Phase 1b randomized, double-blind study of namilumab, an anti-granulocyte macrophage colony-stimulating factor monoclonal antibody, in mild-to-moderate rheumatoid arthritis

T W J Huizinga, A Batalov, R Stoilov, E Lloyd, T Wagner, D Saurigny, B Souberbielle, E Esfandiari, T W J Huizinga, A Batalov, R Stoilov, E Lloyd, T Wagner, D Saurigny, B Souberbielle, E Esfandiari

Abstract

Background: Namilumab (AMG203) is an immunoglobulin G1 monoclonal antibody that binds with high affinity to the GM-CSF ligand. This was a phase 1b, randomized, double-blind study (PRIORA) to assess namilumab in active, mild-to-moderate rheumatoid arthritis (RA). The primary outcome was the safety and tolerability of repeated subcutaneous injections of namilumab in patients with mild-to-moderate RA.

Methods: Adults with mild-to-moderate RA on stable methotrexate doses for ≥12 weeks were eligible. Patients received three subcutaneous injections of namilumab 150 or 300 mg, or placebo on days 1, 15, and 29, with 12 weeks' follow-up. Primary objective was safety/tolerability.

Results: Patients in cohort 1 were randomized to namilumab 150 mg (n = 8) or placebo (n = 5). In cohort 2, patients were randomized to namilumab 300 mg (n = 7) or placebo (n = 4). Incidence of treatment-emergent adverse events (TEAEs) was similar across the three groups (namilumab 150 mg: 63%; namilumab 300 mg: 57%; placebo: 56%). TEAEs in ≥10% of patients were nasopharyngitis (17%) and exacerbation/worsening of RA (13%). No anti-namilumab antibodies were detected. The pharmacokinetics of namilumab were linear and typical of a monoclonal antibody with subcutaneous administration. In a post hoc efficacy, per protocol analysis (n = 21), patients randomized to namilumab showed greater improvement in Disease Activity Score 28 (erythrocyte sedimentation rate and C-reactive protein [CRP]), swelling joint counts and tender joint counts compared with placebo. Difference in mean DAS28-CRP changes from baseline between namilumab and placebo favored namilumab at both doses and at all time points. In addition area under the curve for DAS28-CRP was analyzed as time-adjusted mean change from baseline. A significant improvement in DAS28-CRP was shown with namilumab (150 and 300 mg groups combined) compared with placebo at day 43 (p = 0.0117) and also 8 weeks after last dosing at day 99 (p = 0.0154).

Conclusions: Subcutaneous namilumab was generally well tolerated. Although namilumab demonstrated preliminary evidence of efficacy, patient numbers were small; phase 2 studies are ongoing.

Trial registration: ClinicalTrials.gov, NCT01317797 . Registered 18 February 2011.

Keywords: GM-CSF; Namilumab; Phase 1b; Rheumatoid arthritis.

Figures

Fig. 1
Fig. 1
Dose-normalized geometric mean plasma concentration–time profile of namilumab (error bars show ± 1 SD). SD standard deviation
Fig. 2
Fig. 2
Change from baseline in DAS28-CRP with namilumab compared with placebo. *Error bars show upper SE for placebo and lower SE for namilumab. DAS disease activity score, CRP C-reactive protein, SE standard error
Fig. 3
Fig. 3
Forest plot showing the difference from placebo with namilumab for DAS28-CRP mean change from baseline. CI confidence interval, CRP C-reactive protein, DAS disease activity score

References

    1. Scott DL, Wolfe F, Huizinga TW. Rheumatoid arthritis. Lancet. 2010;376:1094–1108. doi: 10.1016/S0140-6736(10)60826-4.
    1. Firestein GS. The disease formerly known as rheumatoid arthritis. Arthritis Res Ther. 2014;16:114. doi: 10.1186/ar4593.
    1. Kievit W, Fransen J, Oerlemans AJ, Kuper HH, van der Laar MA, de Rooij DJ, et al. The efficacy of anti-TNF in rheumatoid arthritis, a comparison between randomised controlled trials and clinical practice. Ann Rheum Dis. 2007;66:1473–1478. doi: 10.1136/ard.2007.072447.
    1. Hetland ML, Christensen IJ, Tarp U, Dreyer L, Hansen A, Hansen IT, et al. Direct comparison of treatment responses, remission rates, and drug adherence in patients with rheumatoid arthritis treated with adalimumab, etanercept, or infliximab: results from eight years of surveillance of clinical practice in the nationwide Danish DANBIO registry. Arthritis Rheum. 2010;62:22–32. doi: 10.1002/art.27227.
    1. Fleetwood AJ, Cook AD, Hamilton JA. Functions of granulocyte-macrophage colony-stimulating factor. Crit Rev Immunol. 2005;25:405–428. doi: 10.1615/CritRevImmunol.v25.i5.50.
    1. Hamilton JA. Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol. 2008;8:533–544. doi: 10.1038/nri2356.
    1. Griffin JD, Cannistra SA, Sullivan R, Demetri GD, Ernst TJ, Kanakura Y. The biology of GM-CSF: regulation of production and interaction with its receptor. Int J Cell Cloning. 1990;8(Suppl 1):35–44. doi: 10.1002/stem.5530080705.
    1. Gasson JC. Molecular physiology of granulocyte-macrophage colony-stimulating factor. Blood. 1991;77:1131–1145.
    1. Hamilton JA. GM-CSF as a target in inflammatory/autoimmune disease: current evidence and future therapeutic potential. Expert Rev Clin Immunol. 2015;11:457–465. doi: 10.1586/1744666X.2015.1024110.
    1. Hamilton JA, Anderson GP. GM-CSF biology. Growth Factors. 2004;22:225–231. doi: 10.1080/08977190412331279881.
    1. Zvaifler NJ, Firestein GS. Cytokines in chronic inflammatory synovitis. Scand J Rheumatol. 1988;17:203–212. doi: 10.3109/03009748809102970.
    1. Xu WD, Firestein GS, Taetle R, Kaushansky K, Zvaifler NJ. Cytokines in chronic inflammatory arthritis. II. Granulocyte-macrophage colony-stimulating factor in rheumatoid synovial effusions. J Clin Invest. 1989;83:876–882. doi: 10.1172/JCI113971.
    1. Alvaro-Gracia JM, Zvaifler NJ, Brown CB, Kaushansky K, Firestein GS. Cytokines in chronic inflammatory arthritis. VI. Analysis of the synovial cells involved in granulocyte-macrophage colony-stimulating factor production and gene expression in rheumatoid arthritis and its regulation by IL-1 and tumor necrosis factor-alpha. J Immunol. 1991;146:3365–3371.
    1. Fiehn C, Wermann M, Pezzutto A, Hufner M, Heilig B. Plasma GM-CSF concentrations in rheumatoid arthritis, systemic lupus erythematosus and spondyloarthropathy. Z Rheumatol. 1992;51:121–126.
    1. Garcia S, Hartkamp LM, Malvar-Fernandez B, van Es IE, Lin H, Wong J, et al. Colony-stimulating factor (CSF) 1 receptor blockade reduces inflammation in human and murine models of rheumatoid arthritis. Arthritis Res Ther. 2015;18:75. doi: 10.1186/s13075-016-0973-6.
    1. Ulfgren AK, Lindblad S, Klareskog L, Andersson J, Andersson U. Detection of cytokine producing cells in the synovial membrane from patients with rheumatoid arthritis. Ann Rheum Dis. 1995;54:654–661. doi: 10.1136/ard.54.8.654.
    1. Chu CQ, Field M, Allard S, Abney E, Feldmann M, Maini RN. Detection of cytokines at the cartilage/pannus junction in patients with rheumatoid arthritis: implications for the role of cytokines in cartilage destruction and repair. Br J Rheumatol. 1992;31:653–661. doi: 10.1093/rheumatology/31.10.653.
    1. Campbell IK, Rich MJ, Bischof RJ, Dunn AR, Grail D, Hamilton JA. Protection from collagen-induced arthritis in granulocyte-macrophage colony-stimulating factor-deficient mice. J Immunol. 1998;161:3639–3644.
    1. Cook AD, Braine EL, Campbell IK, Rich MJ, Hamilton JA. Blockade of collagen-induced arthritis post-onset by antibody to granulocyte-macrophage colony-stimulating factor (GM-CSF): requirement for GM-CSF in the effector phase of disease. Arthritis Res. 2001;3:293–298. doi: 10.1186/ar318.
    1. Hashimoto M, Hirota K, Yoshitomi H, Maeda S, Teradaira S, Akizuki S, et al. Complement drives Th17 cell differentiation and triggers autoimmune arthritis. J Exp Med. 2010;207:1135–1143. doi: 10.1084/jem.20092301.
    1. Cook AD, Turner AL, Braine EL, Pobjoy J, Lenzo JC, Hamilton JA. Regulation of systemic and local myeloid cell subpopulations by bone marrow cell-derived granulocyte-macrophage colony-stimulating factor in experimental inflammatory arthritis. Arthritis Rheum. 2011;63:2340–2351. doi: 10.1002/art.30354.
    1. Cook AD, Pobjoy J, Sarros S, Steidl S, Durr M, Lacey DC, et al. Granulocyte-macrophage colony-stimulating factor is a key mediator in inflammatory and arthritic pain. Ann Rheum Dis. 2013;72:265–270. doi: 10.1136/annrheumdis-2012-201703.
    1. van Nieuwenhuijze AE, van de Loo FA, Walgreen B, Bennink M, Helsen M, van den Bersselaar L, et al. Complementary action of granulocyte macrophage colony-stimulating factor and interleukin-17A induces interleukin-23, receptor activator of nuclear factor-kappaB ligand, and matrix metalloproteinases and drives bone and cartilage pathology in experimental arthritis: rationale for combination therapy in rheumatoid arthritis. Arthritis Res Ther. 2015;17:163. doi: 10.1186/s13075-015-0683-5.
    1. de Vries EGE, Willemse PHB, Biesma B, Stern AC, Limburg PC, Vellenga E. Flare-up of rheumatoid arthritis during GM-CSF treatment after chemotherapy. Lancet. 1991;338:517–518. doi: 10.1016/0140-6736(91)90594-F.
    1. Hazenberg BP, Van Leeuwen MA, Van Rijswijk MH, Stern AC, Vellenga E. Correction of granulocytopenia in Felty's syndrome by granulocyte-macrophage colony-stimulating factor. Simultaneous induction of interleukin-6 release and flare-up of the arthritis. Blood. 1989;74:2769–2770.
    1. Burmester GR, Feist E, Sleeman MA, Wang B, White B, Magrini F. Mavrilimumab, a human monoclonal antibody targeting GM-CSF receptor-alpha, in subjects with rheumatoid arthritis: a randomised, double-blind, placebo-controlled, phase I, first-in-human study. Ann Rheum Dis. 2011;70:1542–1549. doi: 10.1136/ard.2010.146225.
    1. Burmester GR, Weinblatt ME, McInnes IB, Porter D, Barbarash O, Vatutin M, et al. Efficacy and safety of mavrilimumab in subjects with rheumatoid arthritis. Ann Rheum Dis. 2013;72:1445–1452. doi: 10.1136/annrheumdis-2012-202450.
    1. Takeuchi T, Tanaka Y, Close D, Godwood A, Wu CY, Saurigny D. Efficacy and safety of mavrilimumab in Japanese subjects with rheumatoid arthritis: findings from a Phase IIa study. Mod Rheumatol. 2015;25:21–30. doi: 10.3109/14397595.2014.896448.
    1. Burmester GR, McInnes IB, Kremer JM, Miranda P, Mariusz Korkosz JV, Rubbert-Roth A, et al. Efficacy and safety/tolerability of mavrilimumab, a human GM-CSF monoclonal antibody in patients with rheumatoid arthritis. Arthritis Rheum. 2014;66(Abstract):2821.
    1. Behrens F, Tak PP, Ostergaard M, Stoilov R, Wiland P, Huizinga TW, et al. MOR103, a human monoclonal antibody to granulocyte-macrophage colony-stimulating factor, in the treatment of patients with moderate rheumatoid arthritis: results of a phase Ib/IIa randomised, double-blind, placebo-controlled, dose-escalation trial. Ann Rheum Dis. 2015;74:1058–1064. doi: 10.1136/annrheumdis-2013-204816.
    1. Manivel VA, Sohrabian A, Wick MC, Mullazehi M, Hakansson LD, Ronnelid J. Anti-type II collagen immune complex-induced granulocyte reactivity is associated with joint erosions in RA patients with anti-collagen antibodies. Arthritis Res Ther. 2015;17:8. doi: 10.1186/s13075-015-0523-7.
    1. Krinner EM, Raum T, Petsch S, Bruckmaier S, Schuster I, Petersen L, et al. A human monoclonal IgG1 potently neutralizing the pro-inflammatory cytokine GM-CSF. Mol Immunol. 2007;44:916–925. doi: 10.1016/j.molimm.2006.03.020.
    1. Plater-Zyberk C, Joosten LA, Helsen MM, Hepp J, Baeuerle PA, van den Berg WB. GM-CSF neutralisation suppresses inflammation and protects cartilage in acute streptococcal cell wall arthritis of mice. Ann Rheum Dis. 2007;66:452–457. doi: 10.1136/ard.2006.057182.
    1. Kitamura T, Tanaka N, Watanabe J, Kanegasaki S, Uchida, Yamada Y, et al. Idiopathic pulmonary alveolar proteinosis as an autoimmune disease with neutralizing antibody against granulocyte/macrophage colony-stimulating factor. J Exp Med. 1999;190:875–880. doi: 10.1084/jem.190.6.875.
    1. Trapnell BC, Carey BC, Uchida K, Suzuki T. Pulmonary alveolar proteinosis, a primary immunodeficiency of impaired GM-CSF stimulation of macrophages. Curr Opin Immunol. 2009;21:514–521. doi: 10.1016/j.coi.2009.09.004.
    1. van Gestel AM, Prevoo ML, Hof MA v 't, van Rijswijk MH, van de Putte LB, van Riel PL. Development and validation of the European League Against Rheumatism response criteria for rheumatoid arthritis. Comparison with the preliminary American College of Rheumatology and the World Health Organization/International League Against Rheumatism Criteria. Arthritis Rheum. 1996;39:34–40. doi: 10.1002/art.1780390105.
    1. Trapnell BC, Whitsett JA, Nakata K. Pulmonary alveolar proteinosis. N Engl J Med. 2003;349:2527–2539. doi: 10.1056/NEJMra023226.
    1. Antoniu SA. GM-CSF pathway correction in pulmonary alveolar proteinosis. Expert Opin Biol Ther. 2010;10:1357–1365. doi: 10.1517/14712598.2010.510507.
    1. Burmester GR, McInnes IB, Kremer JM, Miranda P, Korkosz M, Vencovsky J, et al. Efficacy and safety of mavrilimumab, a fully human Gm–Csfr-Alpha monoclonal antibody in patients with rheumatoid arthritis: primary results from the Earth Explorer 1 Study. Ann Rheum Dis. 2015;74:OP0034.
    1. Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84:548–558. doi: 10.1038/clpt.2008.170.

Source: PubMed

Подписаться