Transbronchial lung cryobiopsy may be of value for nonresolving acute respiratory distress syndrome: case series and systematic literature review

Guowu Zhou, Yingying Feng, Shiyao Wang, Yi Zhang, Ye Tian, Xiaojing Wu, Ling Zhao, Dan Wang, Ying Li, Zheng Tian, Qingyuan Zhan, Guowu Zhou, Yingying Feng, Shiyao Wang, Yi Zhang, Ye Tian, Xiaojing Wu, Ling Zhao, Dan Wang, Ying Li, Zheng Tian, Qingyuan Zhan

Abstract

Background: Identification of pathologic features is helpful for the management of nonresolving acute respiratory distress syndrome (ARDS). Transbronchial lung cryobiopsy (TBLC) is a novel biopsy technique that may have comparable utility to surgical biopsy. The aim of this study was to assess the value of TBLC in patients with nonresolving ARDS.

Methods: All patients with nonresolving ARDS who underwent TBLC from January 2019 to August 2019 in a tertiary medical ICU were included. In addition, a literature search of TBLC for ARDS was performed by searching PubMed, EMBASE, ATS/ERS/APSR meeting abstracts, ClinicalTrials.gov , and Google Scholar. Data on complications, histologic diagnosis, management changes, and outcomes were analysed.

Results: Five patients (three women and two men) underwent TBLC. None of the patients developed pneumothorax, although two patients developed massive bleeding, which was controlled by continuous occlusion using bronchial blockers. There were no procedure-related deaths. Diffuse alveolar damage (DAD) and alternative histologic patterns were found in two and three patients, respectively, resulting in management changes in all cases. The literature search yielded four studies, which together with the present study comprised data from 25 cases in which TBLC was used in nonresolving ARDS. The summary diagnostic yield was 92% (23/25). Only 44% (11/25) of cases were proven to be DAD. TBLC contributed to management changes in 80% of patients (20/25). Procedure-related complications consisted of pneumothorax (16%, 4/25), significant bleeding (12%, 3/25), and persistent air leaks (8%, 2/25). There were no procedure-related deaths. The follow-up survival rate was 61.9% (13/21).

Conclusions: The complications of TBLC in selected patients with nonresolving ARDS may be acceptable. The procedure may have a high diagnostic yield and can lead to a re-evaluation of the diagnosis as well as changes in patient management. Further investigations with larger sample sizes are required.

Keywords: ARDS; Biopsy; Diagnostic yield; Safety; TBLC.

Conflict of interest statement

All authors declare no competing interests in this study.

Figures

Fig. 1
Fig. 1
Radial probe endobronchial ultrasound (RP-EBUS) guided transbronchial lung cryobiopsy (TBLC) for acute respiratory distress syndrome (ARDS). a RP-EBUS screening of the target biopsy position. b Marking the biopsy distance on the cryoprobe compared to that on RP-EBUS. c1 Prophylactic placement of the bronchial blocker and insertion of the cryoprobe into the target segment. c2 Combined guidance with cone beam CT after placing the cryoprobe in patient 5. d Transbronchial lung cryobiopsy was performed after freezing for 4 s. e The bronchial blocker was filled to stop the bleeding. f Bronchial blockers were continuously placed in target bronchi for patients with massive bleeding
Fig. 2
Fig. 2
Specimens and histology obtained by transbronchial lung cryobiopsy for acute respiratory distress syndrome. a Gross specimens and their sizes. b Histologic diagnosis of foreign body granulomas in patient 3
Fig. 3
Fig. 3
Flow diagram of the literature search and study selection process

References

    1. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788–800. doi: 10.1001/jama.2016.0291.
    1. Vincent JL, Sakr Y, Ranieri VM. Epidemiology and outcome of acute respiratory failure in intensive care unit patients. Crit Care Med. 2003;31:S296–S299. doi: 10.1097/01.CCM.0000057906.89552.8F.
    1. Definition Task Force ARDS, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND. Caldwell E, et al. acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307:2526–2533.
    1. Tomashefski JF., Jr Pulmonary pathology of acute respiratory distress syndrome. Clin Chest Med. 2000;21:435–466. doi: 10.1016/S0272-5231(05)70158-1.
    1. Thille AW, Esteban A, Fernández-Segoviano P, Rodriguez JM, Aramburu JA, Peñuelas O, et al. Comparison of the Berlin definition for acute respiratory distress syndrome with autopsy. Am J Respir Crit Care Med. 2013;187:761–767. doi: 10.1164/rccm.201211-1981OC.
    1. Gerard L, Bidoul T, Castanares-Zapatero D, Wittebole X, Lacroix V, Froidure A, et al. Open lung biopsy in nonresolving acute respiratory distress syndrome commonly identifies corticosteroid-sensitive pathologies, associated with better outcome. Crit Care Med. 2018;46:907–914. doi: 10.1097/CCM.0000000000003081.
    1. Guerin C, Bayle F, Leray V, Debord S, Stoian A, Yonis H, et al. Open lung biopsy in nonresolving ARDS frequently identifies diffuse alveolar damage regardless of the severity stage and may have implications for patient management. Intensive Care Med. 2015;41:222–230. doi: 10.1007/s00134-014-3583-2.
    1. Papazian L, Doddoli C, Chetaille B, Gernez Y, Thirion X, Roch A, et al. A contributive result of open-lung biopsy improves survival in acute respiratory distress syndrome patients. Crit Care Med. 2007;35:755–762. doi: 10.1097/01.CCM.0000257325.88144.30.
    1. Palakshappa JA, Meyer NJ. Which patients with ARDS benefit from lung biopsy? Chest. 2015;148:1073–1082. doi: 10.1378/chest.15-0076.
    1. O'Brien JD, Ettinger NA, Shevlin D, Kollef MH. Safety and yield of transbronchial biopsy in mechanically ventilated patients. Crit Care Med. 1997;25:440–446. doi: 10.1097/00003246-199703000-00012.
    1. Babiak A, Hetzel J, Krishna G, Fritz P, Moeller P, Balli T, et al. Transbronchial cryobiopsy: a new tool for lung biopsies. Respiration. 2009;78:203–208. doi: 10.1159/000203987.
    1. Sethi J, Ali MS, Mohananey D, Nanchal R, Maldonado F, Musani A. Are Transbronchial Cryobiopsies ready for prime time?: a systematic review and meta-analysis. J Bronchology Interv Pulmonol. 2019;26:22–32. doi: 10.1097/LBR.0000000000000519.
    1. Troy LK, Grainge C, Corte TJ, Williamson JP, Vallely MP, Cooper WA, et al. Cryobiopsy versus Open Lung biopsy in the Diagnosis of Interstitial lung disease alliance (COLDICE) Investigators. Diagnostic accuracy of transbronchial lung cryobiopsy for interstitial lung disease diagnosis (COLDICE): a prospective, comparative study. Lancet Respir Med. 2019;6(1):e000443.
    1. Ravaglia C, Bonifazi M, Wells AU, Tomassetti S, Gurioli C, Piciucchi S, et al. Safety and diagnostic yield of transbronchial lung cryobiopsy in diffuse parenchymal lung diseases: a comparative study versus video-assisted thoracoscopic lung biopsy and a systematic review of the literature. Respiration. 2016;91:215–227. doi: 10.1159/000444089.
    1. Dincer HE, Zamora F, Gibson H, Cho RJ. The first report of safety and feasibility of transbronchial cryoprobe lung biopsy in ARDS. Intensive Care Med. 2018;44:971–972. doi: 10.1007/s00134-018-5174-0.
    1. Cooley J, Swank ZG, Aragaki Nakahodo A, Benzaquen S. Safety and utility of transbronchial lung cryobiopsy in mechanically ventilated patients with ARDS. Am J Respir Crit Care Med. 2019;199:A1401.
    1. Las Heras MJ, Dianti J, Tisminetzky M, Svetliza G, Giannasi SE, San RE. Cryoprobe biopsy for the diagnosis of acute hypoxemic respiratory failure of undetermined origin. J Intensive Care Society. 2019. 10.1177/1751143719847323.
    1. Keenan A, Dincer HE, Zamora F, Podgaetz E, Andrade R, Tomic R, et al. The utility and safety of cryo probe lung biopsy in patients with ARDS. Am J Respir Crit Care Med. 2015;191:A1622.
    1. Yarmus L, Akulian J, Gilbert C, Illei P, Shah P, Merlo C, et al. Cryoprobe transbronchial lung biopsy in patients after lung transplantation: a pilot safety study. Chest. 2013;143:621–626. doi: 10.1378/chest.12-2290.
    1. Schuhmann M, Bostanci K, Bugalho A, Warth A, Schnabel PA, Herth FJ, et al. Endobronchial ultrasound-guided cryobiopsies in peripheral pulmonary lesions: a feasibility study. Eur Respir J. 2014;43:233–239. doi: 10.1183/09031936.00011313.
    1. Wong AK, Walkey AJ. Open lung biopsy among critically ill, mechanically ventilated patients. A Metaanalysis. Ann Am Thorac Soc. 2015;12:1226–1230. doi: 10.1513/AnnalsATS.201409-416BC.
    1. Anzueto A, Frutos-Vivar F, Esteban A, Alía I, Brochard L, Stewart T, et al. Incidence, risk factors and outcome of barotrauma in mechanically ventilated patients. Intensive Care Med. 2004;30:612–619. doi: 10.1007/s00134-004-2187-7.
    1. Hernández-González F, Lucena CM, Ramírez J, Sánchez M, Jimenez MJ, Xaubet A, et al. Cryobiopsy in the diagnosis of diffuse interstitial lung disease: yield and cost-effectiveness analysis. Arch Bronconeumol. 2015;51:261–267.
    1. Hetzel J, Maldonado F, Ravaglia C, Wells AU, Colby TV, Tomassetti S, et al. Transbronchial Cryobiopsies for the diagnosis of diffuse parenchymal lung diseases: expert statement from the Cryobiopsy working group on safety and utility and a call for standardization of the procedure. Respiration. 2018;95:188–200. doi: 10.1159/000484055.
    1. Gnass M, Filarecka A, Pankowski J, Soja J, Bugalho A, Szlubowski A. Transbronchial lung cryobiopsy guided by endobronchial ultrasound radial miniprobe in interstitial lung diseases: preliminary results of a prospective study. Pol Arch Intern Med. 2018;128:259–262.
    1. Chang CH, Lee CS, Li SH, Chung FT, Wang CW, Juan YH, et al. Feasibility of radial Endobronchial ultrasound-guided Bronchoscopic Cryobiopsy without fluoroscopy for lung parenchymal lesions. Can Respir J. 2017;2017:7170687.
    1. Spadaro S, Kozhevnikova I, Casolari P, Ruggeri P, Bellini T, Ragazzi R, et al. Lower airways inflammation in patients with ARDS measured using endotracheal aspirates: a pilot study. BMJ Open Respir Res. 2017;4:e000222. doi: 10.1136/bmjresp-2017-000222.

Source: PubMed

Подписаться