Central nervous system complications associated with SARS-CoV-2 infection: integrative concepts of pathophysiology and case reports

Souhel Najjar, Amanda Najjar, Derek J Chong, Bidyut K Pramanik, Claudia Kirsch, Ruben I Kuzniecky, Steven V Pacia, Salman Azhar, Souhel Najjar, Amanda Najjar, Derek J Chong, Bidyut K Pramanik, Claudia Kirsch, Ruben I Kuzniecky, Steven V Pacia, Salman Azhar

Abstract

Coronavirus disease 2019 (COVID-19) is a highly infectious pandemic caused by a novel coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It frequently presents with unremitting fever, hypoxemic respiratory failure, and systemic complications (e.g., gastrointestinal, renal, cardiac, and hepatic involvement), encephalopathy, and thrombotic events. The respiratory symptoms are similar to those accompanying other genetically related beta-coronaviruses (CoVs) such as severe acute respiratory syndrome CoV (SARS-CoV) and Middle East Respiratory Syndrome CoV (MERS-CoV). Hypoxemic respiratory symptoms can rapidly progress to Acute Respiratory Distress Syndrome (ARDS) and secondary hemophagocytic lymphohistiocytosis, leading to multi-organ system dysfunction syndrome. Severe cases are typically associated with aberrant and excessive inflammatory responses. These include significant systemic upregulation of cytokines, chemokines, and pro-inflammatory mediators, associated with increased acute-phase proteins (APPs) production such as hyperferritinemia and elevated C-reactive protein (CRP), as well as lymphocytopenia. The neurological complications of SARS-CoV-2 infection are high among those with severe and critical illnesses. This review highlights the central nervous system (CNS) complications associated with COVID-19 attributed to primary CNS involvement due to rare direct neuroinvasion and more commonly secondary CNS sequelae due to exuberant systemic innate-mediated hyper-inflammation. It also provides a theoretical integration of clinical and experimental data to elucidate the pathogenesis of these disorders. Specifically, how systemic hyper-inflammation provoked by maladaptive innate immunity may impair neurovascular endothelial function, disrupt BBB, activate CNS innate immune signaling pathways, and induce para-infectious autoimmunity, potentially contributing to the CNS complications associated with SARS-CoV-2 infection. Direct viral infection of the brain parenchyma causing encephalitis, possibly with concurrent neurovascular endotheliitis and CNS renin angiotensin system (RAS) dysregulation, is also reviewed.

Keywords: ACE2; Blood-brain barrier; COVID-19; Cytokines; Encephalitis; Encephalopathy; Endothelial cells; Microglia; SARS-CoV-2; Stroke.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Integrative concepts of the pathophysiology of COVID-19-related central nervous system complications. This figure integrates the clinical and experimental data linking maladaptive innate immunity-related systemic hyper-inflammation (provoked by the binding of SARS-CoV-2 spike protein (S1) to ACE2 expressing cells in the lung and intestine) to neurovascular endothelial dysfunction, BBB breakdown, and CNS innate immune activation, potentially contributing to SARS-CoV-2-related CNS complications. It demonstrates subsequent endothelial injury in the peripheral vasculature due to direct viral endothelial infection causing endotheliitis and potential endothelial ACE2 downregulation: similar mechanisms may also involve neurovascular unit. It also depicts the proposed role of infiltrating protective immune cells, migrating from the bloodstream into the CNS parenchyma through disrupted BBB, in limiting CNS injury and promoting viral clearance. ACE, angiotensin-converting enzyme; ACE2, angiotensin-converting enzyme II; AT type 1 receptor, angiotensin type 1 receptor; BBB, blood-brain barrier; CNS, central nervous system; G-CSF, granulocyte colony stimulating factor; GM-CSF, granulocyte-macrophage colony stimulating factor; IL, interleukin; MAP, microglial activation and proliferation; MMPs, matrix metalloproteinases; NK, natural killer; PRRs, pattern recognition receptors, SARS CoV-2 (S1), severe acute respiratory syndrome coronavirus 2 (spike glycoprotein1), receptor-binding subunit; TNFα, tumor necrosis factor-α
Fig. 2
Fig. 2
Seizure and malignant EEG pattern associated with rapid rise in serum CRP. A 71-year-old SARS-CoV-2 positive female presented with altered mental status necessitating intubation. While on sedation, she was witnessed to have a convulsive seizure, with CRP elevating from 16.64 to 30.28 mg/dl. Despite continued sedation with Diprivan and treatment with anti-seizure medications, EEG showed prolonged runs of 2 Hz GPDs concerning for refractory non-convulsive status epilepticus associated with a peak CRP level reaching 52.59 mg/dl. a Serum CRP trend graph. b Diffusion-weighted magnetic resonance (DW MR) imaging showing numerous punctate foci of diffusion restriction, with corresponding reduced signal intensity on attenuation diffusion coefficient (ADC), in the cerebral subcortical white matter bilaterally, more in a watershed distribution. c EEG day 2 showing persistent non-convulsive status epilepticus (generalized periodic discharges (GPDs))
Fig. 3
Fig. 3
Para-infectious autoimmunity. a Acute necrotizing encephalopathy (ANE). A 23-year-old SARS-CoV-2-positive female presented mainly with encephalopathy progressed to catatonia. C-reactive protein (CRP) was 72.3 mg/dl. CSF analysis was completely normal. Coronal (1) and axial (2) fluid-attenuated inversion recovery (FLAIR)/T2-weighted (T2W) MR images reveal signal hyperintensities of the ventromedial thalami and hippocampi. DWI (3) and ADC (4) images show slightly increased signal intensity on DWI but without low signal intensity on ADC to suggest diffusion restriction. Bilateral thalamic involvement is highly characteristic for ANE. Her neurological condition improved substantially following immune therapies that included intravenous immunoglobulin, intravenous pulse methylprednisolone, and rituximab. b Acute disseminated encephalomyelitis (ADEM). A 56-year-old SARS-COV-2 positive female admitted for diarrhea and hypoxemic respiratory symptoms that progressed to ARDS necessitating intubation. Notable laboratory findings were CRP of 31 mg/dl (reference range 0.00–0.40), ferritin of 799 ng/ml (reference range 15–150 ng/ml), D-Dimer of 362 ng/ml (reference range < 230 ng/ml), and IL-6 of 42 (reference range less < 5 pg/ml). Neurological examination was notable for severe encephalopathy and severe quadriplegia. Axial FlAIR MR images (1, 2, 3) demonstrate multiple periventricular white matter hyperintensity lesions, without corpus callosal involvement. There is no enhancement or restricted diffusion on DWI (4, 5, 6). These findings are consistent with acute disseminated encephalomyelitis. Patient received a 5-day course of intravenous pulse methylprednisolone (1000 mg/day) and tocilizumab 750 mg (8 mg/kg) intravenously. She improved substantially to the point of becoming fully awake and alert with 4/5 power of upper extremities and 3–4/5 power of lower extremities. Patient was discharged to an acute rehabilitation facility and then went home showing a steady neurological improvement
Fig. 4
Fig. 4
COVID-19 related stroke and posterior reversible encephalopathy syndrome. a Ischemic and hemorrhagic infarcts. A 73-year-old female presented with respiratory difficulty related to COVID-19 necessitating intubation. Following extubation and cessation of sedation, she remained persistently somnolent and was noted to have weakness of all extremities. Initial NIHSS was 12. Past medical history was notable for coronary artery disease, congestive heart failure, hypertension, and diabetes mellitus. Laboratory findings were notable for slightly elevated CRP (1.2 mg/dl) and significant elevation of ferritin (754 ng/ml) and D-Dimer (4184 ng/ml). Axial FlAIR MR images (1, 2, 3) demonstrate multifocal areas of signal abnormalities involving both cerebellar hemispheres, right occipital lobe, and right frontal lobe, with a hemorrhagic component (mostly involving right frontal region). Smaller foci of signal abnormality were present in the parietal cortices and centrum semiovale. Axial DWI (4, 5, 6) display multifocal areas of diffusion restriction consistent with acute ischemia. Hypercoagulopathy is the likely etiology of strokes. The patient had been on clopidogrel and low dose enoxaparin (DVT prophylaxis) before her stroke. Her neurological condition improved substantially with only minimal residual left hemiparesis and mild ataxia were noted at the first follow-up visit, which was several weeks after hospital discharge. b Posterior reversible encephalopathy syndrome (PRES). A 43-year-old SARS-CoV-2-positive female presented with respiratory distress that progressed rapidly to ARDS. Serological findings were notable for elevation of CRP (32 mg/dl), ferritin (259 ng/ml), and D-Dimer (7643 ng/ml). Post-extubation, she remained lethargic despite discontinuation of sedatives. She was slightly hypotensive to normotensive. The neurological exam showed lethargy, dysconjugate gaze, and triplegia. CSF analysis was entirely normal. Oligoclonal bands were absent. IgG index 0.8 (normal < 0.7). Notably, the neurological recovery was slow and concurrent with the return of serum inflammatory markers to normal levels. T2W MR images (1, 2) demonstrate bilateral parietal, and to a lesser extent frontal lobe, signal hyperintensities consistent with vasogenic edema. There is no corresponding high signal intensity on DWI (3, 4) or low signal intensity on ADC (5, 6) to suggest diffusion restriction. The findings are suggestive of PRES associated with high circulating markers of inflammation and coagulation pathways activation. The patient exhibited a slow, but steady, recovery concurrent with the reduction of serum levels of the inflammatory markers. This recovery was further enhanced by a 3-day course of intravenous pulse methylprednisolone (1000 mg/day). She was discharged home with only mild cognitive and motor impairment
Fig. 5
Fig. 5
Strokes and concurrent subacute inflammatory necrotizing response. An 84-year-old SARS-CoV-2-positive female presented solely with rapidly progressive encephalopathy and neurological decline associated with mild left sided hemiparesis and left sided-visuospatial neglect. There were no concurrent respiratory or any other systemic symptoms. Serological findings were remarkable for CRP of 5.89 mg/dl, ferritin of 383 ng/dl, and D-Dimer of 852 ng/dl, and positive anticardiolipin IgM antibodies of 32.CSF analysis revealed elevated protein (153 mg/dl), normal glucose, and a cell count of three nucleated cells. Computed tomography (CT) scan (1, 2) shows prominent vasogenic edema nearly involving the entire right temporal lobe (green arrow), watershed subacute-chronic ischemic infarction of the right anterior frontal (red arrow), and old cystic encephalomalacia of the left parietal (blue arrow). 3D CT angiogram (3) shows normal flow through the right middle cerebral artery without evidence of large vessel occlusion or high grade stenosis. Axial T1-(4) and T1-weighted post-gadolinium [axial (5) and sagittal (6)] MR images show diffuse gyral cortical enhancement with subcortical areas of necrosis involving right temporal lobe (green arrow). Axial FLAIR (7) and axial T2W (8) MR images reveal signal hyperintensities with gyral swelling nearly involving the entire right temporal lobe and insula (green arrow) associated with petechial hemorrhage, best seen on the gradient echo image (9). In addition, there are subacute-chronic infarct of the right anterior lateral frontal lobe (red arrow) and a wedge-shaped old cystic encephalomalacia of the left parietal lobe (blue arrow). Following treatment with tocilizumab 560 mg (4 mg/kg), the patient exhibited significant improvement of the mental status and left hemiparesis and was subsequently discharged home. Hypercoagulopathy is the likely etiology of the right frontal and left parietal strokes. The appearance of the concurrent right temporal lobe and insula abnormalities is highly suggestive of an independent subacute inflammatory-necrotizing, rather than ischemic, process. This is supported by the findings of completely patent right middle cerebral artery, diffuse gyral swelling and enhancement with concurrent prominent subcortical vasogenic edema and necrosis, and significantly elevated CSF protein. Although the precise mechanisms underlying vasogenic edema and necrosis remain unclear, we suggest that localized hyper-inflammation provoked by exuberant innate immune response (CNS cytokine response) might be pathogenetically relevant. Direct viral neuroinvasion and involvement of the neurovascular endothelial cells were subsequently excluded by the brain biopsy from the right temporal necrotizing lesion
Fig. 6
Fig. 6
Inflammatory vasculopathy. A 45-year-old SARS-CoV-2-positive man presented chiefly with encephalopathy and aphasia, without concurrent respiratory or any other systemic symptoms. Serum levels of inflammatory makers (CRP; 152.4 mg/dl, ESR; 91 mm/h) and D-Dimer (464 mg/dl) were elevated. Anticardiolipin IgM antibodies were 52.3 (normal range 0–12.5). Past medical history is notable for diabetes and hypertension. Axial FLAIR (1, 4) MR images show gyriform signal hyperintensity of the left paramedian frontal lobe and genu of the corpus callosum with corresponding high signal intensity on DWI (2, 5) and low signal intensity on ADC (3, 6) compatible with an acute ischemia. The maximum intensity projection (MIP) of CT angiogram demonstrates irregular areas of narrowing of the left A1 and M1 segments. These findings are consistent with inflammatory vasculopathy, likely related to the interplay among systemic inflammation, immune dysregulation, and anticardiolipin antibodies. Direct infection of the endothelial cells and its contribution to the vascular irregularity of the affected vascular segments cannot be excluded. The patient received tocilizumab 8 mg/kg intravenously and a 5-day course of intravenous pulse methylprednisolone (1000 mg/day). He was discharged to a subacute rehabilitation facility with mild improvement of aphasia and cognitive deficit

References

    1. Schett G, Sticherling M, Neurath MF. COVID-19: risk for cytokine targeting in chronic inflammatory diseases? Nat Rev Immunol. 2020;20:271–272.
    1. Guan WJ, Zhong NS. Clinical characteristics of Covid-19 in China. Reply N Engl J Med. 2020;382:1861–1862.
    1. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708–1720.
    1. Xu X, Yu C, Qu J, et al. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2. Eur J Nucl Med Mol Imaging. 2020;47:1275–1280.
    1. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033–1034.
    1. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506.
    1. Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020.
    1. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323:1061–1069.
    1. Mo P, Xing Y, Xiao Y, et al. Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. Clin Infect Dis. 2020.
    1. Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77:1–9.
    1. Sun D, Li H, Lu XX, et al. Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: a single center’s observational study. World J Pediatr. 2020;16:251–259.
    1. Zhang G, Zhang J, Wang B, Zhu X, Wang Q, Qiu S. Analysis of clinical characteristics and laboratory findings of 95 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a retrospective analysis. Respir Res. 2020;21:74.
    1. Mahmudpour M, Roozbeh J, Keshavarz M, Farrokhi S, Nabipour I. COVID-19 cytokine storm: the anger of inflammation. Cytokine. 2020;133:155151.
    1. Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol. 2020;20:269–270.
    1. Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: an emerging target of JAK2 inhibitor Fedratinib. J Microbiol Immunol Infect. 2020.
    1. Sarzi-Puttini P, Giorgi V, Sirotti S, et al. COVID-19, cytokines and immunosuppression: what can we learn from severe acute respiratory syndrome? Clin Exp Rheumatol. 2020:337–42.
    1. Vaninov N. In the eye of the COVID-19 cytokine storm. Nat Rev Immunol. 2020;20:277.
    1. Hung EC, Chim SS, Chan PK, et al. Detection of SARS coronavirus RNA in the cerebrospinal fluid of a patient with severe acute respiratory syndrome. Clin Chem. 2003;49:2108–2109.
    1. Arabi YM, Harthi A, Hussein J, et al. Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV) Infection. 2015;43:495–501.
    1. Yeh EA, Collins A, Cohen ME, Duffner PK, Faden H. Detection of coronavirus in the central nervous system of a child with acute disseminated encephalomyelitis. Pediatrics. 2004;113:e73–e76.
    1. Burks JS, DeVald BL, Jankovsky LD, Gerdes JC. Two coronaviruses isolated from central nervous system tissue of two multiple sclerosis patients. Science. 1980;209:933–934.
    1. Filatov A, Sharma P, Hindi F, Espinosa PS. Neurological complications of coronavirus disease (COVID-19): encephalopathy. Cureus. 2020;12:e7352.
    1. Zhou L, Zhang M, Gao J, Wang J. Sars-Cov-2: underestimated damage to nervous system. Travel Med Infect Dis. 2020;101642.
    1. Michael BD, Griffiths MJ, Granerod J, Brown D, Davies NW, Borrow R, Solomon T. Characteristic cytokine and chemokine profiles in encephalitis of infectious, immune-mediated, and unknown Aetiology. PLoS One. 2016;11:e0146288.
    1. Wu X, Wu W, Pan W, Wu L, Liu K, Zhang HL. Acute necrotizing encephalopathy: an underrecognized clinicoradiologic disorder. Mediat Inflamm. 2015;792578.
    1. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92:552–555.
    1. Pleasure SJ, Green AJ, Josephson SA. The spectrum of neurologic disease in the severe acute respiratory syndrome coronavirus 2 pandemic infection: neurologists move to the frontlines. JAMA Neurol. 2020;77:679–s680.
    1. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020;11:995–998.
    1. Steardo L, Steardo L Jr, Zorec R, Verkhratsky A. Neuroinfection may contribute to pathophysiology and clinical manifestations of COVID-19. Acta Physiol (Oxford). 2020:e13473.
    1. Nath A. Neurologic complications of coronavirus infections. Neurology. 2020.
    1. Han H, Yang L, Liu R, et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med. 2020;58:1116–1120.
    1. Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020;382:2268–2270.
    1. Lagunas-Rangel FA. Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): a meta-analysis. J Med Virol. 2020. 10.1002/jmv.25819.
    1. Moon C. Fighting COVID-19 exhausts T cells. Nat Rev Immunol. 2020;20:277.
    1. Chen BJ, Dashnamoorthy R, Galera P, et al. The immune checkpoint molecules PD-1, PD-L1, TIM-3 and LAG-3 in diffuse large B-cell lymphoma. Oncotarget. 2019;10:2030–2040.
    1. Park MD. Macrophages: a Trojan horse in COVID-19? Nat Rev Immunol. 2020;20:351.
    1. Zhao H, Shen D, Zhou H, Liu J, Chen S. Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet Neurol. 2020.
    1. Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368:m1091.
    1. Slaats J, Ten Oever J, van de Veerdonk FL, Netea MG. IL-1β/IL-6/CRP and IL-18/ferritin: distinct inflammatory programs in infections. PLoS Pathog. 2016;12:e1005973.
    1. Najjar S, Pahlajani S, De Sanctis V, Stern JNH, Najjar A, Chong D. Neurovascular unit dysfunction and blood-brain barrier hyperpermeability contribute to schizophrenia neurobiology: a theoretical integration of clinical and experimental evidence. Front Psychiatry. 2017;8:83.
    1. Najjar S, Pearlman DM, Devinsky O, Najjar A, Zagzag D. Neurovascular unit dysfunction with blood-brain barrier hyperpermeability contributes to major depressive disorder: a review of clinical and experimental evidence. J Neuroinflammation. 2013;10:142.
    1. Wojkowska DW, Szpakowski P, Glabinski A. Interleukin 17A promotes lymphocytes adhesion and induces CCL2 and CXCL1 release from brain endothelial cells. Int J Mol Sci. 2017;18.
    1. Dantzer R. Neuroimmune interactions: from the brain to the immune system and vice versa. Physiol Rev. 2018;98:477–504.
    1. John GR, Lee SC, Brosnan CF. Cytokines: powerful regulators of glial cell activation. Neuroscientist. 2003;9:10–22.
    1. Shigemoto-Mogami Y, Hoshikawa K, Sato K. Activated microglia disrupt the blood-brain barrier and induce chemokines and cytokines in a rat in vitro model. Front Cell Neurosci. 2018;12:494.
    1. Najjar S, Pearlman DM, Alper K, Najjar A, Devinsky O. Neuroinflammation and psychiatric illness. J Neuroinflammation. 2013;10:43.
    1. Olloquequi J, Cornejo-Córdova E, Verdaguer E, et al. Excitotoxicity in the pathogenesis of neurological and psychiatric disorders: therapeutic implications. J Psychopharmacol. 2018;32:265–275.
    1. Yang Q, He GW, Underwood MJ, Yu CM. Cellular and molecular mechanisms of endothelial ischemia/reperfusion injury: perspectives and implications for postischemic myocardial protection. Am J Transl Res. 2016;8:765–777.
    1. Ruddy MJ, Wong GC, Liu XK, et al. Functional cooperation between interleukin-17 and tumor necrosis factor-alpha is mediated by CCAAT/enhancer-binding protein family members. J Biol Chem. 2004;279:2559–2567.
    1. Beringer A, Thiam N, Molle J, Bartosch B, Miossec P. Synergistic effect of interleukin-17 and tumour necrosis factor-α on inflammatory response in hepatocytes through interleukin-6-dependent and independent pathways. Clin Exp Immunol. 2018;193:221–233.
    1. Sommer A, Marxreiter F, Krach F, et al. Th17 Lymphocytes induce neuronal cell death in a human iPSC-based model of Parkinson’s disease. Cell Stem Cell. 2019;24:1006.
    1. Kim JE, Heo JH, Kim HO, et al. Neurological complications during treatment of Middle East respiratory syndrome. J Clin Neurol. 2017;13:227–233.
    1. Zhang QL, Ding YQ, Hou JL, et al. Detection of severe acute respiratory syndrome (SARS)-associated coronavirus RNA in autopsy tissues with in situ hybridization. Di Yi Jun Yi Da Xue Xue Bao. 2003;23:1125–1127.
    1. Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202:415–424.
    1. Xu J, Zhong S, Liu J, et al. Detection of severe acute respiratory syndrome coronavirus in the brain: potential role of the chemokine mig in pathogenesis. Clin Infect Dis. 2005;41:1089–1096.
    1. Lau KK, Yu WC, Chu CM, Lau ST, Sheng B, Yuen KY. Possible central nervous system infection by SARS coronavirus. Emerg Infect Dis. 2004;10:342–344.
    1. Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis. 2020.
    1. Sun T, Guan J. Novel coronavirus and central nervous system. Eur J Neurol. 2020. 10.1111/ene.1422.
    1. Li YC, Bai WZ, Hashikawa T. Response to commentary on “The neuroinvasive potential of SARS-CoV-2 may play a role in the respiratory failure of COVID-19 patients”. J Med Virol. 2020.
    1. Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2-mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virol Sin. 2020:1–6.
    1. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395:1417–1418.
    1. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–280.e8.
    1. Cao Y, Li L, Feng Z, et al. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov. 2020;6:11.
    1. Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11:875–879.
    1. Hwang CS. Olfactory neuropathy in severe acute respiratory syndrome: report of A case. Acta Neurol Taiwanica. 2006;15:26–28.
    1. Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82:7264–7275.
    1. Butowt R, Bilinska K. SARS-CoV-2: Olfaction, brain infection, and the urgent need for clinical samples allowing earlier virus detection. ACS Chem Neurosci. 2020;11:1200–1203.
    1. Durrant DM, Ghosh S, Klein RS. The olfactory bulb: an immunosensory effector organ during neurotropic viral infections. ACS Chem Neurosci. 2016;7:464–469.
    1. Giacomelli A, Pezzati L, Conti F, et al. Self-reported olfactory and taste disorders in SARS-CoV-2 patients: a cross-sectional study. Clin Infect Dis. 2020.
    1. Kai H, Kai M. Interactions of coronaviruses with ACE2, angiotensin II, and RAS inhibitors-lessons from available evidence and insights into COVID-19. Hypertens Res. 2020;43:648–654.
    1. Dijkman R, Jebbink MF, Deijs M, et al. Replication-dependent downregulation of cellular angiotensin-converting enzyme 2 protein expression by human coronavirus NL63. J Gen Virol. 2012;93:1924–1929.
    1. Gironacci MM, Adamo HP, Corradi G, Santos RA, Ortiz P, Carretero OA. Angiotensin (1-7) induces MAS receptor internalization. Hypertension. 2011;58:176–181.
    1. Durand MJ, Zinkevich NS, Riedel M, et al. Vascular actions of angiotensin 1-7 in the human microcirculation: novel role for telomerase. Arterioscler Thromb Vasc Biol. 2016;36:1254–1262.
    1. Jin H, Hong C, Chen S, et al. Consensus for prevention and management of coronavirus disease 2019 (COVID-19) for neurologists. SVN Stroke Vascu Neurol. 2020;5:146–151.
    1. Chen M, Chen C, Yuan X, et al. Angiotensin II aggravates lipopolysaccharide induced human pulmonary microvascular endothelial cells permeability in high glucose status. Endocr J. 2018;65:717–725.
    1. De Silva TM, Faraci FM. Effects of angiotensin II on the cerebral circulation: role of oxidative stress. Front Physiol. 2013;3:484.
    1. Pena-Silva RA, Faraci FM, Heistad DD. Response to letter regarding article, “Impact of ACE2 deficiency and oxidative stress on cerebrovascular function with aging”. Stroke. 2013;44(4):e35.
    1. Wang SF, Tseng SP, Yen CH, et al. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem Biophys Res Commun. 2014;451:208–214.
    1. Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res. 2020;220:1–13.
    1. Java A, Apicelli AJ, Liszewski MK, et al. The complement system in COVID-19: friend and foe? JCI Insight. 2020;140711.
    1. Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology. 2020;201187.
    1. Pusch E, Renz H, Skevaki C. Respiratory virus-induced heterologous immunity: part of the problem or part of the solution? Allergo J. 2018;27:28–45.
    1. Pohl D, Alper G, Van Haren K, et al. Acute disseminated encephalomyelitis: updates on an inflammatory CNS syndrome. Neurology. 2016;87:S38–S45.
    1. Sohal S, Mossammat M. COVID-19 presenting with seizures. IDCases. 2020:e00782.
    1. Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA. Glia and epilepsy: excitability and inflammation. Trends Neurosci. 2013;36:174–184.
    1. Rana A, Musto AE. The role of inflammation in the development of epilepsy. J Neuroinflammation. 2018;15:144.
    1. Zhao J, Rudd A, Liu R. Challenges and potential solutions of stroke care during the coronavirus disease 2019 (COVID-19) outbreak. Stroke, STROKEAHA. 2020:120029701.
    1. Hess DC, Eldahshan W, Rutkowski E. COVID-19-related stroke. Transl Stroke Res. 2020;11:322–325.
    1. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med. 2020;382:e38.
    1. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18:844–847.
    1. Levi M, van der Poll T. Inflammation and coagulation. Crit Care Med. 2010;38:S26–S34.
    1. Levi M, van der Poll T. Coagulation and sepsis. Thromb Res. 2017;149:38–44.
    1. Bode M, Mackman N. Regulation of tissue factor gene expression in monocytes and endothelial cells: thromboxane A2 as a new player. Vasc Pharmacol. 2014;62:57–62.
    1. Amiral J, Seghatchian J. Revisiting the activated protein C-protein S-thrombomodulin ternary pathway: impact of new understanding on its laboratory investigation. Transfus Apher Sci. 2019;58:538–544.
    1. Foley JH, Conway EM. Cross talk pathways between coagulation and inflammation. Circ Res. 2016;118:1392–1408.
    1. Joseph L, Fink LM, Hauer-Jensen M. Cytokines in coagulation and thrombosis: a preclinical and clinical review. Blood Coagul Fibrinolysis. 2002;13:105–116.
    1. Sluimer JC, Gasc JM, Hamming I, et al. Angiotensin-converting enzyme 2 (ACE2) expression and activity in human carotid atherosclerotic lesions. J Pathol. 2008;215:273–279.
    1. Xia H, Lazartigues E. Angiotensin-converting enzyme 2 in the brain: properties and future directions. J Neurochem. 2008;107:1482–1494.
    1. Marra A, Vargas M, Striano P, Del Guercio L, Buonanno P, Servillo G. Posterior reversible encephalopathy syndrome: the endothelial hypotheses. Med Hypotheses. 2014;82:619–622.
    1. Chen Z, Shen GQ, Lerner A, Gao B. Immune system activation in the pathogenesis of posterior reversible encephalopathy syndrome. Brain Res Bull. 2017;131:93–99.
    1. Christodoulou C, Sangle S, D'Cruz DP. Vasculopathy and arterial stenotic lesions in the antiphospholipid syndrome. Rheumatology (Oxford) 2007;46:907–910.
    1. Troyer EA, Kohn JN, Hong S. Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and potential immunologic mechanisms. Brain Behav Immun. 2020.
    1. Mak IW, Chu CM, Pan PC, Yiu MG, Chan VL. Long-term psychiatric morbidities among SARS survivors. Gen Hosp Psychiatry. 2009;31:318–326.
    1. van Dorp L, Acman M, Richard D, et al. Emergence of genomic diversity and recurrent mutations in SARS-CoV-2. Infect Genet Evol. 2020;83:104351.
    1. Toscano G, Palmerini F, Ravaglia S, et al. Guillain-Barré syndrome associated with SARS-CoV-2. N Engl J Med. 2020;382:2574–2576.
    1. Wu Y, Xiaolin Xu X, Chen Z, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun. 2020;87:18–22.

Source: PubMed

Подписаться