ellipse‐shaped particle aggregation as a model for vascular network formation. Comput Part Mech. 2015;2(4):371‐379.
    1. Walpole J, Mac Gabhann F, Peirce SM, Chappell JC. Agent‐based computational model of retinal angiogenesis simulates microvascular network morphology as a function of pericyte coverage. Microcirculation (New York, N.Y.: 1994). 2017;24(8); 10.1111/micc.12393.
    1. Shirinifard A, Gens JS, Zaitlen BL, Popławski NJ, Swat M, Glazier JA. 3D multi‐cell simulation of tumor growth and angiogenesis. PLoS ONE. 2009;4(10); e7190.
    1. Macklin P, McDougall S, Anderson ARA, Chaplain MAJ, Cristini V, Lowengrub J. Multiscale modelling and nonlinear simulation of vascular tumour growth. J Math Biol. 2009;58(4–5):765‐798.
    1. Kleinstreuer N, Dix D, Rountree M, et al. A computational model predicting disruption of blood vessel development. PLoS Comput Biol. 2013;9(4):e1002996.
    1. Norton K‐A, Popel AS. Effects of endothelial cell proliferation and migration rates in a computational model of sprouting angiogenesis. Sci Rep. 2016;6:36992.
    1. Moreira‐Soares M, Coimbra R, Rebelo L, Carvalho J, D M Travasso R. Angiogenic factors produced by hypoxic cells are a leading driver of anastomoses in sprouting angiogenesis–a computational study. Sci Rep. 2018;8:8726.
    1. Travasso RDM, Corvera Poiré E, Castro M, Rodrguez‐Manzaneque JC, Hernández‐Machado A. Tumor angiogenesis and vascular patterning: a mathematical model. PLoS ONE. 2011;6(5):e19989.
    1. Vilanova G, Colominas I, Gomez H. Coupling of discrete random walks and continuous modeling for three‐dimensional tumor‐induced angiogenesis. Comput Mech. 2014;53(3):449‐464.
    1. Vilanova G, Colominas I, Gomez H. A mathematical model of tumour angiogenesis: growth, regression and regrowth. J R Soc Interface. 2017;14(126):20160918.
    1. Guerra MMDSQ, Travasso RDM. Novel approach to vascular network modeling in 3D. In: 2012 IEEE 2nd Portuguese Meeting in Bioengineering (ENBENG); 2012:1‐6.
    1. Secomb TW, Alberding JP, Hsu R, Dewhirst MW, Pries AR. Angiogenesis: an adaptive dynamic biological patterning problem. PLoS Comput Biol. 2013;9(3):e1002983.
    1. Santagiuliana R, Ferrari M, Schrefler BA. Simulation of angiogenesis in a multiphase tumor growth model. Comput Methods Appl Mech Eng. 2016;304:197‐216.
    1. Soltani M, Chen P. Numerical modeling of interstitial fluid flow coupled with blood flow through a remodeled solid tumor microvascular network. PLoS ONE. 2013;8(6):e67025.

Source: PubMed

Подписаться