Emerging roles of non-coding RNAs in scoliosis

Zheng Li, Xingye Li, Jianxiong Shen, Lin Zhang, Matthew T V Chan, William K K Wu, Zheng Li, Xingye Li, Jianxiong Shen, Lin Zhang, Matthew T V Chan, William K K Wu

Abstract

Scoliosis, a complex three-dimensional deformity of the spine with the Cobb angle (a measure of the spinal lateral curvature) >10 degree, encompasses a spectrum of pathologies, including congenital, idiopathic, syndromic and neuromuscular aetiologies. The pathogenesis is multifactorial involving both environmental and genetic factors but the exact cellular and molecular mechanisms of disease development remain largely unknown. Emerging evidence showed that non-coding RNAs (ncRNAs), namely microRNAs, long ncRNAs and circular RNAs, are deregulated in many orthopaedic diseases, including scoliosis. Importantly, these deregulated ncRNAs functionally participate in the initiation and progression of scoliosis. Here, we review recent progress in ncRNA research on scoliosis.

Keywords: circRNAs; lncRNAs; miRNAs; non-coding RNAs; scoliosis.

Conflict of interest statement

There is no conflict of interest.

© 2019 The Authors. Cell Proliferation Published by John Wiley & Sons Ltd.

Figures

Figure 1
Figure 1
Pathogenic mechanism of deregulated ncRNAs in scoliosis

References

    1. Li Z, Shen J, Qiu G, et al. Unplanned reoperation within 30 days of fusion surgery for spinal deformity. PLoS ONE. 2014;9(3):e87172.
    1. Lombardi G, Akoume MY, Colombini A, Moreau A, Banfi G. Biochemistry of adolescent idiopathic scoliosis. Adv Clin Chem. 2011;54:165‐182.
    1. Wai MG, Jun WW, Yee YA, et al. A review of pinealectomy‐induced melatonin‐deficient animal models for the study of etiopathogenesis of adolescent idiopathic scoliosis. Int J Mol Sci. 2014;15(9):16484‐16499.
    1. Giampietro PF. Genetic aspects of congenital and idiopathic scoliosis. Scientifica. 2012;2012:152365.
    1. Wang S, Qiu Y, Ma Z, Xia C, Zhu F, Zhu Z. Expression of Runx2 and type X collagen in vertebral growth plate of patients with adolescent idiopathic scoliosis. Connect Tissue Res. 2010;51(3):188‐196.
    1. Shen J, Wang Z, Liu J, Xue X, Qiu G. Abnormalities associated with congenital scoliosis: a retrospective study of 226 Chinese surgical cases. Spine. 2013;38(10):814‐818.
    1. Li Z, Shen J, Wu WK, et al. Vitamin A deficiency induces congenital spinal deformities in rats. PLoS ONE. 2012;7(10):e46565.
    1. Li Z, Yu X, Shen J. Environmental aspects of congenital scoliosis. Environ Sci Pollut Res Int. 2015;22(8):5751‐5755.
    1. Pourquie O. Vertebrate segmentation: from cyclic gene networks to scoliosis. Cell. 2011;145(5):650‐663.
    1. Sparrow DB, Chapman G, Smith AJ, et al. A mechanism for gene‐environment interaction in the etiology of congenital scoliosis. Cell. 2012;149(2):295‐306.
    1. Man GCW, Wong JH, Wang WWJ, et al. Abnormal melatonin receptor 1B expression in osteoblasts from girls with adolescent idiopathic scoliosis. J Pineal Res. 2011;50(4):395‐402.
    1. Hayes M, Gao X, Yu LX, et al. ptk7 mutant zebrafish models of congenital and idiopathic scoliosis implicate dysregulated Wnt signalling in disease. Nat Commun. 2014;5:4777.
    1. Grauers A, Wang J, Einarsdottir E, et al. Candidate gene analysis and exome sequencing confirm LBX1 as a susceptibility gene for idiopathic scoliosis. Spine J. 2015;15(10):2239‐2246.
    1. Enjie X, Shao W, Jiang H, Lin T, Gao R, Zhou X. A genetic variant in GPR126 causing a decreased inclusion of exon 6 is associated with cartilage development in adolescent idiopathic scoliosis population. BioMed Res Int. 2019;4678969(10):1‐8.
    1. Ogura Y, Kou I, Miura S, et al. A functional SNP in BNC2 is associated with adolescent idiopathic scoliosis. Am J Hum Genet. 2015;97(2):337‐342.
    1. Giampietro PF, Raggio CL, Reynolds CE, et al. An analysis of PAX1 in the development of vertebral malformations. Clin Genet. 2005;68(5):448‐453.
    1. Veneziano D, Nigita G, Ferro A. Computational approaches for the analysis of ncRNA through deep sequencing techniques. Front Bioeng Biotechnol. 2015;3:77.
    1. Place RF, Noonan EJ. Non‐coding RNAs turn up the heat: an emerging layer of novel regulators in the mammalian heat shock response. Cell Stress Chaperones. 2014;19(2):159‐172.
    1. Li T, Mo X, Fu L, Xiao B, Guo J. Molecular mechanisms of long noncoding RNAs on gastric cancer. Oncotarget. 2016;7(8):8601‐8612.
    1. Li Z, Lei H, Luo M, et al. DNA methylation downregulated mir‐10b acts as a tumor suppressor in gastric cancer. Gastric Cancer. 2015;18(1):43‐54.
    1. Wu WKK, Law PTY, Lee CW, et al. MicroRNA in colorectal cancer: from benchtop to bedside. Carcinogenesis. 2011;32(3):247‐253.
    1. Marchese FP, Raimondi I, Huarte M. The multidimensional mechanisms of long noncoding RNA function. Genome Biol. 2017;18(1):206.
    1. Barrett SP, Salzman J. Circular RNAs: analysis, expression and potential functions. Development (Cambridge, England). 2016;143(11):1838‐1847.
    1. Yu X, Li Z, Chen G, Wu WK. MicroRNA‐10b induces vascular muscle cell proliferation through Akt pathway by targeting TIP30. Curr Vasc Pharmacol. 2015;13(5):679‐686.
    1. Li Z, Shen JX, Chan MTV, Wu WKK. MicroRNA‐379 suppresses osteosarcoma progression by targeting PDK1. J Cell Mol Med. 2017;21(2):315‐323.
    1. Li Z, Li XY, Chen X, et al. Emerging roles of long non‐coding RNAs in neuropathic pain. Cell Prolif. 2019;52(1):e12528.
    1. Li Z, Li XY, Chen C, et al. Long non‐coding RNAs in nucleus pulposus cell function and intervertebral disc degeneration. Cell Prolif. 2018;51(5):e12483.
    1. Li Z, Yu X, Shen JX. Long non‐coding RNAs: emerging players in osteosarcoma. Tumor Biol. 2016;37(3):2811‐2816.
    1. Zheng JL, Yi D, Liu Y, Wang MQ, Zhu YL, Shi HZ. Long nonding RNA UCA1 regulates neural stem cell differentiation by controlling miR‐1/Hes1 expression. Am J Transl Res. 2017;9(8):3696‐3704.
    1. Zhao J, Gao Z, Zhang C, Wu H, Gu R, Jiang R. Long non‐coding RNA ASBEL promotes osteosarcoma cell proliferation, migration and invasion by regulating microRNA‐21. J Cell Biochem. 2018;119(8):6461‐6469.
    1. Yu Y, Yang J, Li Q, Xu B, Lian Y, Miao L. LINC00152: A pivotal oncogenic long non‐coding RNA in human cancers. Cell Prolif. 2017;50(4):e12349.
    1. Zhang JM, Yin MN, Peng G, Zhao YC. CRNDE: an important oncogenic long non‐coding RNA in human cancers. Cell Prolif. 2018;51(3):e12440.
    1. Yu XJ, Zou LH, Jin JH, et al. Long noncoding RNAs and novel inflammatory genes determined by RNA sequencing in human lymphocytes are up‐regulated in permanent atrial fibrillation. Am J Transl Res. 2017;9(5):2314‐2326.
    1. Wang XB, Lv GH, Li J, Wang B, Zhang QS, Lu C. LncRNA‐RP11‐296A18.3/miR‐138/HIF1A pathway regulates the proliferation ECM synthesis of human nucleus pulposus cells (HNPCs). J Cell Biochem. 2017;118(12):4862‐4871.
    1. Bochenek G, Hasler R, El Mokhtari NE, et al. The large non‐coding RNA ANRIL, which is associated with atherosclerosis, periodontitis and several forms of cancer, regulates ADIPOR1, VAMP3 and C11ORF10. Hum Mol Genet. 2013;22(22):4516‐4527.
    1. Xie Z, Chen G, Zhang X, et al. Salivary microRNAs as promising biomarkers for detection of esophageal cancer. PLoS ONE. 2013;8(4):e57502.
    1. Zhu W, Zhou K, Zha Y, et al. Diagnostic value of serum miR‐182, miR‐183, miR‐210, and miR‐126 levels in patients with early‐stage non‐small cell lung cancer. PLoS ONE. 2016;11(4):e0153046.
    1. Shimizu T, Suzuki H, Nojima M, et al. Methylation of a panel of microRNA genes is a novel biomarker for detection of bladder cancer. Eur Urol. 2013;63(6):1091‐1100.
    1. Yu X, Li Z, Shen J, et al. MicroRNA‐10b promotes nucleus pulposus cell proliferation through RhoC‐Akt pathway by targeting HOXD10 in intervetebral disc degeneration. PLoS ONE. 2013;8(12):e83080.
    1. Yamasaki K, Nakasa T, Miyaki S, Yamasaki T, Yasunaga Y, Ochi M. Angiogenic microRNA‐210 is present in cells surrounding osteonecrosis. J Orthop Res. 2012;30(8):1263‐1270.
    1. Chen WK, Yu XH, Yang W, et al. IncRNAs: novel players in intervertebral disc degeneration and osteoarthritis. Cell Prolif. 2017;50(1):e12313.
    1. Chen C, Tan HN, Bi JQ, et al. Identification of competing endogenous RNA regulatory networks in vitamin a deficiency‐induced congenital scoliosis by transcriptome sequencing analysis. Cell Physiol Biochem. 2018;48(5):2134‐2146.
    1. Chen C, Tan H, Bi J, et al. LncRNA‐SULT1C2A regulates Foxo4 in congenital scoliosis by targeting rno‐miR‐466c‐5p through PI3K‐ATK signalling. J Cell Mol Med. 2019;23(7):4582‐4591.
    1. Tong J, Zhao W, Lv H, Li W, Chen Z, Zhang C. Transcriptomic profiling in human decidua of severe preeclampsia detected by RNA sequencing. J Cell Biochem. 2018;119(1):607‐615.
    1. Zhou J, Fan Y, Chen H. Analyses of long non‐coding RNA and mRNA profiles in the spinal cord of rats using RNA sequencing during the progression of neuropathic pain in an SNI model. RNA Biol. 2017;14(12):1810‐1826.
    1. Xiao‐Yang L, Liang W, Bin Y, Qian‐Yu Z, Yi‐Peng W. Expression signatures of long noncoding RNAs in adolescent idiopathic scoliosis. BioMed Res Int. 2015;2015:276049.
    1. García‐Giménez JL, Rubio‐Belmar PA, Peiró‐Chova L, et al. Circulating miRNAs as diagnostic biomarkers for adolescent idiopathic scoliosis. Sci Rep. 2018;8(1):2646.
    1. Seco‐Cervera M, González‐Rodríguez D, Ibáñez‐Cabellos JS, Peiró‐Chova L, Pallardó FV, García‐Giménez JL. Small RNA‐seq analysis of circulating miRNAs to identify phenotypic variability in Friedreich's ataxia patients. Sci Data. 2018;5:180021.
    1. Ogura Y, Kou I, Takahashi Y, et al. A functional variant in MIR4300HG, the host gene of microRNA MIR4300 is associated with progression of adolescent idiopathic scoliosis. Hum Mol Genet. 2017;26(20):4086‐4092.
    1. Jiajun Z, Huanxiong C, Ross KKL, et al. Aberrant miR‐145‐5p/β‐catenin signal impairs osteocyte function in adolescent idiopathic scoliosis. FASEB J. 2018;32 10.1096/fj.201800281. [Epub ahead of print].
    1. Jiang H, Yang F, Lin T, et al. Asymmetric expression of H19 and ADIPOQ in concave/convex paravertebral muscles is associated with severe adolescent idiopathic scoliosis. Mol Med. 2018;24(1):48.
    1. Zhuang Q, Ye B, Hui S, et al. Long noncoding RNA lncAIS downregulation in mesenchymal stem cells is implicated in the pathogenesis of adolescent idiopathic scoliosis. Cell Death Differ. 2019;26(9):1700‐1715.
    1. Li J, Yang G, Liu S, Wang L, Liang Z, Zhang H. Suv39h1 promotes facet joint chondrocyte proliferation by targeting miR‐15a/Bcl2 in idiopathic scoliosis patients. Clin Epigenetics. 2019;11(1):107.

Source: PubMed

Подписаться