Hybrid Neuromuscular Training Improves Cardiometabolic Health and Alters Redox Status in Inactive Overweight and Obese Women: A Randomized Controlled Trial

Alexios Batrakoulis, Athanasios Z Jamurtas, Dimitrios Draganidis, Kalliopi Georgakouli, Panagiotis Tsimeas, Athanasios Poulios, Niki Syrou, Chariklia K Deli, Konstantinos Papanikolaou, Symeon Tournis, Ioannis G Fatouros, Alexios Batrakoulis, Athanasios Z Jamurtas, Dimitrios Draganidis, Kalliopi Georgakouli, Panagiotis Tsimeas, Athanasios Poulios, Niki Syrou, Chariklia K Deli, Konstantinos Papanikolaou, Symeon Tournis, Ioannis G Fatouros

Abstract

This randomized controlled trial investigated the effects of a 5-month high-intensity hybrid-type neuromuscular training program with nontraditional implements on cardiometabolic health, redox status, and cardiovascular disease (CVD) risk in inactive overweight and obese women. Forty-nine inactive female participants with overweight and obesity (age: 36.4 ± 4.4 years; BMI: 29.1 ± 2.9 kg/m2) were randomly assigned to either a control (C, n = 21) or a training group (TR, n = 28). TR followed a 20-week supervised, progressive, time-efficient (3 days/week; 6-15 min net exercise time) program implementing loaded fundamental movement patterns with prescribed work-to-rest time intervals (20-40 s, 1:2, 1:1, 2:1) in a circuit fashion (2-3 rounds). Cardiometabolic risk factors were measured at baseline and post-training as secondary outcomes of a larger randomized controlled trial. At post-intervention, TR demonstrated favorable changes in resting heart rate (-7%, p = 0.043), high-density lipoprotein (+18.1%, p = 0.029), atherogenic index (-17%, p = 0.045), mean arterial pressure (-4.5%, p = 0.03), waist circumference (-6.2%, p = 0.005), waist-to-hip ratio (-4.6%; p = 0.015), metabolic syndrome severity score (-222%, p = 0.024), full 30-year CVD risk (-15.8%, p = 0.002) and hard 30-year CVD risk (-17.6%, p = 0.01), vascular age (-7.8%, p = 0.002), protein carbonyls (-45.7%, p = 0.001), catalase activity (+15.2%, p = 0.023), and total antioxidant capacity (+11.4%, p = 0.002) relative to C. Additionally, TR induced beneficial changes in fasting glucose (-3.4%, p = 0.002), homeostatic model assessment for insulin resistance (-15.7%, p < 0.001), diastolic blood pressure (-5.6%, p < 0.001), reduced glutathione (+39.8%, p < 0.001), 10-year CVD risk (-17.4%, p = 0.011), and total bilirubin (-21.7%, p < 0.001) compared to baseline. These results suggest that hybrid-type neuromuscular training may improve aspects of cardiometabolic health and antioxidant status in inactive overweight and obese women providing a time-efficient (~100 min/week) exercise approach in a real-world gym setting.

Keywords: antioxidant capacity; blood lipids; glycemic control; interval exercise training; metabolic syndrome severity.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
CONSORT flow diagram of the study.
Figure 2
Figure 2
Experimental flowchart. BP: blood pressure; C: control group; DoIT: exercise training program; HR: heart rate; PA: physical activity; TR: training group. 1 for C and TR (4-week adaptive period); 2 only for TR; 3 for C and TR.
Figure 3
Figure 3
Percentage changes [Δ% = (Post − Pre)/Pre*100] in cardiometabolic health, redox status, and oxidative stress indicators in TR following a 5-month intervention. AI: atherogenic index; CAT: catalase; CVD-10: 10-year cardiovascular disease risk; CVD-30: full 30-year cardiovascular disease risk; DBP: diastolic blood pressure; FG: fasting glucose; FI: fasting insulin; GSH: glutathione; HDL: high-density lipoprotein; HOMA-IR: homeostatic model assessment of insulin resistance; LDL: low-density lipoprotein; MAP: mean arterial pressure; PC: protein carbonyls; RHR: resting heart rate; SBP: systolic blood pressure; TAC: total antioxidant capacity; TBIL: total bilirubin; TC: total cholesterol; TG: triglycerides; VA: vascular age; WC: waist circumference; WHR: waist-to-hip ratio. * Significant differences with baseline levels (p < 0.05).
Figure 4
Figure 4
Multiple differential responder groups to exercise in TR following a 5-month intervention. AI: atherogenic index; CAT: catalase; CVD-10: 10-year cardiovascular disease risk; CVD-30: full 30-year cardiovascular disease risk; DBP: diastolic blood pressure; FG: fasting glucose; FI: fasting insulin; GSH: glutathione; HDL: high-density lipoprotein; HOMA-IR: homeostatic model assessment of insulin resistance; LDL: low-density lipoprotein; MAP: mean arterial pressure; PC: protein carbonyls; RHR: resting heart rate; SBP: systolic blood pressure; TAC: total antioxidant capacity; TBIL: total bilirubin; TC: total cholesterol; TG: triglycerides; VA: vascular age; WC: waist circumference; WHR: waist-to-hip ratio.

References

    1. NCD Risk Factor Collaboration Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017;390:2627–2642. doi: 10.1016/S0140-6736(17)32129-3.
    1. Dagenais G.R., Leong D.P., Rangarajan S., Lanas F., Lopez-Jaramillo P., Gupta R., Diaz R., Avezum A., Oliveira G.B.F., Wielgosz A., et al. Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): A prospective cohort study. Lancet. 2020;395:785–794. doi: 10.1016/S0140-6736(19)32007-0.
    1. Kim D.D., Basu A. Estimating the Medical Care Costs of Obesity in the United States: Systematic Review, Meta-Analysis, and Empirical Analysis. Value Health. 2016;19:602–613. doi: 10.1016/j.jval.2016.02.008.
    1. Jung S.H., Park H.S., Kim K.S., Choi W.H., Ahn C.W., Kim B.T., Kim S.M., Lee S.Y., Ahn S.M., Kim Y.K., et al. Effect of weight loss on some serum cytokines in human obesity: Increase in IL-10 after weight loss. J. Nutr. Biochem. 2008;19:371–375. doi: 10.1016/j.jnutbio.2007.05.007.
    1. Bays H.E., Gonzalez-Campoy J.M., Bray G.A., Kitabchi A.E., Bergman D.A., Schorr A.B., Rodbard H.W., Henry R.R. Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity. Expert Rev. Cardiovasc. Ther. 2008;6:343–368. doi: 10.1586/14779072.6.3.343.
    1. Tanti J.F., Jager J. Cellular mechanisms of insulin resistance: Role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation. Curr. Opin. Pharmacol. 2009;9:753–762. doi: 10.1016/j.coph.2009.07.004.
    1. Lee I.M., Shiroma E.J., Lobelo F., Puska P., Blair S.N., Katzmarzyk P.T., Lancet Physical Activity Series Working Group Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet. 2012;380:219–229. doi: 10.1016/S0140-6736(12)61031-9.
    1. Guthold R., Stevens G.A., Riley L.M., Bull F.C. Worldwide trends in insufficient physical activity from 2001 to 2016: A pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob. Health. 2018;6:e1077–e1086. doi: 10.1016/S2214-109X(18)30357-7.
    1. World Health Organization . Noncommunicable Diseases Country Profiles 2018. World Health Organization; Geneva, Switzerland: 2018.
    1. American College of Sports Medicine. Riebe D., Ehrman J.K., Liguori G., Magal M. ACSM’s Guidelines for Exercise Testing and Prescription. 10th ed. Wolters Kluwer Health; Philadelphia, PA, USA: 2018.
    1. Johnson N.A., Sultana R.N., Brown W.J., Bauman A.E., Gill T. Physical activity in the management of obesity in adults: A position statement from Exercise and Sport Science Australia. J. Sci. Med. Sport. 2021 doi: 10.1016/j.jsams.2021.07.009.
    1. Micielska K., Gmiat A., Zychowska M., Kozlowska M., Walentukiewicz A., Lysak-Radomska A., Jaworska J., Rodziewicz E., Duda-Biernacka B., Ziemann E. The beneficial effects of 15 units of high-intensity circuit training in women is modified by age, baseline insulin resistance and physical capacity. Diabetes Res. Clin. Pract. 2019;152:156–165. doi: 10.1016/j.diabres.2019.05.009.
    1. Bogdanis G.C., Stavrinou P., Fatouros I.G., Philippou A., Chatzinikolaou A., Draganidis D., Ermidis G., Maridaki M. Short-term high-intensity interval exercise training attenuates oxidative stress responses and improves antioxidant status in healthy humans. Food Chem. Toxicol. 2013;61:171–177. doi: 10.1016/j.fct.2013.05.046.
    1. Fatouros I.G., Jamurtas A.Z., Villiotou V., Pouliopoulou S., Fotinakis P., Taxildaris K., Deliconstantinos G. Oxidative stress responses in older men during endurance training and detraining. Med. Sci. Sports Exerc. 2004;36:2065–2072. doi: 10.1249/01.MSS.0000147632.17450.FF.
    1. Bartlett J.D., Close G.L., MacLaren D.P., Gregson W., Drust B., Morton J.P. High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: Implications for exercise adherence. J. Sports Sci. 2011;29:547–553. doi: 10.1080/02640414.2010.545427.
    1. Batrakoulis A., Chatzinikolaou A., Jamurtas A.Z., Fatouros I.G. National Survey of Fitness Trends in Greece for 2021. Int. J. Hum. Mov. Sports Sci. 2020;8:308–320. doi: 10.13189/saj.2020.080602.
    1. Batacan R.B., Jr., Duncan M.J., Dalbo V.J., Tucker P.S., Fenning A.S. Effects of high-intensity interval training on cardiometabolic health: A systematic review and meta-analysis of intervention studies. Br. J. Sports Med. 2017;51:494–503. doi: 10.1136/bjsports-2015-095841.
    1. Hazell T.J., Hamilton C.D., Olver T.D., Lemon P.W. Running sprint interval training induces fat loss in women. Appl. Physiol. Nutr. Metab. 2014;39:944–950. doi: 10.1139/apnm-2013-0503.
    1. Miller M.B., Pearcey G.E., Cahill F., McCarthy H., Stratton S.B., Noftall J.C., Buckle S., Basset F.A., Sun G., Button D.C. The effect of a short-term high-intensity circuit training program on work capacity, body composition, and blood profiles in sedentary obese men: A pilot study. Biomed. Res. Int. 2014;2014:191797. doi: 10.1155/2014/191797.
    1. Schjerve I.E., Tyldum G.A., Tjonna A.E., Stolen T., Loennechen J.P., Hansen H.E., Haram P.M., Heinrich G., Bye A., Najjar S.M., et al. Both aerobic endurance and strength training programmes improve cardiovascular health in obese adults. Clin. Sci. (Lond.) 2008;115:283–293. doi: 10.1042/CS20070332.
    1. Sabag A., Little J.P., Johnson N.A. Low-volume high-intensity interval training for cardiometabolic health. J. Physiol. 2021 doi: 10.1113/JP281210.
    1. Batrakoulis A., Jamurtas A.Z., Fatouros I.G. High-Intensity Interval Training in Metabolic Diseases: Physiological Adaptations. ACSM’s Health Fit. J. 2021;25:54–59. doi: 10.1249/FIT.0000000000000703.
    1. Batrakoulis A., Tsimeas P., Deli C.K., Vlachopoulos D., Ubago-Guisado E., Poulios A., Chatzinikolaou A., Draganidis D., Papanikolaou K., Georgakouli K., et al. Hybrid neuromuscular training promotes musculoskeletal adaptations in inactive overweight and obese women: A training-detraining randomized controlled trial. J. Sports Sci. 2020;39:503–512. doi: 10.1080/02640414.2020.1830543.
    1. Batrakoulis A., Loules G., Georgakouli K., Tsimeas P., Draganidis D., Chatzinikolaou A., Papanikolaou K., Deli C.K., Syrou N., Comoutos N., et al. High-intensity interval neuromuscular training promotes exercise behavioral regulation, adherence and weight loss in inactive obese women. Eur. J. Sport Sci. 2020;20:783–792. doi: 10.1080/17461391.2019.1663270.
    1. Batrakoulis A., Jamurtas A.Z., Georgakouli K., Draganidis D., Deli C.K., Papanikolaou K., Avloniti A., Chatzinikolaou A., Leontsini D., Tsimeas P., et al. High intensity, circuit-type integrated neuromuscular training alters energy balance and reduces body mass and fat in obese women: A 10-month training-detraining randomized controlled trial. PLoS ONE. 2018;13:e0202390. doi: 10.1371/journal.pone.0202390.
    1. Stanforth D., Brumitt J., Ratamess N., Atkins W., Keteyian S. Training toys … bells, ropes, and balls—Oh my! ACSM’s Health Fit. J. 2015;19:5–11. doi: 10.1249/FIT.0000000000000132.
    1. World Health Organization . Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation. World Health Organization; Geneva, Switzerland: 2008.
    1. Michopoulou E., Avloniti A., Kambas A., Leontsini D., Michalopoulou M., Tournis S., Fatouros I.G. Elite premenarcheal rhythmic gymnasts demonstrate energy and dietary intake deficiencies during periods of intense training. Pediatr. Exerc. Sci. 2011;23:560–572. doi: 10.1123/pes.23.4.560.
    1. Danielsen R. Blood Pressure Measurement. In: Dehn R.W., Asprey D.P., editors. Essentials Clinical Procedures. 3rd ed. Saunders; Philadelphia, PA, USA: 2013. pp. 25–36.
    1. Theodorou A.A., Nikolaidis M.G., Paschalis V., Sakellariou G.K., Fatouros I.G., Koutedakis Y., Jamurtas A.Z. Comparison between glucose-6-phosphate dehydrogenase-deficient and normal individuals after eccentric exercise. Med. Sci. Sports Exerc. 2010;42:1113–1121. doi: 10.1249/MSS.0b013e3181c67ecd.
    1. Jamurtas A.Z., Tofas T., Fatouros I., Nikolaidis M.G., Paschalis V., Yfanti C., Raptis S., Koutedakis Y. The effects of low and high glycemic index foods on exercise performance and beta-endorphin responses. J. Int Soc. Sports Nutr. 2011;8:15. doi: 10.1186/1550-2783-8-15.
    1. Friedewald W.T., Levy R.I., Fredrickson D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972;18:499–502. doi: 10.1093/clinchem/18.6.499.
    1. Matthews D.R., Hosker J.P., Rudenski A.S., Naylor B.A., Treacher D.F., Turner R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–419. doi: 10.1007/BF00280883.
    1. Johnson J.L., Slentz C.A., Houmard J.A., Samsa G.P., Duscha B.D., Aiken L.B., McCartney J.S., Tanner C.J., Kraus W.E. Exercise training amount and intensity effects on metabolic syndrome (from Studies of a Targeted Risk Reduction Intervention through Defined Exercise) Am. J. Cardiol. 2007;100:1759–1766. doi: 10.1016/j.amjcard.2007.07.027.
    1. D’Agostino R.B., Sr., Vasan R.S., Pencina M.J., Wolf P.A., Cobain M., Massaro J.M., Kannel W.B. General cardiovascular risk profile for use in primary care: The Framingham Heart Study. Circulation. 2008;117:743–753. doi: 10.1161/CIRCULATIONAHA.107.699579.
    1. Pencina M.J., D’Agostino R.B., Sr., Larson M.G., Massaro J.M., Vasan R.S. Predicting the 30-year risk of cardiovascular disease: The framingham heart study. Circulation. 2009;119:3078–3084. doi: 10.1161/CIRCULATIONAHA.108.816694.
    1. Dankel S.J., Loenneke J.P. A Method to Stop Analyzing Random Error and Start Analyzing Differential Responders to Exercise. Sports Med. 2020;50:435–437. doi: 10.1007/s40279-019-01250-2.
    1. Huang C.J., McAllister M.J., Slusher A.L., Webb H.E., Mock J.T., Acevedo E.O. Obesity-Related Oxidative Stress: The Impact of Physical Activity and Diet Manipulation. Sports Med. Open. 2015;1:32. doi: 10.1186/s40798-015-0031-y.
    1. Arkan M.C., Hevener A.L., Greten F.R., Maeda S., Li Z.W., Long J.M., Wynshaw-Boris A., Poli G., Olefsky J., Karin M. IKK-beta links inflammation to obesity-induced insulin resistance. Nat. Med. 2005;11:191–198. doi: 10.1038/nm1185.
    1. Su L., Fu J., Sun S., Zhao G., Cheng W., Dou C., Quan M. Effects of HIIT and MICT on cardiovascular risk factors in adults with overweight and/or obesity: A meta-analysis. PLoS ONE. 2019;14:e0210644. doi: 10.1371/journal.pone.0210644.
    1. Chatzinikolaou A., Fatouros I., Petridou A., Jamurtas A., Avloniti A., Douroudos I., Mastorakos G., Lazaropoulou C., Papassotiriou I., Tournis S., et al. Adipose tissue lipolysis is upregulated in lean and obese men during acute resistance exercise. Diabetes Care. 2008;31:1397–1399. doi: 10.2337/dc08-0072.
    1. Fatouros I.G., Tournis S., Leontsini D., Jamurtas A.Z., Sxina M., Thomakos P., Manousaki M., Douroudos I., Taxildaris K., Mitrakou A. Leptin and adiponectin responses in overweight inactive elderly following resistance training and detraining are intensity related. J. Clin. Endocrinol. Metab. 2005;90:5970–5977. doi: 10.1210/jc.2005-0261.
    1. Moore K.J., Shah R. Introduction to the Obesity, Metabolic Syndrome, and CVD Compendium. Circ. Res. 2020;126:1475–1476. doi: 10.1161/CIRCRESAHA.120.317240.
    1. Becher T., Palanisamy S., Kramer D.J., Eljalby M., Marx S.J., Wibmer A.G., Butler S.D., Jiang C.S., Vaughan R., Schoder H., et al. Brown adipose tissue is associated with cardiometabolic health. Nat. Med. 2021;27:58–65. doi: 10.1038/s41591-020-1126-7.
    1. Fatouros I.G. Is irisin the new player in exercise-induced adaptations or not? A 2017 update. Clin. Chem. Lab. Med. 2018;56:525–548. doi: 10.1515/cclm-2017-0674.
    1. El Khoudary S.R., Aggarwal B., Beckie T.M., Hodis H.N., Johnson A.E., Langer R.D., Limacher M.C., Manson J.E., Stefanick M.L., Allison M.A., et al. Menopause Transition and Cardiovascular Disease Risk: Implications for Timing of Early Prevention: A Scientific Statement From the American Heart Association. Circulation. 2020;142:e506–e532. doi: 10.1161/CIR.0000000000000912.
    1. Reimers A.K., Knapp G., Reimers C.D. Effects of Exercise on the Resting Heart Rate: A Systematic Review and Meta-Analysis of Interventional Studies. J. Clin. Med. 2018;7:503. doi: 10.3390/jcm7120503.
    1. Clark T., Morey R., Jones M.D., Marcos L., Ristov M., Ram A., Hakansson S., Franklin A., McCarthy C., De Carli L., et al. High-intensity interval training for reducing blood pressure: A randomized trial vs. moderate-intensity continuous training in males with overweight or obesity. Hypertens. Res. 2020;43:396–403. doi: 10.1038/s41440-019-0392-6.
    1. Pescatello L.S., Buchner D.M., Jakicic J.M., Powell K.E., Kraus W.E., Bloodgood B., Campbell W.W., Dietz S., Dipietro L., George S.M., et al. Physical Activity to Prevent and Treat Hypertension: A Systematic Review. Med. Sci Sports Exerc. 2019;51:1314–1323. doi: 10.1249/MSS.0000000000001943.
    1. Cassidy S., Thoma C., Houghton D., Trenell M.I. High-intensity interval training: A review of its impact on glucose control and cardiometabolic health. Diabetologia. 2017;60:7–23. doi: 10.1007/s00125-016-4106-1.
    1. Strasser B., Schobersberger W. Evidence for resistance training as a treatment therapy in obesity. J. Obes. 2011;2011:482564. doi: 10.1155/2011/482564.
    1. Gibala M.J., Little J.P., Macdonald M.J., Hawley J.A. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J. Physiol. 2012;590:1077–1084. doi: 10.1113/jphysiol.2011.224725.
    1. Grundy S.M., Stone N.J., Bailey A.L., Beam C., Birtcher K.K., Blumenthal R.S., Braun L.T., de Ferranti S., Faiella-Tommasino J., Forman D.E., et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139:e1082–e1143. doi: 10.1161/CIR.0000000000000625.
    1. Grundy S.M. Obesity, metabolic syndrome, and coronary atherosclerosis. Circulation. 2002;105:2696–2698. doi: 10.1161/01.CIR.0000020650.86137.84.
    1. Nikolaidis M.G., Paschalis V., Giakas G., Fatouros I.G., Sakellariou G.K., Theodorou A.A., Koutedakis Y., Jamurtas A.Z. Favorable and prolonged changes in blood lipid profile after muscle-damaging exercise. Med. Sci. Sports Exerc. 2008;40:1483–1489. doi: 10.1249/MSS.0b013e31817356f2.
    1. Campbell W.W., Kraus W.E., Powell K.E., Haskell W.L., Janz K.F., Jakicic J.M., Troiano R.P., Sprow K., Torres A., Piercy K.L., et al. High-Intensity Interval Training for Cardiometabolic Disease Prevention. Med. Sci. Sports Exerc. 2019;51:1220–1226. doi: 10.1249/MSS.0000000000001934.
    1. Voulgari C., Pagoni S., Vinik A., Poirier P. Exercise improves cardiac autonomic function in obesity and diabetes. Metabolism. 2013;62:609–621. doi: 10.1016/j.metabol.2012.09.005.
    1. Henke E., Oliveira V.S., Martins da Silva I., Schipper L., Dorneles G., Elsner V.R., Roberto de Oliveira M., Romão P.R.T., Peres A. Acute and chronic effects of High Intensity Interval Training on inflammatory and oxidative stress markers of postmenopausal obese women. Transl. Sports Med. 2018;1:257–264. doi: 10.1002/tsm2.43.
    1. Mallard A.R., Hollekim-Strand S.M., Coombes J.S., Ingul C.B. Exercise intensity, redox homeostasis and inflammation in type 2 diabetes mellitus. J. Sci. Med. Sport. 2017;20:893–898. doi: 10.1016/j.jsams.2017.03.014.
    1. Petridou A., Chatzinikolaou A., Fatouros I., Mastorakos G., Mitrakou A., Chandrinou H., Papassotiriou I., Mougios V. Resistance exercise does not affect the serum concentrations of cell adhesion molecules. Br. J. Sports Med. 2007;41:76–79. doi: 10.1136/bjsm.2006.031047.
    1. Batrakoulis A. European survey of fitness trends for 2020. ACSM’s Health Fit. J. 2019;23:28–35. doi: 10.1249/FIT.0000000000000523.
    1. Kercher V.M., Kercher K., Bennion T., Yates B.A., Feito Y., Alexander C., Amaral P.C., Soares W., Li Y.-M., Han J., et al. Fitness trends from around the globe. ACSM’s Health Fit. J. 2021;25:20–31. doi: 10.1249/FIT.0000000000000639.
    1. Batrakoulis A., Fatouros I.G., Chatzinikolaou A., Draganidis D., Georgakouli K., Papanikolaou K., Deli C.K., Tsimeas P., Avloniti A., Syrou N., et al. Dose-response effects of high-intensity interval neuromuscular exercise training on weight loss, performance, health and quality of life in inactive obese adults: Study rationale, design and methods of the DoIT trial. Contemp. Clin. Trials Commun. 2019;15:100386. doi: 10.1016/j.conctc.2019.100386.

Source: PubMed

Подписаться