Nutrition in Cystic Fibrosis-Some Notes on the Fat Recommendations

Birgitta Strandvik, Birgitta Strandvik

Abstract

Nutrition is important in cystic fibrosis (CF) because the disease is associated with a higher energy consumption, special nutritional deficiencies, and malabsorption mainly related to pancreatic insufficiency. The clinical course with deterioration of lung function has been shown to relate to nutrition. Despite general recommendation of high energy intake, the clinical deterioration is difficult to restrain suggesting that special needs have not been identified and specified. It is well-known that the CF phenotype is associated with lipid abnormalities, especially in the essential or conditionally essential fatty acids. This review will concentrate on the qualitative aspects of fat metabolism, which has mainly been neglected in dietary fat recommendations focusing on fat quantity. For more than 60 years it has been known and confirmed that the patients have a deficiency of linoleic acid, an n-6 essential fatty acid of importance for membrane structure and function. The ratio between arachidonic acid and docosahexaenoic acid, conditionally essential fatty acids of the n-6 and n-3 series, respectively, is often increased. The recently discovered relations between the CFTR modulators and lipid metabolism raise new interests in this field and together with new technology provide possibilities to specify further specify personalized therapy.

Keywords: CFTR modulators; DHA; arachidonic acid; energy; linoleic acid; lipid mediator.

Conflict of interest statement

The author declares no conflict of interest.

Figures

Figure 1
Figure 1
Major pathways of polyunsaturated fatty acid synthesis. Simplified major transformation steps to long-chain polyunsaturated fatty acids from the essential fatty acids, linoleic (LA) and α-linolenic (ALA) acids and the endogenously synthesized oleic acid (OA), which all compete for the same desaturases (FADS1 and FADS2) and elongases. The major metabolites are indicated in boxes, proinflammatory and ellipses (anti-inflammatory) lipid mediators. ARA, arachidonic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; LT, leukotrienes; TX, tromboxanes.

References

    1. Andersen D.H. Cystic fibrosis of the pancreas and its relation to celiac disease. A clinical and pathological study. Am. J. Dis. Child. 1938;56:344–399. doi: 10.1001/archpedi.1938.01980140114013.
    1. Fanconi G., Uehlinger E., Knauer C. Das Coelioksyndrome bei Angeborener zystischer Pankreas fibromatose und Bronkiektasien. Wien. Med. Wochenschr. 1936;86:753–756.
    1. Shteinberg M., Haq I.J., Polineni D., Davies J.C. Cystic fibrosis. Lancet. 2021;397:2195–2211. doi: 10.1016/S0140-6736(20)32542-3.
    1. Strandvik B. Care of patients with cystic fibrosis. Treatment, screening and clinical outcome. Ann. Nestlé. 2006;64:131–140.
    1. Earnest A., Salimi F., Wainwright C.E., Bell S.C., Ruseckaite R., Ranger T., Kotsimbos T., Ahern S. Lung function over the life course of paediatric and adult patients with cystic fibrosis from a large multi-centre registry. Sci. Rep. 2020;10:17421. doi: 10.1038/s41598-020-74502-1.
    1. North American Cystic Fibrosis Foundation . 2019 Patient Registry Annual Data Report. Cystic Fibrosis Foundation; Bethesda, MD, USA: 2021.
    1. Cystic Fibrosis Canada . 2018 Canadian CF Registry Annual Data Report. Cystic Fibrosis Canada; Toronto, ON, Canada: 2021.
    1. Orenti A., Zolin A., Jung A., van Rens J. ECFS Patient Registry Annual Report 2019. European Cystic Fibrosis Society; Karup, Denmark: 2021.
    1. Steinkamp G., Wiedemann B. Relationship between nutritional status and lung function in cystic fibrosis: Cross sectional and longitudinal analyses from the German CF quality assurance (CFQA) project. Thorax. 2002;57:596–601. doi: 10.1136/thorax.57.7.596.
    1. Altman K., McDonald C.M., Michel S.H., Maguiness K. Nutrition in cystic fibrosis: From the past to the present and into the future. Pediatric Pulmonol. 2019;54((Suppl. S3)):S56–S73. doi: 10.1002/ppul.24521.
    1. Ashkenazi M., Nathan N., Sarouk I., Aluma B.E.B., Dagan A., Bezalel Y., Keler S., Vilozni D., Efrati O. Nutritional Status in Childhood as a Prognostic Factor in Patients with Cystic Fibrosis. Lung. 2019;197:371–376. doi: 10.1007/s00408-019-00218-3.
    1. Van der Haak N., King S.J., Crowder T., Kench A., Painter C., Saxby N. Highlights from the nutrition guidelines for cystic fibrosis in Australia and New Zealand. J. Cyst. Fibros. 2020;19:16–25. doi: 10.1016/j.jcf.2019.05.007.
    1. Wilschanski M., Braegger C.P., Colombo C., Declercq D., Morton A., Pancheva R., Robberecht E., Stern M., Strandvik B., Wolfe S., et al. Highlights of the ESPEN-ESPGHAN-ECFS Guidelines on Nutrition Care for Infants and Children with Cystic Fibrosis. J. Pediatric Gastroenterol. Nutr. 2016;63:671–675. doi: 10.1097/MPG.0000000000001349.
    1. McDonald C.M., Alvarez J.A., Bailey J., Bowser E.K., Farnham K., Mangus M., Padula L., Porco K., Rozga M. Academy of Nutrition and Dietetics: 2020 Cystic Fibrosis Evidence Analysis Center Evidence-Based Nutrition Practice Guideline. J. Acad. Nutr. Diet. 2021;121:1591–1636.e3. doi: 10.1016/j.jand.2020.03.015.
    1. Lahiri T., Hempstead S.E., Brady C., Cannon C.L., Clark K., Condren M.E., Guill M.F., Guillerman R.P., Leone C.G., Maguiness K., et al. Clinical Practice Guidelines from the Cystic Fibrosis Foundation for Preschoolers with Cystic Fibrosis. Pediatrics. 2016;137:e20151784. doi: 10.1542/peds.2015-1784.
    1. Saxby N., Painter C., Kench A., King S., Crowder T., van der Haak N. Nutrition Guidelines for Cystic Fibrosis in Australia and New Zealand. Thoracic Society of Australia and New Zealand; Sydney, Australia: 2017.
    1. Turck D., Braegger C.P., Colombo C., Declercq D., Morton A., Pancheva R., Robberecht E., Stern M., Strandvik B., Wolfe S., et al. ESPEN-ESPGHAN-ECFS guidelines on nutrition care for infants, children, and adults with cystic fibrosis. Clin. Nutr. 2016;35:557–577. doi: 10.1016/j.clnu.2016.03.004.
    1. Kopp B.T., Joseloff E., Goetz D., Ingram B., Heltshe S.L., Leung D.H., Ramsey B.W., McCoy K., Borowitz D. Urinary metabolomics reveals unique metabolic signatures in infants with cystic fibrosis. J. Cyst. Fibros. 2019;18:507–515. doi: 10.1016/j.jcf.2018.10.016.
    1. Liessi N., Pedemonte N., Armirotti A., Braccia C. Proteomics and Metabolomics for Cystic Fibrosis Research. Int. J. Mol. Sci. 2020;21:5439. doi: 10.3390/ijms21155439.
    1. Wheelock C.E., Strandvik B. Abnormal n-6 fatty acid metabolism in cystic fibrosis contributes to pulmonary symptoms. Prostaglandins Leukot. Essent. Fat. Acids. 2020;160:102156. doi: 10.1016/j.plefa.2020.102156.
    1. Dei Cas M., Zulueta A., Mingione A., Caretti A., Ghidoni R., Signorelli P., Paroni R. An Innovative Lipidomic Workflow to Investigate the Lipid Profile in a Cystic Fibrosis Cell Line. Cells. 2020;9:1197. doi: 10.3390/cells9051197.
    1. Pacetti D., Malavolta M., Bocci F., Boselli E., Frega N.G. High-performance liquid chromatography/electrospray ionization ion-trap tandem mass spectrometric analysis and quantification of phosphatidylcholine molecular species in the serum of cystic fibrosis subjects supplemented with docosahexaenoic acid. Rapid Commun. Mass Spectrom. 2004;18:2395–2400. doi: 10.1002/rcm.1639.
    1. Hulbert A.J., Turner N., Storlien L.H., Else P.L. Dietary fats and membrane function: Implications for metabolism and disease. Biol. Rev. Camb. Philos. Soc. 2005;80:155–169. doi: 10.1017/S1464793104006578.
    1. Ulven S.M., Holven K.B. Metabolomic and gene expression analysis to study the effects of dietary saturated and polyunsaturated fats. Curr. Opin. Lipidol. 2020;31:15–19. doi: 10.1097/MOL.0000000000000651.
    1. Gimenez M.S., Oliveros L.B., Gomez N.N. Nutritional deficiencies and phospholipid metabolism. Int. J. Mol. Sci. 2011;12:2408–2433. doi: 10.3390/ijms12042408.
    1. Corey M., McLaughlin F.J., Williams M., Levison H. A comparison of survival, growth, and pulmonary function in patients with cystic fibrosis in Boston and Toronto. J. Clin. Epidemiol. 1988;41:583–591. doi: 10.1016/0895-4356(88)90063-7.
    1. Lai H.C., Corey M., FitzSimmons S., Kosorok M.R., Farrell P.M. Comparison of growth status of patients with cystic fibrosis between the United States and Canada. Am. J. Clin. Nutr. 1999;69:531–538. doi: 10.1093/ajcn/69.3.531.
    1. Goss C.H., Sykes J., Stanojevic S., Marshall B., Petren K., Ostrenga J., Fink A., Elbert A., Quon B.S., Stephenson A.L. Comparison of Nutrition and Lung Function Outcomes in Patients with Cystic Fibrosis Living in Canada and the United States. Am. J. Respir. Crit. Care Med. 2018;197:768–775. doi: 10.1164/rccm.201707-1541OC.
    1. Poulimeneas D., Grammatikopoulou M.G., Devetzi P., Petrocheilou A., Kaditis A.G., Papamitsou T., Doudounakis S.E., Vassilakou T. Adherence to Dietary Recommendations, Nutrient Intake Adequacy and Diet Quality among Pediatric Cystic Fibrosis Patients: Results from the GreeCF Study. Nutrients. 2020;12:3126. doi: 10.3390/nu12103126.
    1. Moukarzel S., Dyer R.A., Innis S.M. Complex Relation Between Diet and Phospholipid Fatty Acids in Children with Cystic Fibrosis. J. Pediatric Gastroenterol. Nutr. 2017;64:598–604. doi: 10.1097/MPG.0000000000001356.
    1. Smith C., Winn A., Seddon P., Ranganathan S. A fat lot of good: Balance and trends in fat intake in children with cystic fibrosis. J. Cyst. Fibros. 2012;11:154–157. doi: 10.1016/j.jcf.2011.10.007.
    1. Woestenenk J.W., Castelijns S.J., van der Ent C.K., Houwen R.H. Dietary intake in children and adolescents with cystic fibrosis. Clin. Nutr. 2014;33:528–532. doi: 10.1016/j.clnu.2013.07.011.
    1. Filigno S.S., Robson S.M., Szczesniak R.D., Chamberlin L.A., Baker M.A., Sullivan S.M., Kroner J., Powers S.W. Macronutrient intake in preschoolers with cystic fibrosis and the relationship between macronutrients and growth. J. Cyst. Fibros. 2017;16:519–524. doi: 10.1016/j.jcf.2017.01.010.
    1. Calvo-Lerma J., Hulst J.M., Asseiceira I., Claes I., Garriga M., Colombo C., Fornés V., Woodcock S., Martins T., Boon M., et al. Nutritional status, nutrient intake and use of enzyme supplements in paediatric patients with Cystic Fibrosis; a European multicentre study with reference to current guidelines. J. Cyst. Fibros. 2017;16:510–518. doi: 10.1016/j.jcf.2017.03.005.
    1. Stallings V.A., Tindall A.M., Mascarenhas M.R., Maqbool A., Schall J.I. Improved residual fat malabsorption and growth in children with cystic fibrosis treated with a novel oral structured lipid supplement: A randomized controlled trial. PLoS ONE. 2020;15:e0232685. doi: 10.1371/journal.pone.0232685.
    1. Kindstedt-Arfwidson K., Strandvik B. Food intake in patients with cystic fibrosis on an ordinary diet. Scand. J. Gastroenterol. Suppl. 1988;143:160–162. doi: 10.3109/00365528809090239.
    1. Van Egmond A.W., Kosorok M.R., Koscik R., Laxova A., Farrell P.M. Effect of linoleic acid intake on growth of infants with cystic fibrosis. Am. J. Clin. Nutr. 1996;63:746–752. doi: 10.1093/ajcn/63.5.746.
    1. Walkowiak J., Przyslawski J. Five-year prospective analysis of dietary intake and clinical status in malnourished cystic fibrosis patients. J. Hum. Nutr. Diet. 2003;16:225–231. doi: 10.1046/j.1365-277X.2003.00451.x.
    1. Strandvik B., Lundquist-Persson C., Sabel K.-G. Early behavior and development are influenced by the n-6 and n-3 status in prematures. Oleagineux Corps Gras Lipides. 2011;18:297–300. doi: 10.1051/ocl.2011.0416.
    1. Blasbalg T.L., Hibbeln J.R., Ramsden C.E., Majchrzak S.F., Rawlings R.R. Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am. J. Clin. Nutr. 2011;93:950–962. doi: 10.3945/ajcn.110.006643.
    1. Heird W.C. The role of polyunsaturated fatty acids in term and preterm infants and breastfeeding mothers. Pediatric Clin. N. Am. 2001;48:173–188. doi: 10.1016/S0031-3955(05)70292-3.
    1. Otto S.J., Houwelingen A.C., Antal M., Manninen A., Godfrey K., López-Jaramillo P., Hornstra G. Maternal and neonatal essential fatty acid status in phospholipids: An international comparative study. Eur. J. Clin. Nutr. 1997;51:232–242. doi: 10.1038/sj.ejcn.1600390.
    1. Strandvik B., Gronowitz E., Enlund F., Martinsson T., Wahlström J. Essential fatty acid deficiency in relation to genotype in patients with cystic fibrosis. J. Pediatric. 2001;139:650–655. doi: 10.1067/mpd.2001.118890.
    1. Walkowiak J., Lisowska A., Blaszczynski M., Przyslawski J., Walczak M. Polyunsaturated fatty acids in cystic fibrosis are related to nutrition and clinical expression of the disease. J. Pediatric Gastroenterol. Nutr. 2007;45:488–489. doi: 10.1097/MPG.0b013e3180690da9.
    1. Sinaasappel M., Stern M., Littlewood J., Wolfe S., Steinkamp G., Heijerman H.G., Robberecht E., Döring G. Nutrition in patients with cystic fibrosis: A European Consensus. J. Cyst. Fibros. 2002;1:51–75. doi: 10.1016/S1569-1993(02)00032-2.
    1. Kuo P.T., Huang N.N., Bassett D.R. The fatty acid composition of the serum chylomicrons and adipose tissue of children with cystic fibrosis of the pancreas. J. Pediatric. 1962;60:394–403. doi: 10.1016/S0022-3476(62)80065-1.
    1. Colombo C., Nobili R.M., Alicandro G. Challenges with optimizing nutrition in cystic fibrosis. Expert Rev. Respir. Med. 2019;13:533–544. doi: 10.1080/17476348.2019.1614917.
    1. Hankard R., Munck A., Navarro J. Nutrition and growth in cystic fibrosis. Horm. Res. 2002;58((Suppl. S1)):16–20. doi: 10.1159/000064763.
    1. Munck A. Nutritional considerations in patients with cystic fibrosis. Expert Rev. Respir. Med. 2010;4:47–56. doi: 10.1586/ers.09.66.
    1. Borowitz D., Baker R.D., Stallings V. Consensus report on nutrition for pediatric patients with cystic fibrosis. J. Pediatric Gastroenterol. Nutr. 2002;35:246–259. doi: 10.1097/00005176-200209000-00004.
    1. Strandvik B. Fatty acid metabolism in cystic fibrosis. Prostaglandins Leukot. Essent. Fat. Acids. 2010;83:121–129. doi: 10.1016/j.plefa.2010.07.002.
    1. Gibson R.A., Teubner J.K., Haines K., Cooper D.M., Davidson G.P. Relationships between pulmonary function and plasma fatty acid levels in cystic fibrosis patients. J. Pediatric Gastroenterol. Nutr. 1986;5:408–415. doi: 10.1097/00005176-198605000-00013.
    1. Rogiers V., Vercruysse A., Dab I., Crokaert R., Vis H.L. Fatty acid pattern of platelet phospholipids in cystic fibrosis. Eur. J. Pediatric. 1984;142:305–306. doi: 10.1007/BF00540261.
    1. Freedman S.D., Blanco P.G., Zaman M.M., Shea J.C., Ollero M., Hopper I.K., Weed D.A., Gelrud A., Regan M.M., Laposata M., et al. Association of cystic fibrosis with abnormalities in fatty acid metabolism. N. Engl. J. Med. 2004;350:560–569. doi: 10.1056/NEJMoa021218.
    1. Mischler E.H., Parrell S.W., Farrell P.M., Raynor W.J., Lemen R.J. Correction of linoleic acid deficiency in cystic fibrosis. Pediatric Res. 1986;20:36–41. doi: 10.1203/00006450-198601000-00010.
    1. Moonen C.T., Dimand R.J., Cox K.L. The noninvasive determination of linoleic acid content of human adipose tissue by natural abundance carbon-13 nuclear magnetic resonance. Magn. Reason. Med. 1988;6:140–157. doi: 10.1002/mrm.1910060203.
    1. Underwood B.A., Denning C.R., Navab M. Polyunsaturated fatty acids and tocopherol levels in patients with cystic fibrosis. Ann. N. Y. Acad. Sci. 1972;203:237–247. doi: 10.1111/j.1749-6632.1972.tb27879.x.
    1. Chase H.P., Cotton E.K., Elliott R.B. Intravenous linoleic acid supplementation in children with cystic fibrosis. Pediatrics. 1979;64:207–213. doi: 10.1542/peds.64.2.207.
    1. Elliott R.B. A therapeutic trial of fatty acid supplementation in cystic fibrosis. Pediatrics. 1976;57:474–479. doi: 10.1542/peds.57.4.474.
    1. Hjelte L., Nilsson K., Moen I.E., Lindblad A., Mared L., Pressler T., Fluge G. Linoleic acid but not EPA and DHA correlates to prognostic markers in Scandinavian CF patients. J. Cyst. Fibros. 2008;7:S93.
    1. Lloyd-Still J.D., Bibus D.M., Powers C.A., Johnson S.B., Holman R.T. Essential fatty acid deficiency and predisposition to lung disease in cystic fibrosis. Acta Paediatr. 1996;85:1426–1432. doi: 10.1111/j.1651-2227.1996.tb13947.x.
    1. Maqbool A., Schall J.I., Garcia-Espana J.F., Zemel B.S., Strandvik B., Stallings V.A. Serum linoleic acid status as a clinical indicator of essential fatty acid status in children with cystic fibrosis. J. Pediatric Gastroenterol. Nutr. 2008;47:635–644. doi: 10.1097/MPG.0b013e31817fb76b.
    1. Risé P., Volpi S., Colombo C., Padoan R.F., D’Orazio C., Ghezzi S., Melotti P., Bennato V., Agostoni C., Assael B.M., et al. Whole blood fatty acid analysis with micromethod in cystic fibrosis and pulmonary disease. J. Cyst. Fibros. 2010;9:228–233. doi: 10.1016/j.jcf.2010.03.002.
    1. Lai H.C., Kosorok M.R., Laxova A., Davis L.A., FitzSimmon S.C., Farrell P.M. Nutritional status of patients with cystic fibrosis with meconium ileus: A comparison with patients without meconium ileus and diagnosed early through neonatal screening. Pediatrics. 2000;105:53–61. doi: 10.1542/peds.105.1.53.
    1. Shoff S.M., Ahn H.Y., Davis L., Lai H. Temporal associations among energy intake, plasma linoleic acid, and growth improvement in response to treatment initiation after diagnosis of cystic fibrosis. Pediatrics. 2006;117:391–400. doi: 10.1542/peds.2004-2832.
    1. Sanders D.B., Zhang Z., Farrell P.M., Lai H.J. Early life growth patterns persist for 12 years and impact pulmonary outcomes in cystic fibrosis. J. Cyst. Fibros. 2018;17:528–535. doi: 10.1016/j.jcf.2018.01.006.
    1. Strandvik B., Berg U., Kallner A., Kusoffsky E. Effect on renal function of essential fatty acid supplementation in cystic fibrosis. J. Pediatric. 1989;115:242–250. doi: 10.1016/S0022-3476(89)80072-1.
    1. Strandvik B., Hultcrantz R. Liver function and morphology during long-term fatty acid supplementation in cystic fibrosis. Liver. 1994;14:32–36. doi: 10.1111/j.1600-0676.1994.tb00004.x.
    1. Aldámiz-Echevarría L., Prieto J.A., Andrade F., Elorz J., Sojo A., Lage S., Sanjurjo P., Vázquez C., Rodríguez-Soriano J. Persistence of essential fatty acid deficiency in cystic fibrosis despite nutritional therapy. Pediatric Res. 2009;66:585–589. doi: 10.1203/PDR.0b013e3181b4e8d3.
    1. Lindblad A., Glaumann H., Strandvik B. Natural history of liver disease in cystic fibrosis. Hepatology. 1999;30:1151–1158. doi: 10.1002/hep.510300527.
    1. Colombo C., Alicandro G., Oliver M., Lewindon P.J., Ramm G.A., Ooi C.Y., Alghisi F., Kashirskaya N., Kondratyeva E., Corti F., et al. Ursodeoxycholic acid and liver disease associated with cystic fibrosis: A multicenter cohort study. J. Cyst. Fibros. :2021. doi: 10.1016/j.jcf.2021.03.014. in press .
    1. Harayama T., Riezman H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 2018;19:281–296. doi: 10.1038/nrm.2017.138.
    1. Strandvik B., Svensson E., Seyberth H.W. Prostanoid biosynthesis in patients with cystic fibrosis. Prostaglandins Leukot. Essent. Fat. Acids. 1996;55:419–425. doi: 10.1016/S0952-3278(96)90125-8.
    1. Dodge J.A., Custance J.M., Goodchild M.C., Laing S.C., Vaughan M. Paradoxical effects of essential fatty acid supplementation on lipid profiles and sweat electrolytes in cystic fibrosis. Br. J. Nutr. 1990;63:259–271. doi: 10.1079/BJN19900113.
    1. Van D., Beerthuis R.K., Nugteren D.H., Vonkeman H. The biosynthesis of prostaglandins. Biochim. Biophys. Acta. 1964;90:204–207. doi: 10.1016/0304-4165(64)90144-8.
    1. Brenner R.R., Peluffo R.O., Nervi A.M., De Thomas M.E. Competitive effect of alpha- and gamma-lionlenyl-CoA in linoleyl-CoA desaturation to gamma-linolenyl-CoA. Biochim. Biophys. Acta. 1969;176:420–422. doi: 10.1016/0005-2760(69)90202-1.
    1. Peluffo R.O., Nervi A.M., Brenner R.R. Linoleic acid desaturation activity of liver microsomes of essential fatty acid deficient and sufficient rats. Biochim. Biophys. Acta. 1976;441:25–31. doi: 10.1016/0005-2760(76)90277-0.
    1. Seegmiller A.C. Abnormal unsaturated fatty acid metabolism in cystic fibrosis: Biochemical mechanisms and clinical implications. Int. J. Mol. Sci. 2014;15:16083–16099. doi: 10.3390/ijms150916083.
    1. Strandvik B., Brönnegård M., Gilljam H., Carlstedt-Duke J. Relation between defective regulation of arachidonic acid release and symptoms in cystic fibrosis. Scand. J. Gastroenterol. Suppl. 1988;143:1–4. doi: 10.3109/00365528809090205.
    1. Carlstedt-Duke J., Brönnegård M., Strandvik B. Pathological regulation of arachidonic acid release in cystic fibrosis: The putative basic defect. Proc. Natl. Acad. Sci. USA. 1986;83:9202–9206. doi: 10.1073/pnas.83.23.9202.
    1. Levistre R., Lemnaouar M., Rybkine T., Béréziat G., Masliah J. Increase of bradykinin-stimulated arachidonic acid release in a delta F508 cystic fibrosis epithelial cell line. Biochim. Biophys. Acta. 1993;1181:233–239. doi: 10.1016/0925-4439(93)90026-W.
    1. Berguerand M., Klapisz E., Thomas G., Humbert L., Jouniaux A.M., Olivier J.L., Béréziat G., Masliah J. Differential stimulation of cytosolic phospholipase A2 by bradykinin in human cystic fibrosis cell lines. Am. J. Respir. Cell Mol. Biol. 1997;17:481–490. doi: 10.1165/ajrcmb.17.4.2734.
    1. Bhura-Bandali F.N., Suh M., Man S.F., Clandinin M.T. The deltaF508 mutation in the cystic fibrosis transmembrane conductance regulator alters control of essential fatty acid utilization in epithelial cells. J. Nutr. 2000;130:2870–2875. doi: 10.1093/jn/130.12.2870.
    1. Miele L., Cordella-Miele E., Xing M., Frizzell R., Mukherjee A.B. Cystic fibrosis gene mutation (deltaF508) is associated with an intrinsic abnormality in Ca2+-induced arachidonic acid release by epithelial cells. DNA Cell Biol. 1997;16:749–759. doi: 10.1089/dna.1997.16.749.
    1. Ulane M.M., Butler J.D., Peri A., Miele L., Ulane R.E., Hubbard V.S. Cystic fibrosis and phosphatidylcholine biosynthesis. Clin. Chim. Acta. 1994;230:109–116. doi: 10.1016/0009-8981(94)90263-1.
    1. Strandvik B. In: Long Chain Fatty Acid Metabolism and Essential Fatty Acid Deficiency with Special Emphasis on Cystic Fibrosis. Bracco U., Deckelbaum R., editors. Volume 28. Raven Press; New York, NY, USA: 1992. pp. 159–167.
    1. Strandvik B. Relation between essential fatty acid metabolism and gastrointestinal symptoms in cystic fibrosis. Acta Paediatr. Scand. Suppl. 1989;363:58–63. doi: 10.1111/apa.1989.78.s363.58.
    1. Van Biervliet S., Van Biervliet J.P., Robberecht E., Christophe A. Fatty acid composition of serum phospholipids in cystic fibrosis (CF) patients with or without CF related liver disease. Clin. Chem. Lab. Med. 2010;48:1751–1755. doi: 10.1515/CCLM.2010.336.
    1. Drzymała-Czyż S., Szczepanik M., Krzyżanowska P., Duś-Żuchowska M., Pogorzelski A., Sapiejka E., Juszczak P., Lisowska A., Koletzko B., Walkowiak J. Serum Phospholipid Fatty Acid Composition in Cystic Fibrosis Patients with and without Liver Cirrhosis. Ann. Nutr. Metab. 2017;71:91–98. doi: 10.1159/000477913.
    1. Beharry S., Ackerley C., Corey M., Kent G., Heng Y.M., Christensen H., Luk C., Yantiss R.K., Nasser I.A., Zaman M., et al. Long-term docosahexaenoic acid therapy in a congenic murine model of cystic fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 2007;292:G839–G848. doi: 10.1152/ajpgi.00582.2005.
    1. Freedman S.D., Katz M.H., Parker E.M., Laposata M., Urman M.Y., Alvarez J.G. A membrane lipid imbalance plays a role in the phenotypic expression of cystic fibrosis in cftr(−/−) mice. Proc. Natl. Acad. Sci. USA. 1999;96:13995–14000. doi: 10.1073/pnas.96.24.13995.
    1. Watson H., Stackhouse C. Omega-3 fatty acid supplementation for cystic fibrosis. Cochrane Database Syst. Rev. 2020;4:Cd002201. doi: 10.1002/14651858.CD002201.pub6.
    1. Wassall S.R., Leng X., Canner S.W., Pennington E.R., Kinnun J.J., Cavazos A.T., Dadoo S., Johnson D., Heberle F.A., Katsaras J., et al. Docosahexaenoic acid regulates the formation of lipid rafts: A unified view from experiment and simulation. Biochim. Biophys. Acta Biomembr. 2018;1860:1985–1993. doi: 10.1016/j.bbamem.2018.04.016.
    1. Chiang N., Serhan C.N. Specialized pro-resolving mediator network: An update on production and actions. Essays Biochem. 2020;64:443–462. doi: 10.1042/ebc20200018.
    1. Philippe R., Urbach V. Specialized Pro-Resolving Lipid Mediators in Cystic Fibrosis. Int. J. Mol. Sci. 2018;19:2865. doi: 10.3390/ijms19102865.
    1. Recchiuti A., Isopi E., Romano M., Mattoscio D. Roles of Specialized Pro-Resolving Lipid Mediators in Autophagy and Inflammation. Int. J. Mol. Sci. 2020;21:6637. doi: 10.3390/ijms21186637.
    1. Mingione A., Ottaviano E., Barcella M., Merelli I., Rosso L., Armeni T., Cirilli N., Ghidoni R., Borghi E., Signorelli P. Cystic Fibrosis Defective Response to Infection Involves Autophagy and Lipid Metabolism. Cells. 2020;9:1845. doi: 10.3390/cells9081845.
    1. Isopi E., Mattoscio D., Codagnone M., Mari V.C., Lamolinara A., Patruno S., D’Aurora M., Cianci E., Nespoli A., Franchi S., et al. Resolvin D1 Reduces Lung Infection and Inflammation Activating Resolution in Cystic Fibrosis. Front. Immunol. 2020;11:581. doi: 10.3389/fimmu.2020.00581.
    1. López-Neyra A., Suárez L., Muñoz M., de Blas A., Ruiz de Valbuena M., Garriga M., Calvo J., Ribes C., Girón Moreno R., Máiz L., et al. Long-term docosahexaenoic acid (DHA) supplementation in cystic fibrosis patients: A randomized, multi-center, double-blind, placebo-controlled trial. Prostaglandins Leukot. Essent. Fat. Acids. 2020;162:102186. doi: 10.1016/j.plefa.2020.102186.
    1. Urbach V., Higgins G., Buchanan P., Ringholz F. The role of Lipoxin A4 in Cystic Fibrosis Lung Disease. Comput. Struct. Biotechnol. J. 2013;6:e201303018. doi: 10.5936/csbj.201303018.
    1. Riordan J.R., Rommens J.M., Kerem B., Alon N., Rozmahel R., Grzelczak Z., Zielenski J., Lok S., Plavsic N., Chou J.L., et al. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science. 1989;245:1066–1073. doi: 10.1126/science.2475911.
    1. Van Biervliet S., Vanbillemont G., Van Biervliet J.P., Declercq D., Robberecht E., Christophe A. Relation between fatty acid composition and clinical status or genotype in cystic fibrosis patients. Ann. Nutr. Metab. 2007;51:541–549. doi: 10.1159/000114208.
    1. Welsh M.J., Smith A.E. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell. 1993;73:1251–1254. doi: 10.1016/0092-8674(93)90353-R.
    1. De Boeck K., Amaral M.D. Progress in therapies for cystic fibrosis. Lancet Respir. Med. 2016;4:662–674. doi: 10.1016/S2213-2600(16)00023-0.
    1. Zardini Buzatto A., Abdel Jabar M., Nizami I., Dasouki M., Li L., Abdel Rahman A.M. Lipidome Alterations Induced by Cystic Fibrosis, CFTR Mutation, and Lung Function. J. Proteome Res. 2021;20:549–564. doi: 10.1021/acs.jproteome.0c00556.
    1. Guerrera I.C., Astarita G., Jais J.P., Sands D., Nowakowska A., Colas J., Sermet-Gaudelus I., Schuerenberg M., Piomelli D., Edelman A., et al. A novel lipidomic strategy reveals plasma phospholipid signatures associated with respiratory disease severity in cystic fibrosis patients. PLoS ONE. 2009;4:e7735. doi: 10.1371/journal.pone.0007735.
    1. Korotkova M., Strandvik B. Essential fatty acid deficiency affects the fatty acid composition of the rat small intestinal and colonic mucosa differently. Biochim. Biophys. Acta. 2000;1487:319–325. doi: 10.1016/S1388-1981(00)00121-9.
    1. Witters P., Dupont L., Vermeulen F., Proesmans M., Cassiman D., Wallemacq P., De Boeck K. Lung transplantation in cystic fibrosis normalizes essential fatty acid profiles. J. Cyst. Fibros. 2013;12:222–228. doi: 10.1016/j.jcf.2012.09.004.
    1. Hanssens L., Duchateau J., Namane S.A., Malfroot A., Knoop C., Casimir G. Influence of lung transplantation on the essential fatty acid profile in cystic fibrosis. Prostaglandins Leukot. Essent. Fat. Acids. 2020;158:102060. doi: 10.1016/j.plefa.2020.102060.
    1. Parsons H.G., O’Loughlin E.V., Forbes D., Cooper D., Gall D.G. Supplemental calories improve essential fatty acid deficiency in cystic fibrosis patients. Pediatric Res. 1988;24:353–356. doi: 10.1203/00006450-198809000-00016.
    1. Rogiers V., Dab I., Crokaert R., Vis H.L. Long chain non-esterified fatty acid pattern in plasma of cystic fibrosis patients and their parents. Pediatric Res. 1980;14:1088–1091. doi: 10.1203/00006450-198009000-00015.
    1. Harindhanavudhi T., Wang Q., Dunitz J., Moran A., Moheet A. Prevalence and factors associated with overweight and obesity in adults with cystic fibrosis: A single-center analysis. J. Cyst. Fibros. 2020;19:139–145. doi: 10.1016/j.jcf.2019.10.004.
    1. Hanssens L.S., Duchateau J., Casimir G.J. CFTR Protein: Not Just a Chloride Channel? Cells. 2021;10:2844. doi: 10.3390/cells10112844.
    1. Nowak J.K., Szczepanik M., Wojsyk-Banaszak I., Mądry E., Wykrętowicz A., Krzyżanowska-Jankowska P., Drzymała-Czyż S., Nowicka A., Pogorzelski A., Sapiejka E., et al. Cystic fibrosis dyslipidaemia: A cross-sectional study. J. Cyst. Fibros. 2019;18:566–571. doi: 10.1016/j.jcf.2019.04.001.
    1. Shaikhkhalil A.K., Freeman A.J., Sathe M. Variations in Nutrition Practices in Cystic Fibrosis: A Survey of the DIGEST Program. Nutr. Clin. Pract. 2021;36:1247–1251. doi: 10.1002/ncp.10605.
    1. Strandvik B. Is the ENaC Dysregulation in CF an Effect of Protein-Lipid Interaction in the Membranes? Int. J. Mol. Sci. 2021;22:2739. doi: 10.3390/ijms22052739.
    1. Rosenlund M.L., Selekman J.A., Kim H.K., Kritchevsky D. Dietary essential fatty acids in cystic fibrosis. Pediatrics. 1977;59:428–432. doi: 10.1542/peds.59.3.428.
    1. Sigström L., Strandvik B. Erythrocyte sodium-potassium transport in cystic fibrosis. Pediatric Res. 1992;31:425–427. doi: 10.1203/00006450-199205000-00001.
    1. Lloyd-Still J.D., Powers C.A., Hoffman D.R., Boyd-Trull K., Lester L.A., Benisek D.C., Arterburn L.M. Bioavailability and safety of a high dose of docosahexaenoic acid triacylglycerol of algal origin in cystic fibrosis patients: A randomized, controlled study. Nutrition. 2006;22:36–46. doi: 10.1016/j.nut.2005.05.006.
    1. Alicandro G., Faelli N., Gagliardini R., Santini B., Magazzù G., Biffi A., Risé P., Galli C., Tirelli A.S., Loi S., et al. A randomized placebo-controlled study on high-dose oral algal docosahexaenoic acid supplementation in children with cystic fibrosis. Prostaglandins Leukot. Essent. Fat. Acids. 2013;88:163–169. doi: 10.1016/j.plefa.2012.10.002.
    1. Van Biervliet S., Devos M., Delhaye T., Van Biervliet J.P., Robberecht E., Christophe A. Oral DHA supplementation in DeltaF508 homozygous cystic fibrosis patients. Prostaglandins Leukot. Essent. Fat. Acids. 2008;78:109–115. doi: 10.1016/j.plefa.2007.12.005.
    1. Simon M., Dalle Molle R., Silva F.M., Rodrigues T.W., Feldmann M., Forte G.C., Marostica P.J.C. Antioxidant Micronutrients and Essential Fatty Acids Supplementation on Cystic Fibrosis Outcomes: A Systematic Review. J. Acad. Nutr. Diet. 2020;120:1016–1033. doi: 10.1016/j.jand.2020.01.007.
    1. Bass R., Brownell J.N., Stallings V.A. The Impact of Highly Effective CFTR Modulators on Growth and Nutrition Status. Nutrients. 2021;13:2907. doi: 10.3390/nu13092907.
    1. Harris J.K., Wagner B.D., Zemanick E.T., Robertson C.E., Stevens M.J., Heltshe S.L., Rowe S.M., Sagel S.D. Changes in Airway Microbiome and Inflammation with Ivacaftor Treatment in Patients with Cystic Fibrosis and the G551D Mutation. Ann. Am. Thorac. Soc. 2020;17:212–220. doi: 10.1513/AnnalsATS.201907-493OC.
    1. Veltman M., De Sanctis J.B., Stolarczyk M., Klymiuk N., Bähr A., Brouwer R.W., Oole E., Shah J., Ozdian T., Liao J., et al. CFTR Correctors and Antioxidants Partially Normalize Lipid Imbalance but not Abnormal Basal Inflammatory Cytokine Profile in CF Bronchial Epithelial Cells. Front. Physiol. 2021;12:619442. doi: 10.3389/fphys.2021.619442.
    1. Vertex Pharmaceuticals; Incorporated. Prescribing Information. TRIKAFTA (Elexaccaftor/Tezacaftor/Ivacaftor; Ivacaftor Tablets. Table 4: Pharmacokinetic Parameters of TRIKAFTA Components. [(accessed on 10 February 2022)];2019 Available online: .
    1. Laselva O., Guerra L., Castellani S., Favia M., Di Gioia S., Conese M. Small-molecule drugs for cystic fibrosis: Where are we now? Pulm. Pharmacol. Ther. 2021;72:102098. doi: 10.1016/j.pupt.2021.102098.
    1. Hansen C.R., Gilljam M., Olesen H.V., Høiby N., Karpati F., Johansson E., Krantz C., Skov M., Pressler T., Lindblad A. Maintaining normal lung function in children with cystic fibrosis is possible with aggressive treatment regardless of Pseudomonas aeruginosa infections. Acta Paediatr. 2021;110:2607–2609. doi: 10.1111/apa.15880.
    1. Garić D., Dumut D.C., Shah J., De Sanctis J.B., Radzioch D. The role of essential fatty acids in cystic fibrosis and normalizing effect of fenretinide. Cell. Mol. Life Sci. 2020;77:4255–4267. doi: 10.1007/s00018-020-03530-x.
    1. Vandebrouck C., Ferreira T. Glued in lipids: Lipointoxication in cystic fibrosis. EBioMedicine. 2020;61:103038. doi: 10.1016/j.ebiom.2020.103038.
    1. O’Connor M.G., Seegmiller A. The effects of ivacaftor on CF fatty acid metabolism: An analysis from the GOAL study. J. Cyst. Fibros. 2017;16:132–138. doi: 10.1016/j.jcf.2016.07.006.
    1. Strandvik B., Walkowiak J., Drzymala-Czyz S., Colombo C., Alicandro A., Bakkeheim E., Badolato R., Hansen C. A double-blind randomised multi-centre European study of linoleic acid supplementation for one year in patients with cystic fibrosis. J. Cyst. Fibros. 2021;20:S56. doi: 10.1016/S1569-1993(21)01086-9.

Source: PubMed

Подписаться