Diagnostic and prognostic value of blood samples for KRAS mutation identification in lung cancer: a meta-analysis

Hongchang Shen, Keying Che, Lei Cong, Wei Dong, Tiehong Zhang, Qi Liu, Jiajun Du, Hongchang Shen, Keying Che, Lei Cong, Wei Dong, Tiehong Zhang, Qi Liu, Jiajun Du

Abstract

Circulating tumor DNA (ctDNA) and tumor cells (CTC) are novel approaches for identifying genomic alterations. Thus, we designed a meta-analysis to evaluate the diagnostic value and prognostic significance of a KRAS proto-oncogene, GTPase (KRAS) mutation for lung cancer patients. All included articles were from PubMed, EMBASE, Web of Science and Cochrane Library. Twelve articles that described 1,131 patients were reviewed. True positives (TP), false positives (FP), true negatives (TN), and false negatives (FN) were used to calculate pooled sensitivity, specificity, the positive likelihood ratio (PLR), the negative likelihood ratio (NLR), a diagnostic odds ratio (DOR), the area under the curve (AUC) and corresponding 95% confidence intervals (95% CI). PLR is calculated as sensitivity/(1-specificity) and NLR is (1- sensitivity)/specificity. DOR is a measured of diagnostic effectiveness (PLR/NLR). A survival analysis subgroup was also designed to evaluate prognostic significance. Pooled sensitivity, specificity, PLR, NLR, DOR and AUC were 0.79 (95% CI, 0.63-0.89), 0.93 (95% CI, 0.89-0.96), 12.13 (92% CI, 7.11-20.67), 0.22 (95% CI, 0.12-0.41), 54.82 (95% CI, 23.11-130.09), and 0.95 (95% CI, 0.93-0.96), respectively. KRAS mutation and wild-type hazard ratios for overall survival and progression-free survival were 1.37 (95% CI, 1.08-1.66), 1.46 (95% CI, 1.15-1.77) in blood samples, and 1.16 (95% CI, 1.03-1.28), 1.28 (95% CI, 1.09-1.46) in tumor tissue.

Keywords: KRAS; blood; diagnostic test; lung cancer; predictive factor.

Conflict of interest statement

CONFLICTS OF INTEREST

The authors declare no competing financial interests.

Figures

Figure 1. Flow diagram of study inclusion…
Figure 1. Flow diagram of study inclusion and exclusion for meta-analysis
Figure 2
Figure 2
A. Sensitivity analysis plot of meta-analysis. Every row represents an included study. The width of the horizontal line represents the 95% CI for each study. The vertical bar on both sides represents the lowest and highest values of 95% CI. B. SROC curve: each X mark represents a study and AUC is the area under the curve.
Figure 3
Figure 3
Forest plots of sensitivity (A) and specificity (B) for blood samples (ctDNA and CTC). The width of the horizontal line represents the 95% CI of each study, square proportional means the weight of every study. The weight is evaluated by the sample size and is presented as percent of total. The diamond represents pooled sensitivity, specificity and 95% CI.
Figure 4
Figure 4
A. Deek's funnel plot indicates no significant publication bias (p = 0.218 > 0.05). B. Fagan's Nomogram of blood samples for KRAS mutation identification. C. ROC plane for threshold effect. Each black spot represents an included study and does not constitute a “shoulder shape” graph, which represents no significant threshold effect.
Figure 5
Figure 5
Forest plots of sensitivity and specificity for ctDNA (sensitivity, A; specificity, B) and CTC (sensitivity, C; specificity, D). The width of the horizontal line represents the 95% CI of each study, square proportional means the weight of every study. Weight is evaluated by sample size and presented as percent of total. Diamond represents pooled sensitivity, specificity and 95% CI.
Figure 6
Figure 6
Forest plots of pooled HR for OS (tumor tissue: A, blood sample: B) and PFS (tumor tissue: C, blood sample: D) comparing patients of KRAS mutations with wild-type KRAS. The width of horizontal line represents the 95% CI of each study and square proportional means the weight of every study. Weight is evaluated by sample size and is presented as percent of total. Diamond represents pooled HR and 95% CI.

References

    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30. doi: 10.3322/caac.21332.
    1. Torre LA, Siegel RL, Jemal A. Lung Cancer Statistics. Adv Exp Med Biol. 2016;893:1–19. doi: 10.1007/978-3-319-24223-1_1.
    1. Riely GJ, Kris MG, Rosenbaum D, Marks J, Li A, Chitale DA, Nafa K, Riedel ER, Hsu M, Pao W, Miller VA, Ladanyi M. Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clin Cancer Res. 2008;14:5731–4. doi: 10.1158/1078-0432.CCR-08-0646.
    1. Vojtek AB, Der CJ. Increasing complexity of the Ras signaling pathway. J Biol Chem. 1998;273:19925–8.
    1. Neri M, Cesario A, Granone P, Dominioni L, Puntoni R, D'Angelillo RM, Russo P. Prognostic role of K-Ras mutations in non-small cell lung cancer: still an issue for open debate. Lung Cancer. 2006;53:393–5. doi: 10.1016/j.lungcan.2006.06.009. author reply 7-8.
    1. Camps C, Sirera R, Bremnes R, Blasco A, Sancho E, Bayo P, Safont MJ, Sanchez JJ, Taron M, Rosell R. Is there a prognostic role of K-ras point mutations in the serum of patients with advanced non-small cell lung cancer? Lung Cancer. 2005;50:339–46. doi: 10.1016/j.lungcan.2005.06.007.
    1. Wang S, An T, Wang J, Zhao J, Wang Z, Zhuo M, Bai H, Yang L, Zhang Y, Wang X, Duan J, Wang Y, Guo Q, et al. Potential clinical significance of a plasma-based KRAS mutation analysis in patients with advanced non-small cell lung cancer. Clin Cancer Res. 2010;16:1324–30. doi: 10.1158/1078-0432.ccr-09-2672.
    1. Diaz LA, Jr, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32:579–86. doi: 10.1200/jco.2012.45.2011.
    1. Rogosnitzky M, Danks R. Validation of blood testing for K-ras mutations in colorectal and pancreatic cancer. Anticancer Res. 2010;30:2943–7.
    1. Tran HT, Legendre BL, Kim ES, Blumenschein GR, Tsao AS, Herbst RS, Wistuba II, Lewis M, Richardson K, Hong WK, Heymach J. The use of improved and complete enrichment co-amplification at lower denaturation temperature (ICE COLD-PCR) method for the detection of EGFR and KRAS mutations from cell-free plasma DNA of non-small cell lung cancer (NSCLC) patients. Journal of Clinical Oncology. 2014:32.
    1. Ramirez JL, Sarries C, de Castro PL, Roig B, Queralt C, Escuin D, de Aguirre I, Sanchez JM, Manzano JL, Margelí M, Sanchez JJ, Astudillo J, Taron M, et al. Methylation patterns and K-ras mutations in tumor and paired serum of resected non-small-cell lung cancer patients. Cancer Letters. 2003;193:207–16. doi: 10.1016/s0304-3835(02)00740-1.
    1. Gautschi O, Huegli B, Ziegler A, Gugger M, Heighway J, Ratschiller D, Mack PC, Gumerlock PH, Kung HJ, Stahel RA, Gandara DR, Betticher DC. Origin and prognostic value of circulating KRAS mutations in lung cancer patients. Cancer Letters. 2007;254:265–73. doi: 10.1016/j.canlet.2007.03.008.
    1. Tsao DA, Yang MJ, Chang HJ, Yen LC, Chiu HH, Hsueh EJ, Chen YF, Lin SR. A fast and convenient new technique to detect the therapeutic target, K-ras mutant, from peripheral blood in non-small cell lung cancer patients. Lung Cancer. 2010;68:51–7. doi: 10.1016/j.lungcan.2009.05.023.
    1. Zhang H, Liu D, Li S, Zheng Y, Yang X, Li X, Zhang Q, Qin N, Lu J, Ren-Heidenreich L, Yang H, Wu Y, Zhang X, et al. Comparison of EGFR signaling pathway somatic DNA mutations derived from peripheral blood and corresponding tumor tissue of patients with advanced non-small-cell lung cancer using liquidchip technology. J Mol Diagn. 2013;15:819–26. doi: 10.1016/j.jmoldx.2013.06.006.
    1. Freidin MB, Freydina DV, Leung M, Montero Fernandez A, Nicholson AG, Lim E. Circulating tumor DNA outperforms circulating tumor cells for KRAS mutation detection in thoracic malignancies. Clin Chem. 2015;61:1299–304. doi: 10.1373/clinchem.2015.242453.
    1. Xu S, Lou F, Wu Y, Sun DQ, Zhang JB, Chen W, Ye H, Liu JH, Wei S, Zhao MY, Wu WJ, Su XX, Shi R, et al. Circulating tumor DNA identified by targeted sequencing in advanced-stage non-small cell lung cancer patients. Cancer Lett. 2016;370:324–31. doi: 10.1016/j.canlet.2015.11.005.
    1. Del Re M, Tiseo M, Bordi P, D'Incecco A, Camerini A, Petrini I, Lucchesi M, Inno A, Spada D, Vasile E, Citi V, Malpeli G, Testa E, et al. Contribution of KRAS mutations and c.2369C > T (p.T790M) EGFR to acquired resistance to EGFR-TKIs in EGFR mutant NSCLC: a study on circulating tumor DNA. Oncotarget. 2017;8:13611–13619. doi: 10.18632/oncotarget.6957.
    1. Chong IW, Chang MY, Sheu CC, Wang CY, Hwang JJ, Huang MS, Lin SR. Detection of activated K-ras in non-small cell lung cancer by membrane array: a comparison with direct sequencing. Oncol Rep. 2007;18:17–24.
    1. Wang Z, Cheng G, Han X, Mu X, Zhang Y, Cui D, Liu C, Zhang L, Fan Z, Ma L, Yang L, Di J, Cram DS, et al. Application of Single-Molecule Amplification and Resequencing Technology for Broad Surveillance of Plasma Mutations in Patients with Advanced Lung Adenocarcinoma. J Mol Diagn. 2017;19:169–81. doi: 10.1016/j.jmoldx.2016.09.008.
    1. Yao Y, Liu J, Li L, Yuan Y, Nan K, Wu X, Zhang Z, Wu Y, Li X, Zhu J, Meng X, Wei L, Chen J, et al. Detection of circulating tumor DNA in patients with advanced non-small cell lung cancer. Oncotarget. 2017;8:2130–40. doi: 10.18632/oncotarget.12883.
    1. Amann JM, Lee JW, Roder H, Brahmer J, Gonzalez A, Schiller JH, Carbone DP. Genetic and proteomic features associated with survival after treatment with erlotinib in first-line therapy of non-small cell lung cancer in Eastern Cooperative Oncology Group 3503. J Thorac Oncol. 2010;5:169–78. doi: 10.1097/JTO.0b013e3181c8cbd9.
    1. Camps C, Jantus-Lewintre E, Cabrera A, Blasco A, Sanmartin E, Gallach S, Caballero C, del Pozo N, Rosell R, Guijarro R, Sirera R. The identification of KRAS mutations at codon 12 in plasma DNA is not a prognostic factor in advanced non-small cell lung cancer patients. Lung Cancer. 2011;72:365–9. doi: 10.1016/j.lungcan.2010.09.005.
    1. Dowler Nygaard A, Spindler KL, Pallisgaard N, Andersen RF, Jakobsen A. Levels of cell-free DNA and plasma KRAS during treatment of advanced NSCLC. Oncol Rep. 2014;31:969–74. doi: 10.3892/or.2013.2906.
    1. Kim ST, Sung JS, Jo UH, Park KH, Shin SW, Kim YH. Can mutations of EGFR and KRAS in serum be predictive and prognostic markers in patients with advanced non-small cell lung cancer (NSCLC)? Medical Oncology. 2013:30. doi: 10.1007/s12032-012-0328-3.
    1. Kimura T, Holland WS, Kawaguchi T, Williamson SK, Chansky K, Crowley JJ, Doroshow JH, Lenz HJ, Gandara DR, Gumerlock PH. Mutant DNA in plasma of lung cancer patients: potential for monitoring response to therapy. Ann N Y Acad Sci. 2004;1022:55–60. doi: 10.1196/annals.1318.010.
    1. Nygaard AD, Garm Spindler KL, Pallisgaard N, Andersen RF, Jakobsen A. The prognostic value of KRAS mutated plasma DNA in advanced non-small cell lung cancer. Lung Cancer. 2013;79:312–7. doi: 10.1016/j.lungcan.2012.11.016.
    1. Brugger W, Triller N, Blasinska-Morawiec M, Curescu S, Sakalauskas R, Manikhas GM, Mazieres J, Whittom R, Ward C, Mayne K, Trunzer K, Cappuzzo F. Prospective molecular marker analyses of EGFR and KRAS from a randomized, placebo-controlled study of erlotinib maintenance therapy in advanced non-small-cell lung cancer. J Clin Oncol. 2011;29:4113–20. doi: 10.1200/jco.2010.31.8162.
    1. Campos-Parra AD, Zuloaga C, Manriquez ME, Aviles A, Borbolla-Escoboza J, Cardona A, Meneses A, Arrieta O. KRAS mutation as the biomarker of response to chemotherapy and EGFR-TKIs in patients with advanced non-small cell lung cancer: clues for its potential use in second-line therapy decision making. Am J Clin Oncol. 2015;38:33–40. doi: 10.1097/COC.0b013e318287bb23.
    1. Cserepes M, Ostoros G, Lohinai Z, Raso E, Barbai T, Timar J, Rozsas A, Moldvay J, Kovalszky I, Fabian K, Gyulai M, Ghanim B, Laszlo V, et al. Subtype-specific KRAS mutations in advanced lung adenocarcinoma: a retrospective study of patients treated with platinum-based chemotherapy. Eur J Cancer. 2014;50:1819–28. doi: 10.1016/j.ejca.2014.04.001.
    1. Douillard JY, Shepherd FA, Hirsh V, Mok T, Socinski MA, Gervais R, Liao ML, Bischoff H, Reck M, Sellers MV, Watkins CL, Speake G, Armour AA, et al. Molecular predictors of outcome with gefitinib and docetaxel in previously treated non-small-cell lung cancer: data from the randomized phase III INTEREST trial. J Clin Oncol. 2010;28:744–52. doi: 10.1200/jco.2009.24.3030.
    1. Eberhard DA, Johnson BE, Amler LC, Goddard AD, Heldens SL, Herbst RS, Ince WL, Janne PA, Januario T, Johnson DH, Klein P, Miller VA, Ostland MA, et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol. 2005;23:5900–9. doi: 10.1200/jco.2005.02.857.
    1. Fiala O, Pesek M, Finek J, Benesova L, Bortlicek Z, Minarik M. Gene mutations in squamous cell NSCLC: insignificance of EGFR, KRAS and PIK3CA mutations in prediction of EGFR-TKI treatment efficacy. Anticancer Res. 2013;33:1705–11.
    1. Herbst RS, Kelly K, Chansky K, Mack PC, Franklin WA, Hirsch FR, Atkins JN, Dakhil SR, Albain KS, Kim ES, Redman M, Crowley JJ, Gandara DR. Phase II selection design trial of concurrent chemotherapy and cetuximab versus chemotherapy followed by cetuximab in advanced-stage non-small-cell lung cancer: Southwest Oncology Group study S0342. J Clin Oncol. 2010;28:4747–54. doi: 10.1200/jco.2009.27.9356.
    1. Jackman DM, Miller VA, Cioffredi LA, Yeap BY, Janne PA, Riely GJ, Ruiz MG, Giaccone G, Sequist LV, Johnson BE. Impact of epidermal growth factor receptor and KRAS mutations on clinical outcomes in previously untreated non-small cell lung cancer patients: results of an online tumor registry of clinical trials. Clin Cancer Res. 2009;15:5267–73. doi: 10.1158/1078-0432.ccr-09-0888.
    1. Khambata-Ford S, Harbison CT, Hart LL, Awad M, Xu LA, Horak CE, Dakhil S, Hermann RC, Lynch TJ, Weber MR. Analysis of potential predictive markers of cetuximab benefit in BMS099, a phase III study of cetuximab and first-line taxane/carboplatin in advanced non-small-cell lung cancer. J Clin Oncol. 2010;28:918–27. doi: 10.1200/jco.2009.25.2890.
    1. Ludovini V, Bianconi F, Pistola L, Pistola V, Chiari R, Colella R, Bellezza G, Tofanetti FR, Siggillino A, Baldelli E, Flacco A, Giuffrida D, Sidoni A, et al. Optimization of patient selection for EGFR-TKIs in advanced non-small cell lung cancer by combined analysis of KRAS, PIK3CA, MET, and non-sensitizing EGFR mutations. Cancer Chemother Pharmacol. 2012;69:1289–99. doi: 10.1007/s00280-012-1829-7.
    1. Marks JL, Broderick S, Zhou Q, Chitale D, Li AR, Zakowski MF, Kris MG, Rusch VW, Azzoli CG, Seshan VE, Ladanyi M, Pao W. Prognostic and therapeutic implications of EGFR and KRAS mutations in resected lung adenocarcinoma. J Thorac Oncol. 2008;3:111–6. doi: 10.1097/JTO.0b013e318160c607.
    1. Massarelli E, Varella-Garcia M, Tang X, Xavier AC, Ozburn NC, Liu DD, Bekele BN, Herbst RS, Wistuba II. KRAS mutation is an important predictor of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. Clin Cancer Res. 2007;13:2890–6. doi: 10.1158/1078-0432.ccr-06-3043.
    1. Pesek M, Benesova L, Belsanova B, Mukensnabl P, Bruha F, Minarik M. Dominance of EGFR and insignificant KRAS mutations in prediction of tyrosine-kinase therapy for NSCLC patients stratified by tumor subtype and smoking status. Anticancer Res. 2009;29:2767–73.
    1. Shepherd FA, Domerg C, Hainaut P, Janne PA, Pignon JP, Graziano S, Douillard JY, Brambilla E, Le Chevalier T, Seymour L, Bourredjem A, Le Teuff G, Pirker R, et al. Pooled analysis of the prognostic and predictive effects of KRAS mutation status and KRAS mutation subtype in early-stage resected non-small-cell lung cancer in four trials of adjuvant chemotherapy. J Clin Oncol. 2013;31:2173–81. doi: 10.1200/jco.2012.48.1390.
    1. Glas AS, Lijmer JG, Prins MH, Bonsel GJ, Bossuyt PM. The diagnostic odds ratio: a single indicator of test performance. J Clin Epidemiol. 2003;56:1129–35.
    1. Swets JA. Measuring the accuracy of diagnostic systems. Science. 1988;240:1285–93.
    1. Gallagher EJ. Clinical utility of likelihood ratios. Ann Emerg Med. 1998;31:391–7.
    1. Ilie M, Hofman V, Long E, Bordone O, Selva E, Washetine K, Marquette CH, Hofman P. Current challenges for detection of circulating tumor cells and cell-free circulating nucleic acids, and their characterization in non-small cell lung carcinoma patients. What is the best blood substrate for personalized medicine? Ann Transl Med. 2014;2:107. doi: 10.3978/j.issn.2305-5839.2014.08.11.
    1. Pathak AK, Bhutani M, Kumar S, Mohan A, Guleria R. Circulating cell-free DNA in plasma/serum of lung cancer patients as a potential screening and prognostic tool. Clin Chem. 2006;52:1833–42. doi: 10.1373/clinchem.2005.062893.
    1. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155:529–36. doi: 10.7326/0003-4819-155-8-201110180-00009.
    1. Fischer JE, Bachmann LM, Jaeschke R. A readers' guide to the interpretation of diagnostic test properties: clinical example of sepsis. Intensive Care Med. 2003;29:1043–51. doi: 10.1007/s00134-003-1761-8.
    1. Jaeschke R, Guyatt GH, Sackett DL. Users' guides to the medical literature. III. How to use an article about a diagnostic test. B. What are the results and will they help me in caring for my patients? The Evidence-Based Medicine Working Group. Jama. 1994;271:703–7.
    1. Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol. 2005;58:882–93. doi: 10.1016/j.jclinepi.2005.01.016.

Source: PubMed

Подписаться