China Registry Study on Cognitive Impairment in the Elderly: Protocol of a Prospective Cohort Study

Yingying Zhu, Dong Pan, Lei He, Xiaoming Rong, Honghong Li, Yi Li, Yaxuan Pi, Yongteng Xu, Yamei Tang, Yingying Zhu, Dong Pan, Lei He, Xiaoming Rong, Honghong Li, Yi Li, Yaxuan Pi, Yongteng Xu, Yamei Tang

Abstract

Introduction: To develop appropriate strategies for early diagnosis and intervention of cognitive impairment, the identification of minimally invasive and cost-effective biomarkers for the early diagnosis of cognitive impairment is crucial and desirable. Therefore, the CHina registry study on cOgnitive imPairment in the Elderly (HOPE) study is designed to investigate the natural course of cognitive decline and explore the clinical, imaging, and biochemical markers for the detection and diagnosis of cognitive impairment on its earliest stage. Methods: Approximately 5,000 Chinese elderly aged more than 50 years were recruited from Sun Yat-sen Memorial Hospital, Sun Yat-sen University in Guangzhou, China by the year 2024. All subjects were invited to complete the clinical assessment, neuropsychological assessment, the biological samples collection (blood and cerebrospinal fluid (CSF)], magnetic resonance imaging (MRI) examination, and optional amyloid and tau PET. The follow-up survey was conducted every 1 year to repeat these assessments for 20 years. To better clarify the relationship between potential risk factors and endpoint events [changes in cognitive score or incidence of mild cognitive impairment (MCI) and/or dementia], appropriate statistical methods were used to analyze the data, including but not limited to, such as linear mixed-effect model, competing risk model, or the least absolute shrinkage and selection operator model. Significance: The CHina registry study on cOgnitive imPairment in the Elderly study is designed to explore the longitudinal changes in characteristics of participants with cognitive decline and to identify potential plasma and imaging biomarkers with cost-benefit and scalability advantages. The results will enable broader clinical access and efficient population screening and then improve the development of treatment and the quality of life for cognitive impairment at the early stage. Trial registration number: NCT04360200.

Keywords: aging; cognitive impairment; cohort; dementia; early diagnosis.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Zhu, Pan, He, Rong, Li, Li, Pi, Xu and Tang.

Figures

FIGURE 1
FIGURE 1
The flow chart of the CHina registry study on cOgnitive imPairment in the Elderly (HOPE) study.

References

    1. Akoudad S., Wolters F. J., Viswanathan A., De Bruijn R. F., Van Der Lugt A., Hofman A., et al. (2016). Association of cerebral microbleeds with cognitive decline and dementia. JAMA Neurol. 73 934–943. 10.1001/jamaneurol.2016.1017
    1. Albert M. S., Dekosky S. T., Dickson D., Dubois B., Feldman H. H., Fox N. C., et al. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7 270–279. 10.1016/j.jalz.2011.03.008
    1. Artero S., Ancelin M. L., Portet F., Dupuy A., Berr C., Dartigues J. F., et al. (2008). Risk profiles for mild cognitive impairment and progression to dementia are gender specific. J. Neurol. Neurosurg. Psychiatry 79 979–984. 10.1136/jnnp.2007.136903
    1. Benjamin P., Trippier S., Lawrence A. J., Lambert C., Zeestraten E., Williams O. A., et al. (2018). Lacunar infarcts, but not perivascular spaces, are predictors of cognitive decline in cerebral small-vessel disease. Stroke 49 586–593. 10.1161/strokeaha.117.017526
    1. Cannistraro R. J., Badi M., Eidelman B. H., Dickson D. W., Middlebrooks E. H., Meschia J. F. (2019). CNS small vessel disease: a clinical review. Neurology 92 1146–1156. 10.1212/WNL.0000000000007654
    1. Chan A. W., Tetzlaff J. M., Altman D. G., Laupacis A., Gøtzsche P. C., Krle C., et al. (2013). SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann. Intern. Med. 158 200–207. 10.7326/0003-4819-158-3-201302050-00583
    1. Chen Y., Wang A., Tang J., Wei D., Li P., Chen K., et al. (2015). Association of white matter integrity and cognitive functions in patients with subcortical silent lacunar infarcts. Stroke 46 1123–1126. 10.1161/STROKEAHA.115.008998
    1. Collins G. S., Reitsma J. B., Altman D. G., Moons K. G. (2015). Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ 350:g7594. 10.1136/bmj.g7594
    1. Cooper C., Sommerlad A., Lyketsos C. G., Livingston G. (2015). Modifiable predictors of dementia in mild cognitive impairment: a systematic review and meta-analysis. Am. J. Psychiatry 172 323–334. 10.1176/appi.ajp.2014.14070878
    1. Ding J., Sigurðsson S., Jónsson P. V., Eiriksdottir G., Meirelles O., Kjartansson O., et al. (2017). Space and location of cerebral microbleeds, cognitive decline, and dementia in the community. Neurology 88 2089–2097. 10.1212/WNL.0000000000003983
    1. Doody R. S., Gavrilova S. I., Sano M., Thomas R. G., Aisen P. S., Bachurin S. O., et al. (2008). Effect of dimebon on cognition, activities of daily living, behaviour, and global function in patients with mild-to-moderate Alzheimer’s disease: a randomised, double-blind, placebo-controlled study. Lancet 372 207–215. 10.1016/S0140-6736(08)61074-0
    1. Doody R. S., Thomas R. G., Farlow M., Iwatsubo T., Vellas B., Joffe S., et al. (2014). Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 370 311–321. 10.1056/NEJMoa1312889
    1. Egan M. F., Kost J., Voss T., Mukai Y., Aisen P. S., Cummings J. L., et al. (2019). Randomized trial of verubecestat for prodromal Alzheimer’s disease. N. Engl. J. Med. 380 1408–1420. 10.1056/NEJMoa1812840
    1. Engelborghs S., Niemantsverdriet E., Struyfs H., Blennow K., Brouns R., Comabella M., et al. (2017). Consensus guidelines for lumbar puncture in patients with neurological diseases. Alzheimers Dement. (Amst) 8 111–126.
    1. GBD Dementia Collaborators (2019). Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease study 2016. Lancet Neurol. 18 88–106. 10.1016/S1474-4422(18)30403-4
    1. Habes M., Erus G., Toledo J. B., Bryan N., Janowitz D., Doshi J., et al. (2018). Regional tract-specific white matter hyperintensities are associated with patterns to aging-related brain atrophy via vascular risk factors, but also independently. Alzheimers Dement. (Amst) 10 278–284. 10.1016/j.dadm.2018.02.002
    1. Hardy J., Selkoe D. J. (2002). The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297 353–356. 10.1126/science.1072994
    1. Jack C. R., Jr., Bennett D. A., Blennow K., Carrillo M. C., Dunn B., Haeberlein S. B., et al. (2018). NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14 535–562. 10.1016/j.jalz.2018.02.018
    1. Jacobs H. I., Visser P. J., Van Boxtel M. P., Frisoni G. B., Tsolaki M., Papapostolou P., et al. (2012). Association between white matter hyperintensities and executive decline in mild cognitive impairment is network dependent. Neurobiol. Aging 33 201.e201–208. 10.1016/j.neurobiolaging.2010.07.015
    1. Janelidze S., Mattsson N., Palmqvist S., Smith R., Beach T. G., Serrano G. E., et al. (2020). Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat. Med. 26 379–386. 10.1038/s41591-020-0755-1
    1. Jia J., Wei C., Chen S., Li F., Tang Y., Qin W., et al. (2018). The cost of Alzheimer’s disease in China and re-estimation of costs worldwide. Alzheimers Dement. 14 483–491. 10.1016/j.jalz.2017.12.006
    1. Jia L., Quan M., Fu Y., Zhao T., Li Y., Wei C., et al. (2020). Dementia in China: epidemiology, clinical management, and research advances. Lancet Neurol. 19 81–92. 10.1016/S1474-4422(19)30290-X
    1. Karikari T. K., Pascoal T. A., Ashton N. J., Janelidze S., Benedet A. L., Rodriguez J. L., et al. (2020). Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 19 422–433. 10.1016/S1474-4422(20)30071-5
    1. Li J. Q., Tan L., Wang H. F., Tan M. S., Tan L., Xu W., et al. (2016). Risk factors for predicting progression from mild cognitive impairment to Alzheimer’s disease: a systematic review and meta-analysis of cohort studies. J. Neurol. Neurosurg. Psychiatry 87 476–484. 10.1136/jnnp-2014-310095
    1. Lombardi G., Crescioli G., Cavedo E., Lucenteforte E., Casazza G., Bellatorre A. G., et al. (2020). Structural magnetic resonance imaging for the early diagnosis of dementia due to Alzheimer’s disease in people with mild cognitive impairment. Cochrane Database Syst. Rev. 3:Cd009628. 10.1002/14651858.CD009628.pub2
    1. Lu Y., Liu C., Yu D., Fawkes S., Ma J., Zhang M., et al. (2021). Prevalence of mild cognitive impairment in community-dwelling Chinese populations aged over 55 years: a meta-analysis and systematic review. BMC Geriatr. 21:10. 10.1186/s12877-020-01948-3
    1. Masters C. L., Bateman R., Blennow K., Rowe C. C., Sperling R. A., Cummings J. L. (2015). Alzheimer’s disease. Nat. Rev. Dis. Primers 1:15056.
    1. McKhann G. M., Knopman D. S., Chertkow H., Hyman B. T., Jack C. R., Jr., Kawas C. H., et al. (2011). The diagnosis of dementia due to Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7 263–269. 10.1016/j.jalz.2011.03.005
    1. Nabers A., Perna L., Lange J., Mons U., Schartner J., Güldenhaupt J., et al. (2018). Amyloid blood biomarker detects Alzheimer’s disease. EMBO Mol. Med. 10:e8763. 10.15252/emmm.201708763
    1. Nakamura A., Kaneko N., Villemagne V. L., Kato T., Doecke J., Dor V., et al. (2018). High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 554 249–254.
    1. Patterson C. (2018). World Alzheimer Report 2018. London: Alzheimer’s Disease International.
    1. Richard E., Reitz C., Honig L. H., Schupf N., Tang M. X., Manly J. J., et al. (2013). Late-life depression, mild cognitive impairment, and dementia. JAMA Neurol. 70 374–382.
    1. Salloway S., Sperling R., Fox N. C., Blennow K., Klunk W., Raskind M., et al. (2014). Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 370 322–333.
    1. Salloway S., Sperling R., Gilman S., Fox N. C., Blennow K., Raskind M., et al. (2009). A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease. Neurology 73 2061–2070. 10.1212/wnl.0b013e3181c67808
    1. Scheltens P., Blennow K., Breteler M. M., De Strooper B., Frisoni G. B., Salloway S., et al. (2016). Alzheimer’s disease. Lancet 388 505–517.
    1. Schindler S. E., Bollinger J. G., Ovod V., Mawuenyega K. G., Li Y., Gordon B. A., et al. (2019). High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosis. Neurology 93 e1647–e1659. 10.1212/WNL.0000000000008081
    1. Schneider L. (2020). A resurrection of aducanumab for Alzheimer’s disease. Lancet Neurol. 19 111–112. 10.1016/S1474-4422(19)30480-6
    1. Sevigny J., Chiao P., Bussière T., Weinreb P. H., Williams L., Maier M., et al. (2016). The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537 50–56.
    1. Shaw L. M., Arias J., Blennow K., Galasko D., Molinuevo J. L., Salloway S., et al. (2018). Appropriate use criteria for lumbar puncture and cerebrospinal fluid testing in the diagnosis of Alzheimer’s disease. Alzheimers Dement. 14 1505–1521. 10.1016/j.jalz.2018.07.220
    1. Smith C. D., Snowdon D. A., Wang H., Markesbery W. R. (2000). White matter volumes and periventricular white matter hyperintensities in aging and dementia. Neurology 54 838–842. 10.1212/wnl.54.4.838
    1. Sperling R., Mormino E., Johnson K. (2014). The evolution of preclinical Alzheimer’s disease: implications for prevention trials. Neuron 84 608–622. 10.1016/j.neuron.2014.10.038
    1. Tekin S., Cummings J. L. (2002). Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update. J. Psychosom. Res. 53 647–654. 10.1016/s0022-3999(02)00428-2
    1. Thong J. Y., Hilal S., Wang Y., Soon H. W., Dong Y., Collinson S. L., et al. (2013). Association of silent lacunar infarct with brain atrophy and cognitive impairment. J. Neurol. Neurosurg. Psychiatry 84 1219–1225. 10.1136/jnnp-2013-305310
    1. Toledo J. B., Weiner M. W., Wolk D. A., Da X., Chen K., Arnold S. E., et al. (2014). Neuronal injury biomarkers and prognosis in ADNI subjects with normal cognition. Acta Neuropathol. Commun. 2:26. 10.1186/2051-5960-2-26
    1. Vandenbroucke J. P., Von Elm E., Altman D. G., Gøtzsche P. C., Mulrow C. D., Pocock S. J., et al. (2007). Strengthening the reporting of observational studies in epidemiology (STROBE): explanation and elaboration. PLoS Med. 4:e297. 10.1371/journal.pmed.0040297
    1. Wang Y. L., Chen W., Cai W. J., Hu H., Xu W., Wang Z. T., et al. (2020). Associations of white matter hyperintensities with cognitive decline: a longitudinal study. J. Alzheimers Dis. 73 759–768. 10.3233/JAD-191005
    1. Wirth M., Villeneuve S., Haase C. M., Madison C. M., Oh H., Landau S. M., et al. (2013). Associations between Alzheimer disease biomarkers, neurodegeneration, and cognition in cognitively normal older people. JAMA Neurol. 70 1512–1519. 10.1001/jamaneurol.2013.4013
    1. Zhang Y., Guan Y., Shi Z., Yue W., Liu S., Liu S., et al. (2019). Sex differences in the prevalence of and risk factors for cognitive impairment no dementia among the elderly in a rural area of Northern China: a population-based cross-sectional study. Neuroepidemiology 52 25–31.

Source: PubMed

Подписаться