Low miR-150-5p and miR-320b Expression Predicts Reduced Survival of COPD Patients

Andreas Keller, Nicole Ludwig, Tobias Fehlmann, Mustafa Kahraman, Christina Backes, Fabian Kern, Claus F Vogelmeier, Caroline Diener, Ulrike Fischer, Frank Biertz, Christian Herr, Rudolf A Jörres, Hans-Peter Lenhof, Robert Bals, Eckart Meese, Andreas Keller, Nicole Ludwig, Tobias Fehlmann, Mustafa Kahraman, Christina Backes, Fabian Kern, Claus F Vogelmeier, Caroline Diener, Ulrike Fischer, Frank Biertz, Christian Herr, Rudolf A Jörres, Hans-Peter Lenhof, Robert Bals, Eckart Meese

Abstract

Chronic obstructive pulmonary disease (COPD) is associated with an increased risk of death, reducing life expectancy on average between 5 and 7 years. The survival time after diagnosis, however, varies considerably as a result of the heterogeneity of COPD. Therefore, markers that predict individual survival of COPD patients are of great value. We analyzed baseline molecular profiles and collected 54 months of follow-up data of the cohort study "COPD and SYstemic consequences-COmorbidities NETwork" (COSYCONET). Genome-wide microRNA signatures from whole blood collected at time of the inclusion in the study were generated for 533 COPD patients including patients that deceased during the 54-month follow-up period (n = 53) and patients that survived this period (n = 480). We identified two blood-born microRNAs (miR-150-5p and miR-320b) that were highly predictive for survival of COPD patients. The expression change was then confirmed by RT-qPCR in 245 individuals. Ninety percent of patients with highest expression of miR-150-5p survived the 54-month period in contrast to only 50% of patients with lowest expression intensity. Moreover, the abundance of the oncogenic miR-150-5p in blood of COPD patients was predictive for the development of cancer. Thus, molecular profiles measured at the time of a COPD diagnosis have a high predictive power for the survival of patients.

Keywords: COPD; cancer; miRNA; survival.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Overview of the study set up. The study consists of three parts: (1) a primary microarray-based screening, (2) a bioinformatics evaluation of the data and candidate selection, and (3) a validation in a subset of samples using RT-qPCR. Blood-born microRNA profiles were related to the survival of patients with chronic obstructive pulmonary disease (COPD) over a period of 54 months after diagnosis. COSYCONET: COPD and SYstemic consequences-COmorbidities NETwork.
Figure 2
Figure 2
Volcano plot for the differentially expressed miRNAs in COPD patients surviving a 54-month period versus patients who died within this period. Significant miRNAs are indicated in red (overexpressed in surviving patients) or green (reduced expression in surviving patients).
Figure 3
Figure 3
Kaplan-Meier analyses of blood-born miRNA pattern determined by array analysis. (A) MiR-320b indicates longer survival of COPD patients who show higher abundance of miR-320b. (B) MiR-21-5p indicates longer survival of COPD patients who show lower abundance of miR-21-5p.
Figure 4
Figure 4
Kaplan-Meier analyses of blood-born miRNA patterns determined by RT-qPCR. (A) MiR-320b indicates longer survival of COPD patients who show higher abundance of miR-320b. (B) MiR-150-5p indicates longer survival of COPD patients who show higher abundance of miR-150-5p. (C) Splitting the patients in tertile groups with high, medium, and low expression of miR-150-5p showed longest survival for patients with highest expression. (D) Splitting in quintile groups also demonstrated the longest survival for patients with highest expression.

References

    1. Decramer M., Janssens W. Chronic obstructive pulmonary disease and comorbidities. Lancet Respir. Med. 2013;1:73–83. doi: 10.1016/S2213-2600(12)70060-7.
    1. Ho C.H., Chen Y.C., Wang J.J., Liao K.M. Incidence and relative risk for developing cancer among patients with COPD: A nationwide cohort study in Taiwan. BMJ Open. 2017;7:e013195. doi: 10.1136/bmjopen-2016-013195.
    1. Durham A.L., Adcock I.M. The relationship between COPD and lung cancer. Lung Cancer. 2015;90:121–127. doi: 10.1016/j.lungcan.2015.08.017.
    1. Zakharkina T., Heinzel E., Koczulla R.A., Greulich T., Rentz K., Pauling J.K., Baumbach J., Herrmann M., Grünewald C., Dienemann H., et al. Analysis of the Airway Microbiota of Healthy Individuals and Patients with Chronic Obstructive Pulmonary Disease by T-RFLP and Clone Sequencing. PLoS ONE. 2013;8:e68302. doi: 10.1371/journal.pone.0068302.
    1. Buist A.S., Vollmer W.M., McBurnie M.A. Worldwide burden of COPD in high- and low-income countries. Part I. The burden of obstructive lung disease (BOLD) initiative. Int. J. Tuberc. Lung Dis. 2008;12:703–708.
    1. Chen W., Brehm J.M., Manichaikul A., Cho M.H., Boutaoui N., Yan Q., Burkart K.M., Enright P.L., Rotter J.I., Petersen H., et al. A genome-wide association study of chronic obstructive pulmonary disease in Hispanics. Ann. Am. Thorac. Soc. 2015;12:340–348. doi: 10.1513/AnnalsATS.201408-380OC.
    1. Cho M.H., Castaldi P.J., Wan E.S., Siedlinski M., Hersh C.P., Demeo D.L., Himes B.E., Sylvia J.S., Klanderman B.J., Ziniti J.P., et al. A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13. Hum. Mol. Genet. 2012;21:947–957. doi: 10.1093/hmg/ddr524.
    1. Wain L.V., Shrine N., Artigas M.S., Erzurumluoglu A.M., Noyvert B., Bossini-Castillo L., Obeidat M., Henry A.P., Portelli M.A., Hall R.J., et al. Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nat. Genet. 2017;49:416–425. doi: 10.1038/ng.3787.
    1. Kowalczyk M.S., Higgs D.R., Gingeras T.R. Molecular biology: RNA discrimination. Nature. 2012;482:310–311. doi: 10.1038/482310a.
    1. Jankowsky E., Harris M.E. Specificity and nonspecificity in RNA-protein interactions. Nat. Rev. Mol. Cell Boil. 2015;16:533–544. doi: 10.1038/nrm4032.
    1. Dang X., Qu X., Wang W., Liao C., Li Y., Zhang X., Xu D., Baglole C.J., Shang D., Chang Y. Bioinformatic analysis of microRNA and mRNA Regulation in peripheral blood mononuclear cells of patients with chronic obstructive pulmonary disease. Respir. Res. 2017;18:4. doi: 10.1186/s12931-016-0486-5.
    1. Kara M., Kirkil G., Kalemci S. Differential Expression of MicroRNAs in Chronic Obstructive Pulmonary Disease. Adv. Clin. Exp. Med. 2016;25:21–26. doi: 10.17219/acem/28343.
    1. Leidinger P., Keller A., Borries A., Huwer H., Rohling M., Huebers J., Lenhof H.-P., Meese E. Specific peripheral miRNA profiles for distinguishing lung cancer from COPD. Lung Cancer. 2011;74:41–47. doi: 10.1016/j.lungcan.2011.02.003.
    1. Keller A., Fehlmann T., Ludwig N., Kahraman M., Laufer T., Backes C., Vogelmeier C., Diener C., Biertz F., Herr C., et al. Genome-wide MicroRNA Expression Profiles in COPD: Early Predictors for Cancer Development. Genomics Proteomics Bioinf. 2018;16:162–171. doi: 10.1016/j.gpb.2018.06.001.
    1. Karch A., Vogelmeier C., Welte T., Bals R., Kauczor H.-U., Biederer J., Heinrich J., Schulz H., Gläser S., Holle R., et al. The German COPD cohort COSYCONET: Aims, methods and descriptive analysis of the study population at baseline. Respir. Med. 2016;114:27–37. doi: 10.1016/j.rmed.2016.03.008.
    1. Miniati M., Monti S., Pavlickova I., Bottai M. Survival in COPD: Impact of Lung Dysfunction and Comorbidities. Medicine. 2014;93:e76. doi: 10.1097/MD.0000000000000076.
    1. Backes C., Khaleeq Q.T., Meese E., Keller A. miEAA: microRNA enrichment analysis and annotation. Nucleic Acids Res. 2016;44:W110–W116. doi: 10.1093/nar/gkw345.
    1. Zheng J., Lin Z., Dong P., Lu Z., Gao S., Chen X., Wu C., Yu F. Activation of hepatic stellate cells is suppressed by microRNA-150. Int. J. Mol. Med. 2013;32:17–24. doi: 10.3892/ijmm.2013.1356.
    1. Yao J., Liang L.H., Zhang Y., Ding J., Tian Q., Li J.J., He X.H. GNAI1 Suppresses Tumor Cell Migration and Invasion and is Post-Transcriptionally Regulated by Mir-320a/c/d in Hepatocellular Carcinoma. Cancer Boil. Med. 2012;9:234–241.
    1. Wang B., Jha J.C., Hagiwara S., McClelland A.D., Jandeleit-Dahm K., Thomas M.C., Cooper M.E., Kantharidis P. Transforming growth factor-beta1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b. Kidney Int. 2014;85:352–361. doi: 10.1038/ki.2013.372.
    1. Kimura K., Hohjoh H., Fukuoka M., Sato W., Oki S., Tomi C., Yamaguchi H., Kondo T., Takahashi R., Yamamura T. Circulating exosomes suppress the induction of regulatory T cells via let-7i in multiple sclerosis. Nat. Commun. 2018;9:17. doi: 10.1038/s41467-017-02406-2.
    1. Meinders M., Kulu D.I., van de Werken H.J., Hoogenboezem M., Janssen H., Brouwer R.W., van Ijcken W.F., Rijkers E.J., Demmers J.A., Kruger I., et al. Sp1/Sp3 transcription factors regulate hallmarks of megakaryocyte maturation and platelet formation and function. Blood. 2015;125:1957–1967. doi: 10.1182/blood-2014-08-593343.
    1. Foley J.F., Singh S.P., Cantu M., Chen L., Zhang H.H., Farber J.M. Differentiation of human T cells alters their repertoire of G protein alpha-subunits. J. Biol. Chem. 2010;285:35537–35550. doi: 10.1074/jbc.M110.128033.
    1. Backes C., Ludwig N., Leidinger P., Huwer H., Tenzer S., Fehlmann T., Franke A., Meese E., Lenhof H.-P., Keller A. Paired proteomics, transcriptomics and miRNomics in non-small cell lung cancers: Known and novel signaling cascades. Oncotarget. 2016;7:71514–71525. doi: 10.18632/oncotarget.11723.
    1. Chen X., Zeng K., Xu M., Hu X., Liu X., Xu T., He B., Pan Y., Sun H., Wang S. SP1-induced lncRNA-ZFAS1 contributes to colorectal cancer progression via the miR-150-5p/VEGFA axis. Cell Death Dis. 2018;9:982. doi: 10.1038/s41419-018-0962-6.
    1. Koshizuka K., Hanazawa T., Kikkawa N., Katada K., Okato A., Arai T., Idichi T., Osako Y., Okamoto Y., Seki N. Antitumor miR-150-5p and miR-150-3p inhibit cancer cell aggressiveness by targeting SPOCK1 in head and neck squamous cell carcinoma. Auris Nasus Larynx. 2018;45:854–865. doi: 10.1016/j.anl.2017.11.019.
    1. Lu W., Zhang H., Niu Y., Wu Y., Sun W., Li H., Kong J., Ding K., Shen H.M., Wu H., et al. Long non-coding RNA linc00673 regulated non-small cell lung cancer proliferation, migration, invasion and epithelial mesenchymal transition by sponging miR-150-5p. Mol. Cancer. 2017;16:118. doi: 10.1186/s12943-017-0685-9.
    1. Li T., Xie J., Shen C., Cheng D., Shi Y., Wu Z., Zhan Q., Deng X., Chen H., Shen B., et al. miR-150-5p inhibits hepatoma cell migration and invasion by targeting MMP14. PLoS ONE. 2014;9:e115577. doi: 10.1371/journal.pone.0115577.
    1. Lv Q.L., Du H., Liu Y.L., Huang Y.T., Wang G.-H., Zhang X., Chen S.H., Zhou H.H. Low expression of microRNA-320b correlates with tumorigenesis and unfavorable prognosis in glioma. Oncol. Rep. 2017;38:959–966. doi: 10.3892/or.2017.5762.
    1. Tadano T., Kakuta Y., Hamada S., Shimodaira Y., Kuroha M., Kawakami Y., Kimura T., Shiga H., Endo K., Masamune A., et al. MicroRNA-320 family is downregulated in colorectal adenoma and affects tumor proliferation by targeting CDK6. World J. Gastrointest. Oncol. 2016;8:532–542. doi: 10.4251/wjgo.v8.i7.532.
    1. Wang H., Cao F., Li X., Miao H., E J., Xing J., Fu C.G. miR-320b suppresses cell proliferation by targeting c-Myc in human colorectal cancer cells. BMC Cancer. 2015;15:748. doi: 10.1186/s12885-015-1728-5.
    1. Sekine Y., Katsura H., Koh E., Hiroshima K., Fujisawa T. Early detection of COPD is important for lung cancer surveillance. Eur. Respir. J. 2012;39:1230–1240. doi: 10.1183/09031936.00126011.
    1. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262.

Source: PubMed

Подписаться