Sourdough Fermented Breads are More Digestible than Those Started with Baker's Yeast Alone: An In Vivo Challenge Dissecting Distinct Gastrointestinal Responses

Carlo Giuseppe Rizzello, Piero Portincasa, Marco Montemurro, Domenica Maria Di Palo, Michele Pio Lorusso, Maria De Angelis, Leonilde Bonfrate, Bernard Genot, Marco Gobbetti, Carlo Giuseppe Rizzello, Piero Portincasa, Marco Montemurro, Domenica Maria Di Palo, Michele Pio Lorusso, Maria De Angelis, Leonilde Bonfrate, Bernard Genot, Marco Gobbetti

Abstract

As a staple food, bread digestibility deserves a marked nutritional interest. Combining wide-spectrum characterization of breads, in vitro nutritional indices, and in vivo postprandial markers of gastrointestinal function, we aimed at comparing the digestibility of sourdough and baker's yeast breads. Microbiological and biochemical data showed the representativeness of the baker´s yeast bread (BYB) and the two sourdough breads (SB and t-SB, mainly differing for the time of fermentation) manufactured at semi-industrial level. All in vitro nutritional indices had the highest scores for sourdough breads. Thirty-six healthy volunteers underwent an in vivo challenge in response to bread ingestion, while monitoring gallbladder, stomach, and oro-cecal motility. SB, made with moderate sourdough acidification, stimulated more appetite and induced lower satiety. t-SB, having the most intense acidic taste, induced the highest fullness perception in the shortest time. Gallbladder response did not differ among breads, while gastric emptying was faster with sourdough breads. Oro-cecal transit was prolonged for BYB and faster for sourdough breads, especially when made with traditional and long-time fermentation (t-SB), whose transit lasted ca. 20 min less than BYB. Differences in carbohydrate digestibility and absorption determined different post-prandial glycaemia responses. Sourdough breads had the lowest values. After ingesting sourdough breads, which had a concentration of total free amino acids markedly higher than that of BYB, the levels in blood plasma were maintained at constantly high levels for extended time.

Keywords: gallbladder emptying; hydrogen breath test; orocecal transit time; stomach emptying; test meal; ultrasonography.

Conflict of interest statement

The authors declare no competing financial and non-financial interests.

Figures

Figure 1
Figure 1
Sensory analysis of the three types of bread. BYB, baker´s yeast bread leavened with baker’s yeast (1.5%, w/w) for 90 min at 30 °C; SB, sourdough bread leavened with S4 (20%, w/w) and baker’s yeast (1.5%, w/w) for 90 min at 30 °C; t-SB, sourdough bread leavened with S24 (20%, w/w) for 4 h at 30°C. (A) spider web chart of the perception scores (semi-quantitative scale 0–3); (B) degree of pleasantness (visual analogue scale, VAS, 0–100 mm). a–c Within the same parameter, values with different superscript letters differ significantly (p < 0.05).
Figure 2
Figure 2
Perception of appetite and satiety (A), and gastrointestinal symptoms (nausea and fullness) (B) in response to ingestion of the test meals. Time-dependent changes were scored with Visual Analogic Scale (VAS, 0–100 mm), and represented as mean ± SEM (Standard Error of the Mean) and area under curve (AUC). BYB, baker´s yeast bread leavened with baker’s yeast (1.5%, w/w) for 90 min at 30 °C; SB, sourdough bread leavened with S4 (20%, w/w) and baker’s yeast (1.5%, w/w) for 90 min at 30 °C; t-SB, sourdough bread leavened with S24 (20%, w/w) for 4 h at 30 °C. NU, Nutridrink used as the reference. a–c Within the same parameter, values with different superscript letters differ significantly (p < 0.05).
Figure 3
Figure 3
Gastric (A) and gallbladder (B) emptying curves in response to the ingestion of the test meals (isovolumetric). Time-dependent changes of antral area (cm2) are represented as mean ± SEM (Standard Error of the Mean) and area under curve (AUC). Time-dependent changes of gallbladder volume (mL) are represented as mean ± SEM and area under curve (AUC). BYB, baker´s yeast bread leavened with baker’s yeast (1.5%, w/w) for 90 min at 30 °C; SB, sourdough bread leavened with S4 (20%, w/w) and baker’s yeast (1.5%, w/w) for 90 min at 30 °C; t-SB, sourdough bread leavened with S24 (20%, w/w) for 4 h at 30 °C. NU, Nutridrink used as the reference. a–b Within the same parameter, values with different superscript letters differ significantly (p < 0.05).
Figure 4
Figure 4
Oro-cecal transit time (OCTT) in response to the ingestion of test meals. (A) time-dependent curves of H2 concentration (ppm) in exhaled air, expressed as mean ± SEM (Standard Error of the Mean); (B) OCTT (min); (C) H2 peak. BYB, baker´s yeast bread leavened with baker’s yeast (1.5%, w/w) for 90 min at 30 °C; SB, sourdough bread leavened with S4 (20%, w/w) and baker’s yeast (1.5%, w/w) for 90 min at 30 °C; t-SB, sourdough bread leavened with S24 (20%, w/w) for 4 h at 30 °C. NU, Nutridrink used as the reference. a–c Within the same parameter, values with different superscript letters differ significantly (p < 0.05).
Figure 5
Figure 5
Serum glucose concentration in response to the ingestion of the test meals. (A) time-dependent curves of serum glucose (mg/dL) and (B) area under curve (AUC). Data are expressed as mean ± SEM (Standard Error of the Mean). BYB, baker´s yeast bread leavened with baker’s yeast (1.5%, w/w) for 90 min at 30 °C; SB, sourdough bread leavened with S4 (20%, w/w) and baker’s yeast (1.5%, w/w) for 90 min at 30 °C; t-SB, sourdough bread leavened with S24 (20%, w/w) for 4 h at 30 °C. a–c Values with different superscript letters differ significantly (p < 0.05).
Figure 6
Figure 6
Serum total free amino acids (FAA) concentration in response to the ingestion of test meals. Aggregated data are represented in box-plots: (A) total FAA concentration at 60 min after ingestion; (B) total FAA concentration at 120 min after ingestion. BYB, baker´s yeast bread leavened with baker’s yeast (1.5%, w/w) for 90 min at 30 °C; SB, sourdough bread leavened with S4 (20%, w/w) and baker’s yeast (1.5%, w/w) for 90 min at 30 °C; t-SB, sourdough bread leavened with S24 (20%, w/w) for 4 h at 30 °C.

References

    1. AIBI—Association Internationale de la Boulangerie Industrielle Bread Market Report. [(accessed on 5 September 2019)]; Available online: .
    1. Ercolini D., Pontonio E., De Filippis F., Minervini F., La Storia A., Gobbetti M., Di Cagno R. Microbial ecology dynamics during rye and wheat sourdough preparation. Appl. Environ. Microbiol. 2013;79:7827–7836. doi: 10.1128/AEM.02955-13.
    1. Hammes W.P., Gänzle M.G. Sourdough Breads and Related Products. In: Woods B.J.B., editor. Microbiology of Fermented Foods. Blackie Academic/Professional; London, UK: 1998. pp. 199–216.
    1. De Vuyst L., Van Kerrebroeck S., Harth H., Huys G., Daniel H.-M., Weckx S. Microbial ecology of sourdough fermentations: Diverse or uniform? Food Microbiol. 2014;37:11–29. doi: 10.1016/j.fm.2013.06.002.
    1. Ehrmann M.A., Vogel R.F. Molecular taxonomy and genetics of sourdough lactic acid bacteria. Trends Food Sci. Technol. 2005;16:31–42. doi: 10.1016/j.tifs.2004.06.004.
    1. Gobbetti M. The sourdough microflora: Interactions of lactic acid bacteria and yeasts. Trends Food Sci. Technol. 1998;9:267–274. doi: 10.1016/S0924-2244(98)00053-3.
    1. De Vuyst L., Vrancken G., Ravyts F., Rimaux T., Weckx S. Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota. Food Microbiol. 2009;26:666–675. doi: 10.1016/j.fm.2009.07.012.
    1. Gobbetti M., Rizzello C.G., Di Cagno R., De Angelis M. How the sourdough may affect the functional features of leavened baked goods. Food Microbiol. 2014;37:30–40. doi: 10.1016/j.fm.2013.04.012.
    1. Montemurro M., Coda R., Rizzello C.G. Recent advances in the use of sourdough biotechnology in pasta making. Foods. 2019;8:129. doi: 10.3390/foods8040129.
    1. Sakandar H.A., Hussain R., Kubow S., Sadiq F.A., Huang W., Imran M. Sourdough bread: A contemporary cereal fermented product. J. Food Process. Preserv. 2019;43:e13883. doi: 10.1111/jfpp.13883.
    1. Pontonio E., Di Cagno R., Mahony J., Lanera A., De Angelis M., van Sinderen D., Gobbetti M. Sourdough authentication: Quantitative PCR to detect the lactic acid bacterial microbiota in breads. Sci. Rep. 2017;7:624. doi: 10.1038/s41598-017-00549-2.
    1. Cappelle S., Guylaine L., Gänzle M., Gobbetti M. History and Social Aspects of Sourdough. In: Gobbetti M., Ganzle G.M., editors. Handbook on Sourdough Biotechnology. Springer; Berlin, Germany: 2013. pp. 105–154.
    1. Polese B., Nicolai E., Genovese D., Verlezza V., La Sala C.N., Aiello M., Inglese M., Incoronato M., Sarnelli G., De Rosa T., et al. Postprandial gastrointestinal function differs after acute administration of sourdough compared with brewer’s yeast bakery products in healthy adults. J. Nutr. 2018;148:202–208. doi: 10.1093/jn/nxx049.
    1. Camilleri M. Functional dyspepsia and gastroparesis. Dig. Dis. 2016;34:491–499. doi: 10.1159/000445226.
    1. Nanayakkara W.S., Skidmore P.M., O’Brien L., Wilkinson T.J., Gearry R.B. Efficacy of the low FODMAP diet for treating irritable bowel syndrome: The evidence to date. Clin. Exp. Gastroenterol. 2016;9:131–142.
    1. De Angelis M., Rizzello C.G., Alfonsi G., Arnault P., Cappelle S., Di Cagno R., Gobbetti M. Use of sourdough lactobacilli and oat fibre to decrease the glycaemic index of white wheat bread. Br. J. Nutr. 2007;98:1196–1205. doi: 10.1017/S0007114507772689.
    1. De Angelis M., Damiano N., Rizzello C.G., Cassone A., Di Cagno R., Gobbetti M. Sourdough fermentation as a tool for the manufacture of low-glycemic index white wheat bread enriched in dietary fibre. Eur. Food Res. Technol. 2009;229:593–601. doi: 10.1007/s00217-009-1085-1.
    1. Rizzello C.G., Curiel J.A., Nionelli L., Vincentini O., Di Cagno R., Silano M., Gobbetti M., Coda R. Use of fungal proteases and selected sourdough lactic acid bacteria for making wheat bread with an intermediate content of gluten. Food Microbiol. 2014;37:59–68. doi: 10.1016/j.fm.2013.06.017.
    1. Rizzello C.G., Nionelli L., Coda R., De Angelis M., Gobbetti M. Effect of sourdough fermentation on stabilisation, and chemical and nutritional characteristics of wheat germ. Food Chem. 2010;119:1079–1089. doi: 10.1016/j.foodchem.2009.08.016.
    1. Corsetti A. Technology of Sourdough Fermentation and Sourdough Applications. In: Gobbetti M., Gänzle M., editors. Handbook on Sourdough Biotechnology. Springer; Berlin, Germany: 2013. pp. 85–103.
    1. Minervini F., Lattanzi A., De Angelis M., Di Cagno R., Gobbetti M. Influence of artisan bakery- or laboratory-propagated sourdoughs on the diversity of lactic acid bacterium and yeast microbiotas. Appl. Environ. Microbiol. 2012;78:5328–5340. doi: 10.1128/AEM.00572-12.
    1. Minervini F., Pinto D., Di Cagno R., De Angelis M., Gobbetti M. Scouting the application of sourdough to frozen dough bread technology. J. Cereal Sci. 2011;54:296–304. doi: 10.1016/j.jcs.2011.06.003.
    1. Weiss W., Vogelmeier C., Gorg A. Electrophoretic characterization of wheat grain allergens from different cultivars involved in bakers’asthma. Electrophoresis. 1993;14:805–816. doi: 10.1002/elps.11501401126.
    1. Coda R., Rizzello C.G., Trani A., Gobbetti M. Manufacture and characterization of functional emmer beverages fermented by selected lactic acid bacteria. Food Microbiol. 2011;28:526–536. doi: 10.1016/j.fm.2010.11.001.
    1. Portincasa P., Maggipinto A., Berardino M., Bonfrate L., Costin S., Todarello O., Palasciano G., Wang D.Q.H., Dimitrascu D.L. Assessing gastrointestinal symptoms and perception, quality of life, motility, and autonomic neuropathy in clinical studies. J. Gastrointestin. Liver Dis. 2009;18:205–211.
    1. Bolondi L., Bortolotti M., Santi V., Calletti T., Gaiani S., Labo G. Measurement of gastric emptying time by real-time ultrasonography. Gastroenterology. 1985;89:752–759. doi: 10.1016/0016-5085(85)90569-4.
    1. Maclean W., Harnly J., Chen J., Chevassus-Agnes S., Gilani G., Livesey G., Warwick P. Food and Agriculture Organization of the United Nations Technical Workshop Report. Volume 77 FAO; Rome, Italy: 2003. Food Energy—Methods of Analysis and Conversion Factors.
    1. Rizzello C.G., Coda R., Mazzacane F., Minervini D., Gobbetti M. Micronized by-products from debranned durum wheat and sourdough fermentation enhanced the nutritional, textural and sensory features of bread. Food Res. Int. 2012;46:304–313. doi: 10.1016/j.foodres.2011.12.024.
    1. Akeson W.R., Stahmann M.A.A. pepsin pancreatin digest index of protein quality evaluation. J. Nutr. 1964;83:257–261. doi: 10.1093/jn/83.3.257.
    1. Horwitz W., Latimer G. Official Methods of Analysis of AOAC International. 18th ed. AOAC International; Rockville, MD, USA: 2006.
    1. Pinter-Szakács M., Molnan-Perl I. Determination of tryptophan in unhydrolysed food and feed stuff by the acid ninhydrin method. J. Agric. Food Chem. 1990;38:720–726. doi: 10.1021/jf00093a028.
    1. Millward D.J. Amino acid scoring patterns for protein quality assessment. Br. J. Nutr. 2012;108:31–43. doi: 10.1017/S0007114512002462.
    1. Block R.J., Mitchel H.H. The correlation of the amino acid composition of protein with their nutritive value. Nutr. Abstr. Rev. 1946;16:249–278.
    1. Oser B.L. An Integrated Essential Amino Acid Index for Predicting the Biological Value of Proteins. In: Albanese A.A., editor. Protein and Amino Acid Acids in Nutrition. Academic Press; Cambridge, MA, USA: 1959. pp. 281–291.
    1. Ihekoronye A.I.A. Ph.D. Thesis. University of Missouri; Columbia, MO, USA: 1981. Rapid Enzymatic and Chromatographic Predictive Model for the In-Vivo Rat-Based Protein Efficiency Ratio.
    1. Crisan E.V., Sands A. Nutritional Value. In: Chang S.T., Hayes W.A., editors. The Biology and Cultivation of Edible Mushrooms. Academic Press; Cambridge, MA, USA: 1978. pp. 137–165.
    1. Gasbarrini A., Corazza G.R., Gasbarrini G., Montalto M., Di M.S., Basilisco G., Parodi A., Usai-Satta P., Vernia P., Anania C., et al. Methodology and indications of H2-breath testing in gastrointestinal diseases: The Rome Consensus Conference. Aliment. Pharm. Ther. 2009;29:1–49.
    1. Muresan C., Surdea Blaga T., Muresan L., Dumitrascu D.L. Abdominal ultrasound for the evaluation of gastric emptying revisited. J. Gastrointestin. Liver Dis. 2015;24:329–338.
    1. Civille G.V., Lapsley K., Huang G., Yada S., Seltsam J. Development of an almond lexicon to assess the sensory properties of almond varieties. J. Sens. Stud. 2010;25:146–162. doi: 10.1111/j.1745-459X.2009.00261.x.
    1. Vitellio P., Celano G., Bonfrate L., Gobbetti M., Portincasa P., De Angelis M. Effects of Bifidobacterium longum and Lactobacillus rhamnosus on Gut Microbiota in Patients with Lactose Intolerance and Persisting Functional Gastrointestinal Symptoms: A Randomised, Double-Blind, Cross-Over Study. Nutrients. 2019;11:886. doi: 10.3390/nu11040886.
    1. Di Ciaula A., Wang D.Q., Portincasa P. Gallbladder and gastric motility in obese newborns, pre-adolescents and adults. J. Gastroenterol. Hepatol. 2012;27:1298–1305. doi: 10.1111/j.1440-1746.2012.07149.x.
    1. Di Ciaula A., Grattagliano I., Portincasa P. Chronic alcoholics retain dyspeptic symptoms, pan-enteric dysmotility, and autonomic neuropathy before and after abstinence. J. Dig. Dis. 2016;17:735–746. doi: 10.1111/1751-2980.12415.
    1. Di Ciaula A., Covelli M., Berardino M., Berardino M., Wang D.Q.H., Lapadula G., Palasciano G., Portincasa P. Gastrointestinal symptoms and motility disorders in patients with systemic scleroderma. BMC Gastroenterol. 2008;8:7. doi: 10.1186/1471-230X-8-7.
    1. Portincasa P., Di Ciaula A., Baldassarre G., Palmieri V., Gentile A., Cimmino A., Palasciano G. Gallbladder motor function in gallstone patients: Sonographic and in vitro studies on the role of gallstones, smooth muscle function and gallbladder wall inflammation. J. Hepatol. 1994;21:430–440. doi: 10.1016/S0168-8278(05)80324-1.
    1. Portincasa P., Di Ciaula A., Palmieri V., Van Berge-Henegouwen G.P., Palasciano G. Effects of cholestyramine on gallbladder and gastric emptying in obese and lean subjects. Eur. J. Clin. Investig. 1995;25:746–753. doi: 10.1111/j.1365-2362.1995.tb01953.x.
    1. Portincasa P., Moschetta A., Berardino M., Di Ciaula A., Vacca M., Baldassarre G., Pietrapertosa A., Cammarota R., Tannoia N., Palasciano G. Impaired gallbladder motility and delayed orocecal transit contribute to pigment gallstone and biliary sludge formation in beta-thalassemia major adults. World J. Gastroenterol. 2004;10:2383–2390. doi: 10.3748/wjg.v10.i16.2383.
    1. Diella G., Di Ciaula A., Lorusso M.P., Summo C., Caggiano G., Caponio F., Montagna M.T., Portincasa P. Distinct effects of two almond cultivars on agreeability and gastrointestinal motility in healthy subjects: More than mere nutraceuticals. J. Gastrointest. Liver Dis. 2018;27:31–39.
    1. Altomare D.F., Portincasa P., Rinaldi M., Di Ciaula A., Martinelli E., Amoruso A., Palasciano G., Memeo V. Slow-transit constipation. Dis. Colon Rectum. 1999;42:231–240. doi: 10.1007/BF02237134.
    1. Bonfrate L., Krawczyk M., Lembo A., Grattagliano I., Lammert F., Portincasa P. Effects of dietary education, followed by a tailored fructose-restricted diet in adults with fructose malabsorption. Eur. J. Gastroenterol. Hepatol. 2015;27:785–796. doi: 10.1097/MEG.0000000000000374.
    1. Portincasa P., Di Ciaula A., Vacca M., Montelli R., Wang D.H., Palasciano G. Beneficial effects of oral tilactase on patients with hypolactasia. Eur. J. Clin. Investig. 2008;38:835–844. doi: 10.1111/j.1365-2362.2008.02035.x.
    1. Farup J., Rahbek S.K., Storm A.C., Klitgaard S., Jørgensen H., Bibby B.M., Serena A., Vissing K. Effect of degree of hydrolysis of whey protein on in vivo plasma amino acid appearance in humans. SpringerPlus. 2016;5:382. doi: 10.1186/s40064-016-1995-x.
    1. Montemurro M., Pontonio E., Gobbetti M., Rizzello C.G. Investigation of the nutritional, functional and technological effects of the sourdough fermentation of sprouted flours. Int. J. Food Microbiol. 2018;302:47–58. doi: 10.1016/j.ijfoodmicro.2018.08.005.
    1. Gobbetti M., De Angelis M., Di Cagno R., Calasso M., Archetti G., Rizzello C.G. Novel insights on the functional/nutritional features of the sourdough fermentation. Int. J. Food Microbiol. 2018;302:103–113. doi: 10.1016/j.ijfoodmicro.2018.05.018.
    1. McCrory M.A., Saltzman E., Rolls B.J., Roberts S.B. A twin study of the effects of energy density and palatability on energy intake of individual foods. Physiol. Behav. 2006;87:451–459. doi: 10.1016/j.physbeh.2004.10.025.
    1. Stubbs R.J., Hughes D.A., Johnstone A.M., Rowley E., Reid C., Elia M., Stratton R., Delargy H., King N., Blundell J.E. The use of visual analogue scales to assess motivation to eat in human subjects: A review of their reliability and validity with an evaluation of new hand-held computerized systems for temporal tracking of appetite ratings. Br. J. Nutr. 2000;84:405–415. doi: 10.1017/S0007114500001719.
    1. Bondia-Pons I., Nordlund E., Mattila I., Katina K., Aura A.M., Kolehmainen M., Oresic M., Mykkanen H., Poutanen K. Postprandial differences in the plasma metabolome of healthy Finnish subjects after intake of a sourdough fermented endosperm rye bread versus white wheat bread. Nutr. J. 2011;10:116. doi: 10.1186/1475-2891-10-116.
    1. Najjar A.M., Parsons P.M., Duncan A.M., Robinson L.E., Yada R.Y., Graham T.E. The acute impact of ingestion of breads of varying composition on blood glucose, insulin and incretins following first and second meals. Br. J. Nutr. 2008;101:391–398. doi: 10.1017/S0007114508003085.
    1. Liljeberg H.G., Björck I.M. Delayed gastric emptying rate as a potential mechanism for lowered glycemia after eating sourdough bread: Studies in humans and rats using test products with added organic acids or an organic salt. Am. J. Clin. Nutr. 1996;64:886–893. doi: 10.1093/ajcn/64.6.886.
    1. Halawi H., Camilleri M., Acosta A., Vazquez-Roque M., Oduyebo I., Burton D., Busciglio I., Zinsmeister A.R. Relationship of gastric emptying or accommodation with satiation, satiety, and postprandial symptoms in health. Am. J. Physiol. Gastrointest. Liver Physiol. 2017;313:442–447. doi: 10.1152/ajpgi.00190.2017.
    1. Groenen M., Fyfe C.L., Holtrop G., Horgan G.W., Meek C.L., Gribble F., Morgan P., Johnstone A.M. Investigation of mechanisms of protein induced satiety: Meal structure and protein content effects on gastric emptying and gut hormone release. Proc. Nutr. Soc. 2017;76:E30. doi: 10.1017/S0029665117000866.
    1. Sobrino Crespo C., Perianes Cachero A., Puebla Jiménez L., Barrios V., Arilla Ferreiro E. Peptides and food intake. Front. Endocrinol. 2014;5:58. doi: 10.3389/fendo.2014.00058.
    1. Camboni G., Basilisco G., Bozzani A., Bianchi P.A. Repeatability of lactulose hydrogen breath test in subjects with normal or prolonged orocecal transit. Dig. Dis. Sci. 1988;33:1525–1527. doi: 10.1007/BF01535941.
    1. Costabile A., Santarelli S., Claus S.P., Sanderson J., Hudspith B.N., Brostoff J., Ward J.L., Lovegrove A., Shewry P.R., Jones H.E., et al. Effect of breadmaking process on in vitro gut microbiota parameters in irritable bowel syndrome. PLoS ONE. 2014;9:e111225. doi: 10.1371/journal.pone.0111225.
    1. Fardet A., Leenhardt F., Lioger D., Scalbert A., Rémésy C. Parameters controlling the glycaemic response to breads. Nutr. Res. Rev. 2006;19:18–25. doi: 10.1079/NRR2006118.
    1. Liljeberg H., Lönner C., Björck I. Sourdough fermentation or addition of organic acids or corresponding salts to bread improves nutritional properties of starch in healthy humans. J. Nutr. 1995;125:1503–1511.
    1. Östman E. Ph.D. Thesis. Lund University; Lund, Sweden: 2003. Fermentation as a Means of Optimizing the Glycaemic Index and Food Mechanisms and Metabolic Merits with Emphasis on Lactic Acid in Cereal Products.
    1. Jung E.H., Ran Kim S., Hwang I.K., Youl H.T. Hypoglycemic effects of a phenolic acid fraction of rice bran and ferulic acid in C57BL/KsJ-db/db mice. J. Agric. Food Chem. 2007;55:9800–9804. doi: 10.1021/jf0714463.

Source: PubMed

Подписаться