The impact of COPD on polyneuropathy: results from the German COPD cohort COSYCONET

K Kahnert, M Föhrenbach, T Lucke, P Alter, F T Trudzinski, R Bals, J I Lutter, H Timmermann, S Söhler, S Förderreuther, D Nowak, H Watz, B Waschki, J Behr, T Welte, C F Vogelmeier, R A Jörres, K Kahnert, M Föhrenbach, T Lucke, P Alter, F T Trudzinski, R Bals, J I Lutter, H Timmermann, S Söhler, S Förderreuther, D Nowak, H Watz, B Waschki, J Behr, T Welte, C F Vogelmeier, R A Jörres

Abstract

Background: Peripheral neuropathy is a common comorbidity in COPD. We aimed to investigate associations between alterations commonly found in COPD and peripheral neuropathy, with particular emphasize on the distinction between direct and indirect effects.

Methods: We used visit 4 data of the COPD cohort COSYCONET, which included indicators of polyneuropathy (repeated tuning fork and monofilament testing), excluding patients with diabetes a/o increased HbA1c. These indicators were analysed for the association with COPD characteristics, including lung function, blood gases, 6-min walk distance (6-MWD), timed-up-and-go-test (TUG), exacerbation risk according to GOLD, C-reactive protein (CRP), and ankle-brachial index (ABI). Based on the results of conventional regression analyses adjusted for age, BMI, packyears and gender, we utilized structural equation modelling (SEM) to quantify the network of direct and indirect relationships between parameters.

Results: 606 patients were eligible for analysis. The indices of polyneuropathy were highly correlated with each other and related to base excess (BE), ABI and TUG. ABI was linked to neuropathy and 6-MWD, exacerbations depended on FEV1, 6-MWD and CRP. The associations could be summarized into a SEM comprising polyneuropathy as a latent variable (PNP) with three measured indicator variables. Importantly, PNP was directly dependent on ABI and particularly on BE. When also including patients with diabetes and/or elevated values of HbA1c (n = 742) the SEM remained virtually the same.

Conclusion: We identified BE and ABI as major determinants of peripheral neuropathy in patients with COPD. All other associations, particularly those with lung function and physical capacity, were indirect. These findings underline the importance of alterations of the micromilieu in COPD, in particular the degree of metabolic compensation and vascular status.

Keywords: Ankle-brachial-index; Base excess; COPD; Peripheral neuropathy.

Conflict of interest statement

The authors declare that they have no competing interests. Financial support provided to individuals is disclosed on the conflict of interest declaration provided from each single author.

Figures

Fig. 1
Fig. 1
Structural equation model (SEM). For regression and correlation coefficients see Table 2. Unidirectional arrows indicate a relationship in terms of a linear regression, and double-headed arrows a correlation between variables. All rectangles represent observed variables, whereby the error terms for dependent variables (those, to which at least one arrow points) have been omitted for the sake of clarity. The oval represents a latent variable (construct PNP) comprising the three peripheral neuropathy measures as indicator variables. The structure of relationships illustrates that BE and ABI had effects on the total construct PNP, whereas the lung function parameters showed different relationships to other variables and therefore could not be summarized into a construct

References

    1. Barnes PJ, Celli BR. Systemic manifestations and comorbidities of COPD. Eur Respir J. 2009;33(5):1165–1185. doi: 10.1183/09031936.00128008.
    1. Divo M, Cote C, de Torres JP, Casanova C, Marin JM, Pinto-Plata V, et al. Comorbidities and risk of mortality in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;186(2):155–161. doi: 10.1164/rccm.201201-0034OC.
    1. Agrawal D, Vohra R, Gupta PP, Sood S. Subclinical peripheral neuropathy in stable middle-aged patients with chronic obstructive pulmonary disease. Singap Med J. 2007;48(10):887–894.
    1. Shah S, Salvi S, Kowale A. Peripheral Nerves in Chronic Obstructive Pulmonary Disease: A Review. International Journal of Advanced Physiology and Allied Sciences. 2016;3(1):78–87.
    1. Gupta PremPrakash, Agarwal Dipti. Chronic obstructive pulmonary disease and peripheral neuropathy. Lung India. 2006;23(1):25. doi: 10.4103/0970-2113.44427.
    1. Goss JR, Stolz DB, Robinson AR, Zhang M, Arbujas N, Robbins PD, et al. Premature aging-related peripheral neuropathy in a mouse model of progeria. Mech Ageing Dev. 2011;132(8–9):437–442. doi: 10.1016/j.mad.2011.04.010.
    1. Karrasch S, Holz O, Jorres RA. Aging and induced senescence as factors in the pathogenesis of lung emphysema. Respir Med. 2008;102(9):1215–1230. doi: 10.1016/j.rmed.2008.04.013.
    1. Vila A, Reymond F, Paramelle B, Stoebner P, Ouvrard-Hernandez AM, Muller P, et al. Neuropathies and chronic respiratory insufficiency: electrophysiologic study. Rev Electroencephalogr Neurophysiol Clin. 1986;15(4):331–340. doi: 10.1016/S0370-4475(86)80039-9.
    1. Jann S, Gatti A, Crespi S, Rolo J, Beretta S. Peripheral neuropathy in chronic respiratory insufficiency. J Peripher Nerv Syst. 1998;3(1):69–74.
    1. Pop-Busui R, Ang L, Holmes C, Gallagher K, Feldman EL. Inflammation as a therapeutic target for diabetic neuropathies. Curr Diab Rep. 2016;16(3):29. doi: 10.1007/s11892-016-0727-5.
    1. Kahnert K, Lucke T, Biertz F, Lechner A, Watz H, Alter P, et al. Transfer factor for carbon monoxide in patients with COPD and diabetes: results from the German COSYCONET cohort. Respir Res. 2017;18(1):14. doi: 10.1186/s12931-016-0499-0.
    1. Ulubay G, Ulasli SS, Bozbas SS, Ozdemirel T, Karatas M. Effects of peripheral neuropathy on exercise capacity and quality of life in patients with chronic obstructive pulmonary diseases. Arch Med Sci. 2012;8(2):296–302. doi: 10.5114/aoms.2012.28557.
    1. Lin MT, Lee LJ, Chao CC, Hsieh ST. Quality of life in polyneuropathy: association with biomarkers of small fiber impairment. Health Qual Life Outcomes. 2015;13:169. doi: 10.1186/s12955-015-0363-9.
    1. Naberan K, Azpeitia A, Cantoni J, Miravitlles M. Impairment of quality of life in women with chronic obstructive pulmonary disease. Respir Med. 2012;106(3):367–373. doi: 10.1016/j.rmed.2011.09.014.
    1. Kahnert K, Alter P, Welte T, Huber RM, Behr J, Biertz F, et al. Uric acid, lung function, physical capacity and exacerbation frequency in patients with COPD: a multi-dimensional approach. Respir Res. 2018;19(1):110. doi: 10.1186/s12931-018-0815-y.
    1. Alter P, Watz H, Kahnert K, Pfeifer M, Randerath WJ, Andreas S, et al. Airway obstruction and lung hyperinflation in COPD are linked to an impaired left ventricular diastolic filling. Respir Med. 2018;137:14–22. doi: 10.1016/j.rmed.2018.02.011.
    1. Kahnert K, Lucke T, Huber RM, Behr J, Biertz F, Vogt A, et al. Relationship of hyperlipidemia to comorbidities and lung function in COPD: results of the COSYCONET cohort. PLoS One. 2017;12(5):e0177501. doi: 10.1371/journal.pone.0177501.
    1. Trudzinski FC, Kahnert K, Vogelmeier CF, Alter P, Seiler F, Fahndrich S, et al. Combined effects of lung function, blood gases and kidney function on the exacerbation risk in stable COPD: results from the COSYCONET cohort. Respir Med. 2019;154:18–26. doi: 10.1016/j.rmed.2019.06.007.
    1. Alter P, Watz H, Kahnert K, Rabe KF, Biertz F, Fischer R, et al. Effects of airway obstruction and hyperinflation on electrocardiographic axes in COPD. Respir Res. 2019;20(1):61. doi: 10.1186/s12931-019-1025-y.
    1. Kahnert K, Jobst B, Biertz F, Biederer J, Watz H, Huber RM, et al. Relationship of spirometric, body plethysmographic, and diffusing capacity parameters to emphysema scores derived from CT scans. Chron Respir Dis. 2019;16:1479972318775423. doi: 10.1177/1479972318775423.
    1. Karch A, Vogelmeier C, Welte T, Bals R, Kauczor HU, Biederer J, et al. The German COPD cohort COSYCONET: aims, methods and descriptive analysis of the study population at baseline. Respir Med. 2016;114:27–37. doi: 10.1016/j.rmed.2016.03.008.
    1. Vogelmeier CF, Criner GJ, Martinez FJ, Anzueto A, Barnes PJ, Bourbeau J, et al. Global strategy for the diagnosis, management and prevention of chronic obstructive lung disease 2017 report: GOLD executive summary. Respirology. 2017;22(3):575–601. doi: 10.1111/resp.13012.
    1. Lucke T, Herrera R, Wacker M, Holle R, Biertz F, Nowak D, et al. Systematic analysis of self-reported comorbidities in large cohort studies - a novel stepwise approach by evaluation of medication. PLoS One. 2016;11(10):e0163408. doi: 10.1371/journal.pone.0163408.
    1. Stanojevic S, Graham BL, Cooper BG, Thompson BR, Carter KW, Francis RW, et al. Official ERS technical standards: Global Lung Function Initiative reference values for the carbon monoxide transfer factor for Caucasians. Eur Respir J. 2017;50(3):1700010. doi: 10.1183/13993003.00010-2017.
    1. Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur Respir J. 2012;40(6):1324–1343. doi: 10.1183/09031936.00080312.
    1. Peters EW, Bienfait HM, de Visser M, de Haan RJ. The reliability of assessment of vibration sense. Acta Neurol Scand. 2003;107(4):293–298. doi: 10.1034/j.1600-0404.2003.01333.x.
    1. Houben-Wilke S, Jorres RA, Bals R, Franssen FM, Glaser S, Holle R, et al. Peripheral artery disease and its clinical relevance in patients with chronic obstructive pulmonary disease in the COPD and systemic consequences-comorbidities network study. Am J Respir Crit Care Med. 2017;195(2):189–197. doi: 10.1164/rccm.201602-0354OC.
    1. Slater RA, Koren S, Ramot Y, Buchs A, Rapoport MJ. Pilot study on the significance of random intrasite placement of the Semmes-Weinstein monofilament. Diab Metab Res Rev. 2013;29(3):235–238. doi: 10.1002/dmrr.2388.
    1. Bauer H GG, Gries A, Imig H, Morbach S, Riepe G, Rothe U, Rümenapf G, Stiegler H, Tepe G, Uebel T, Weck M, . Nationale VersorgungsLeitlinie Typ-2-Diabetes: Präventions- und Behandlungsstrategien für Fußkomplikationen. 2010.
    1. Tanja L. Vergleichende Analyse biologischer Alterungsmarker bei Patienten mit chronisch-obstruktiver Lungenerkrankung (COPD)%0 Thesis. 2015.
    1. Hoyle R. Handbook of Structural Equation Modeling 2015.
    1. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–612. doi: 10.7326/0003-4819-150-9-200905050-00006.
    1. Lamb EJ, Levey AS, Stevens PE. The kidney disease improving global outcomes (KDIGO) guideline update for chronic kidney disease: evolution not revolution. Clin Chem. 2013;59(3):462–465. doi: 10.1373/clinchem.2012.184259.
    1. Korthals JK, Wisniewski HM. Peripheral nerve ischemia. Part 1. Experimental model. J Neurol Sci. 1975;24(1):65–76. doi: 10.1016/0022-510X(75)90009-X.
    1. Sladky JT, Tschoepe RL, Greenberg JH, Brown MJ. Peripheral neuropathy after chronic endoneurial ischemia. Ann Neurol. 1991;29(3):272–278. doi: 10.1002/ana.410290308.
    1. Sasaki H, Kihara M, Zollman PJ, Nickander KK, Smithson IL, Schmelzer JD, et al. Chronic constriction model of rat sciatic nerve: nerve blood flow, morphologic and biochemical alterations. Acta Neuropathol. 1997;93(1):62–70. doi: 10.1007/s004010050583.
    1. Low PA, Schmelzer JD, Ward KK, Yao JK. Experimental chronic hypoxic neuropathy: relevance to diabetic neuropathy. Am J Phys. 1986;250(1 Pt 1):E94–E99.
    1. Nowak D, Bruch M, Arnaud F, Fabel H, Kiessling D, Nolte D, et al. Peripheral neuropathies in patients with chronic obstructive pulmonary disease: a multicenter prevalence study. Lung. 1990;168(1):43–51. doi: 10.1007/BF02719672.
    1. Ozge A, Atis S, Sevim S. Subclinical peripheral neuropathy associated with chronic obstructive pulmonary disease. Electromyogr Clin Neurophysiol. 2001;41(3):185–191.
    1. Tesfaye S, Malik R, Ward JD. Vascular factors in diabetic neuropathy. Diabetologia. 1994;37(9):847–854. doi: 10.1007/BF00400938.
    1. Stevens MJ, Feldman EL, Greene DA. The aetiology of diabetic neuropathy: the combined roles of metabolic and vascular defects. Diabet Med. 1995;12(7):566–579. doi: 10.1111/j.1464-5491.1995.tb00544.x.
    1. Ylitalo KR, Herman WH, Harlow SD. Performance-based physical functioning and peripheral neuropathy in a population-based cohort of women at midlife. Am J Epidemiol. 2013;177(8):810–817. doi: 10.1093/aje/kws327.
    1. Rother U, Lang W, Horch RE, Ludolph I, Meyer A, Regus S. Microcirculation evaluated by intraoperative fluorescence angiography after Tibial bypass surgery. Ann Vasc Surg. 2017;40:190–197. doi: 10.1016/j.avsg.2016.07.084.
    1. Urbancic-Rovan V, Bernjak A, Stefanovska A, Azman-Juvan K, Kocijancic A. Macro- and microcirculation in the lower extremities--possible relationship. Diab Res Clin Pract. 2006;73(2):166–173. doi: 10.1016/j.diabres.2006.01.002.
    1. Marin JM, Soriano JB, Carrizo SJ, Boldova A, Celli BR. Outcomes in patients with chronic obstructive pulmonary disease and obstructive sleep apnea: the overlap syndrome. Am J Respir Crit Care Med. 2010;182(3):325–331. doi: 10.1164/rccm.200912-1869OC.
    1. Visser NA, Notermans NC. Teding van Berkhout F, van den berg LH, Vrancken AF. Chronic obstructive pulmonary disease is not a risk factor for polyneuropathy: a prospective controlled study. Chron Respir Dis. 2017;14(4):327–333. doi: 10.1177/1479972316636993.
    1. Giannini C, Dyck PJ. Basement membrane reduplication and pericyte degeneration precede development of diabetic polyneuropathy and are associated with its severity. Ann Neurol. 1995;37(4):498–504. doi: 10.1002/ana.410370412.
    1. Bolton CF. Peripheral neuropathies associated with chronic renal failure. Can J Neurol Sci. 1980;7(2):89–96. doi: 10.1017/S0317167100023453.
    1. Nukada H, van Rij AM, Packer SG, McMorran PD. Pathology of acute and chronic ischaemic neuropathy in atherosclerotic peripheral vascular disease. Brain. 1996;119(Pt 5):1449–1460. doi: 10.1093/brain/119.5.1449.
    1. Teunissen LL, Notermans NC, Jansen GH, Banga JD, Veldman H, Wokke JH. Thickness of endoneurial vessel basal lamina area in chronic idiopathic axonal polyneuropathy. Acta Neuropathol. 2000;100(4):445–450. doi: 10.1007/s004010000193.
    1. Amaral AF, Patel J, Gnatiuc L, Jones M, Burney PG. Association of pulse wave velocity with total lung capacity: a cross-sectional analysis of the BOLD London study. Respir Med. 2015;109(12):1569–1575. doi: 10.1016/j.rmed.2015.10.016.
    1. Fregnan F, Muratori L, Simoes AR, Giacobini-Robecchi MG, Raimondo S. Role of inflammatory cytokines in peripheral nerve injury. Neural Regen Res. 2012;7(29):2259–2266.
    1. O'Rourke M. Arterial stiffness, systolic blood pressure, and logical treatment of arterial hypertension. Hypertension. 1990;15(4):339–347. doi: 10.1161/01.HYP.15.4.339.
    1. Teramoto S, Matsuse T, Ouchi Y. Physiological changes in respiratory function associated with ageing. Eur Respir J. 1999;14(6):1454–1455. doi: 10.1183/09031936.99.14614549.
    1. Graf J, Lucke T, Herrera R, Watz H, Holle R, Vogelmeier C, et al. Compatibility of medication with PRISCUS criteria and identification of drug interactions in a large cohort of patients with COPD. Pulm Pharmacol Ther. 2018;49:123–129. doi: 10.1016/j.pupt.2018.01.011.

Source: PubMed

Подписаться