Specific Pharmacological Profile of A2A Adenosine Receptor Predicts Reduced Fractional Flow Reserve in Patients With Suspected Coronary Artery Disease

Franck Paganelli, Noémie Resseguier, Marion Marlinge, Marc Laine, Fabrice Malergue, Nathalie Kipson, Pauline Armangau, Nicolas Pezzoli, Francois Kerbaul, Laurent Bonello, Giovanna Mottola, Emmanuel Fenouillet, Régis Guieu, Jean Ruf, Franck Paganelli, Noémie Resseguier, Marion Marlinge, Marc Laine, Fabrice Malergue, Nathalie Kipson, Pauline Armangau, Nicolas Pezzoli, Francois Kerbaul, Laurent Bonello, Giovanna Mottola, Emmanuel Fenouillet, Régis Guieu, Jean Ruf

Abstract

Background: The rapid and reliable exclusion of myocardial revascularization is a major unmet clinical need in patients with suspected coronary artery disease (CAD) and non-contributive electrocardiography and troponin. Non-invasive tests have high rates of false positives and negatives, and there is no biomarker to assess myocardial ischemia. The presence of spare adenosine A2A receptors (A2AR)-characterized by a high dissociation constant/half maximal effective concentration (KD/EC50) ratio-expressed on peripheral blood mononuclear cells (PBMC) has been associated with ischemia during exercise stress testing in patients with CAD. In this work, we investigated the diagnostic accuracy of spare A2AR versus fractional flow reserve (FFR) in patients with suspected CAD.

Methods and results: Sixty patients with suspected CAD, but non-contributive electrocardiography and troponin, were consecutively enrolled in this prospective study. The binding (KD), functional response (cyclic adenosine monophosphate [cAMP] production; EC50) on PBMC A2AR were compared with FFR results. Patients were divided into 3 groups: 17 (group 1) with normal coronary angiography (n=13) or stenosis <20% (n=4); 21 with CAD and non-significant FFR (group 2); and 22 with CAD and significant FFR (group 3). Median KD/EC50 was 6-fold higher in group 3 (4.20; interquartile range: 2.81-5.00) than group 2 (0.66; interquartile range: 0.47-1.25) and 7-fold higher than group 1 (0.60; interquartile range: 0.30-0.66).

Conclusions: In patients with suspected CAD and non-contributive electrocardiography and troponin, the absence of spare A2AR on PBMC may help to rule out myocardial ischemia.

Clinical trial registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT03218007.

Keywords: adenosine receptor; coronary artery disease; diagnosis.

© 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

Figures

Figure 1
Figure 1
Study flow chart. CAD indicates coronary artery disease; FFR, fractional flow reserve; GRACE, Global Registry of Acute Coronary Events; ICA, invasive coronary angiography.
Figure 2
Figure 2
A2 AR expression evaluated on peripheral blood mononuclear cells in 60 patients with suspected coronary artery disease. Group 1: normal angiography (n=17); group 2: abnormal angiography but non‐significant FFR (ie, 0.8–1.0) (n=21); group 3: abnormal angiography with significant FFR (ie, ≤0.8) (n=22). Expression was evaluated by Western blot; a representative blot from each group of patients is shown. The staining intensity was measured using densitometry analysis and data (medians [thick lines], IQRs [thin lines]) are expressed in AU (ie, ratio of pixels generated by the A2 AR band to pixels generated by the background signal). A2 AR indicates adenosine A2A receptors; AU, arbitrary units; FFR, fractional flow reserve; IQR, interquartile range. A representative Western blot with the molecular weight markers (left) and the specific A2 AR band (45 kDa) of a patient from each group is shown. The presence of a nonspecific band (NSB) demonstrates that equal amounts of protein were loaded in each lane.
Figure 3
Figure 3
Peripheral blood mononuclear cells A2 AR characterization in patients with suspected coronary artery disease. Group 1: normal angiography (n=17); group 2: abnormal angiography but non‐significant FFR (ie, 0.8–1.0) (n=21); group 3: abnormal angiography with significant FFR (ie, ≤0.8). KD (A) and EC 50 (B) were interpolated from the dose response curves obtained using increasing concentrations of Adonis (see Methods); KD/EC 50 ratio (C). Data are expressed as median (thick lines) and IQRs (thin lines). A2 AR indicates adenosine A2A receptors; EC 50, half maximal effective concentration; FFR, fractional flow reserve; IQR, interquartile range; KD, dissociation constant.
Figure 4
Figure 4
Identification of spare A2 AR in patients with suspected coronary artery disease. The dose–response curves resulting from Adonis binding to A2A adenosine receptors and the resulting cAMP production for each group of patients: (A) patients with normal angiography (n=17); (B) patients with stenosis but non‐significant FFR (ie, 0.8–1.0) (n=21); (C) patients with stenosis and significant FFR (≤0.8) (n=22). White discs: KD (densitometry analysis of the 25 kDa band corresponding to the light [L‐chain], see a representative Western blot at the top of the figure); black discs: EC 50 Results are mean±SD. cAMP indicates cyclic adenosine monophosphate; EC 50, half maximal effective concentration; FFR, fractional flow reserve; KD, dissociation constant; SD, standard deviation.
Figure 5
Figure 5
Receiver operating characteristic curves. For (A) A2 AR expression data and (B) KD/EC 50 ratio data evaluated on peripheral blood mononuclear cells of patients with suspected coronary artery disease (n=60). A2 AR indicates adenosine A2A receptors; EC 50, half maximal effective concentration; KD, dissociation constant.
Figure 6
Figure 6
Mechanism of action of A2 AR on coronary vascular wall. Adonis binds to a linear epitope on the second extracellular loop of A2 AR. Upon stimulation by Adonis, the third intracellular loop of A2 AR couples with the stimulatory subunit of G‐proteins (Gs) and triggers adenylate cyclase (AC) activity. Production of cAMP activates protein kinase‐mediated signaling pathways and acts on Ca++/K+ channels of vascular smooth muscle leading eventually to coronary dilation. PKA indicates protein kinase A.

References

    1. Goodacre S, Calvert N. Cost effectiveness of diagnostic strategies for patients with acute, undifferentiated chest pain. Emerg Med J. 2003;20:429–433.
    1. De Bruyne B, Fearon WF, Pijls NH, Barbato E, Tonino P, Piroth Z, Jagic N, Mobius‐Winckler S, Rioufol G, Witt N, Kala P, MacCarthy P, Engström T, Oldroyd K, Mavromatis K, Manoharan G, Verlee P, Frobert O, Curzen N, Johnson JB, Limacher A, Nüesch E, Jüni P; FAME 2 Trial Investigators . Fractional flow reserve‐guided PCI for stable coronary artery disease. N Engl J Med. 2014;371:1208–1217.
    1. Razzouk L, Fusaro M, Esquitin R. Novel biomarkers for risk stratification and identification of life‐threatening cardiovascular disease: troponin and beyond. Curr Cardiol Rev. 2012;8:109–115.
    1. Guieu R, Kipson N, Ruf J, Fournier N, Laine M, Foucher MC, Fromonot J, Mottola G, Bruzzese L, Boussuges A, Fenouillet E, Bonello L, Paganelli F. Low basal expression of A2A adenosine receptors and increase in adenosine plasma concentration are associated with positive exercise stress testing. Int J Cardiol. 2015;180:15–17.
    1. Ruf J, Paganelli F, Bonello L, Kipson N, Mottola G, Fromonot J, Condo J, Boussuges A, Bruzzese L, Kerbaul F, Jammes Y, Gariboldi V, Franceschi F, Fenouillet E, Guieu R. Spare adenosine A2a receptors are associated with positive exercise stress test in coronary artery disease. Mol Med. 2016;22:530–536.
    1. Shryock JC, Snowdy S, Baraldi PG, Cacciari B, Spalluto G, Monopoli A, Ongini E, Baker SP, Belardinelli L. A2A‐adenosine receptor reserve for coronary vasodilation. Circulation. 1998;98:711–718.
    1. Cushing DJ, Brown GL, Sabouni MH, Mustafa SJ. Adenosine receptor‐mediated coronary artery relaxation and cyclic nucleotide production. Am J Physiol. 1991;261:H343–H348.
    1. Fox KA, Dabbous OH, Goldberg RJ, Pieper KS, Eagle KA, Van de Werf F, Avezum A, Goodman SG, Flather MD, Anderson FA Jr, Granger CB. Prediction of risk of death and myocardial infarction in the six months after presentation with acute coronary syndrome: prospective multinational observational study (GRACE). BMJ. 2006;333:1091.
    1. The Task Force on the management of stable coronary artery disease of the European Society of Cardiology. 2013 ESC guidelines on the management of stable coronary artery disease. Eur Heart J. 2013;34:2949–3003.
    1. Roffi M, Patrono C, Collet JP, Mueller C, Valgimigli M, Andreotti F, Bax JJ, Borger MA, Brotons C, Chew DP, Gencer B, Hasenfuss G, Kjeldsen K, Lancellotti P, Landmesser U, Mehilli J, Mukherjee D, Storey RF, Windecker S, Baumgartner H, Gaemperli O, Achenbach S, Agewall S, Badimon L, Baigent C, Bueno H, Bugiardini R, Carerj S, Casselman F, Cuisset T, Erol Ç, Fitzsimons D, Halle M, Hamm C, Hildick‐Smith D, Huber K, Iliodromitis E, James S, Lewis BS, Lip GY, Piepoli MF, Richter D, Rosemann T, Sechtem U, Steg PG, Vrints C, Luis Zamorano J. Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST‐segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST‐Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J. 2016;37:267–315.
    1. Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van’ t Veer M, Klauss V, Manoharan G, Engstrøm T, Oldroyd KG, Ver Lee PN, MacCarthy PA, Fearon WF; FAME Study Investigators . Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360:213–224.
    1. De Bruyne B, Pijls NH, Kalesan B, Barbato E, Tonino PA, Piroth Z, Jagic N, Möbius‐Winkler S, Rioufol G, Witt N, Kala P, MacCarthy P, Engström T, Oldroyd KG, Mavromatis K, Manoharan G, Verlee P, Frobert O, Curzen N, Johnson JB, Jüni P, Fearon WF; FAME 2 Trial Investigators . Fractional flow reserve‐guided PCI versus medical therapy in stable coronary disease. N Engl J Med. 2012;367:991–1001.
    1. Bonello L, Laine M, Kipson N, Mancini J, Helal O, Fromonot J, Gariboldi V, Condo J, Thuny F, Frere C, Camoin‐Jau L, Paganelli F, Dignat‐George F, Guieu R. Ticagrelor increases adenosine plasma concentration in patients with an acute coronary syndrome. J Am Coll Cardiol. 2014;63:872–877.
    1. By Y, Durand‐Gorde JM, Condo J, Lejeune PJ, Mallet B, Carayon P, Guieu R, Ruf J. Production of an agonist‐like monoclonal antibody to the human A2A receptor of adenosine for clinical use. Mol Immunol. 2009;46:400–405.
    1. Hulme EG. Receptor‐Ligand Interactions. A Practical Approach. New York: Oxford University Press; 1992:458.
    1. Lauffenburger DA, Linderman JJ. Receptors for Binding, Trafficking and Signaling. New York: Oxford University Press; 1998:355.
    1. Franceschi F, By Y, Peyrouse E, Gerolami V, Kipson N, Boussuges A, Brignole M, Fenouillet E, Deharo JC, Ruf J, Guieu R. A2A adenosine receptor function in patients with vasovagal syncope. Europace. 2013;15:1328–1332.
    1. Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3:32–35.
    1. Shapiro DE. The interpretation of diagnostic tests. Stat Methods Med Res. 1999;8:113–134.
    1. James PE, Oparil S, Carter B, Cushman WC, Dennison‐Himmelfarb C, Handler J, Lackland DT, LeFevre ML, MacKenzie TD, Ogedegbe O, Smith SC Jr, Svetkey LP, Taler SJ, Townsend RR, Wright JT Jr, Narva AS, Ortiz E. 2014 evidence‐based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311:507–520.
    1. American Diabetes Association . Diagnosis and classification of diabetes mellitus. Diabetes Care. 2012;35:S64e71.
    1. Marston L, Carpenter JR, Walters KR, Morris RW, Nazareth I, White IR, Petersen I. Smoker, ex‐smoker or non‐smoker? The validity of routinely recorded smoking status in UK primary care: a cross‐sectional study. BMJ Open. 2014;4:e004958.
    1. Pijls NH, van Schaardenburgh P, Manoharan G, Boersma E, Bech JW, van't Veer M, Bär F, Hoorntje J, Koolen J, Wijns W, de Bruyne B. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5‐year follow‐up of the DEFER Study. J Am Coll Cardiol. 2007;49:2105–2111.
    1. Layland J, Oldroyd KG, Curzen N, Sood A, Balachandran K, Das R, Junejo S, Ahmed N, Lee MM, Shaukat A, O'Donnell A, Nam J, Briggs A, Henderson R, McConnachie A, Berry C; FAMOUS–NSTEMI Investigators . Fractional flow reserve vs. angiography in guiding management to optimize outcomes in non‐ST‐segment elevation myocardial infarction: the British Heart Foundation FAMOUS‐NSTEMI randomized trial. Eur Heart J. 2015;36:100–111.
    1. Boden WE, O'Rourke RA, Teo KK, Maron DJ, Hartigan PM, Sedlis SP, Dada M, Labedi M, Spertus JA, Kostuk WJ, Berman DS, Shaw LJ, Chaitman BR, Mancini GB, Weintraub WS; COURAGE Trial Investigators . Impact of optimal medical therapy with or without percutaneous coronary intervention on long‐term cardiovascular end points in patients with stable coronary artery disease (from the COURAGE Trial). Am J Cardiol. 2009;104:1–4.
    1. Shlofmitz E, Jeremias A. Current status in PCI management. Am Coll Cardiol. Available at: . Accessed March 22, 2018.
    1. Hakeem A, Edupuganti MM, Almomani A, Pothineni NV, Payne J, Abualsuod AM, Bhatti S, Ahmed Z, Uretsky BF. Long‐term prognosis of deferred acute coronary syndrome lesions based on nonischemic fractional flow reserve. J Am Coll Cardiol. 2016;68:1181–1191.
    1. Lee JM, Choi KH, Koo BK, Shin ES, Nam CW, Doh JH, Hwang D, Park J, Zhang J, Lim HS, Yoon MH, Tahk SJ. Prognosis of deferred non‐culprit lesions according to fractional flow reserve in patients with acute coronary syndrome. EuroIntervention. 2017;13:e1112–e1119.
    1. Paganelli F, Saadjian A, Sampol JJ, Maixent J, Levy S, Guieu R. Effects of percutaneous transluminal coronary angioplasty on coronary adenosine concentrations in humans. Eur J Clin Invest. 2000;30:105–110.
    1. Varani K, Laghi‐Pasini F, Camurri A, Capecchi PL, Maccherini M, Diciolla F, Ceccatelli L, Lazzerini PE, Ulouglu C, Cattabeni F, Borea PA, Abbracchio MP. Changes of peripheral A2A adenosine receptors in chronic heart failure and cardiac transplantation. FASEB J. 2003;17:280–282.
    1. Gariboldi V, Vairo D, Guieu R, Marlingue M, Ravis E, Lagier D, Mari A, Thery E, Collart F, Gaudry M, Bonello L, Paganelli F, Condo J, Kipson N, Fenouillet E, Ruf J, Mottola G. Expressions of adenosine A2A receptors in coronary arteries and peripheral blood mononuclear cells are correlated in coronary artery disease patients. Int J Cardiol. 2017;230:427–431.
    1. Nickerson M. Receptor occupancy and tissue response. Nature. 1956;178:697–698.
    1. Stephenson RP. A modification of receptor theory. 1956. Br J Pharmacol. 1997;120:106–120.
    1. Kurrasch‐Orbaugh DM, Watts VJ, Barker EL, Nichols DE. Serotonin 5‐hydroxytryptamine 2A receptor‐coupled phospholipase C and phospholipase A2 signaling pathways have different receptor reserves. J Pharmacol Exp Ther. 2003;304:229–237.
    1. Wijns W, Kolh P, Danchin N, Di Mario C, Falk V, Folliguet T, Garg S, Huber K, James S, Knuuti J, Lopez‐Sendon J, Marco J, Menicanti L, Ostojic M, Piepoli MF, Pirlet C, Pomar JL, Reifart N, Ribichini FL, Schalij MJ, Sergeant P, Serruys PW, Silber S, Sousa Uva M, Taggart D. Guidelines on myocardial revascularization. Eur Heart J. 2010;31:2501–2555.
    1. Silber S, Albertsson P, Avilés FF, Camici PG, Colombo A, Hamm C, Jørgensen E, Marco J, Nordrehaug JE, Ruzyllo W, Urban P, Stone GW, Wijns W. Task Force for Percutaneous Coronary Interventions of the European Society of Cardiology. Guidelines for percutaneous coronary interventions. Eur Heart J. 2005;26:804–847.
    1. Pijls NH, Sels JW. Functional measurement of coronary stenosis. J Am Coll Cardiol. 2012;59:1045–1057.
    1. De Bruyne B, Adjedj J. Fractional flow reserve in acute coronary syndrome. Eur Heart J. 2015;2:75–76.

Source: PubMed

Подписаться