A Plyometric Warm-Up Protocol Improves Running Economy in Recreational Endurance Athletes

ChenGuang Wei, Liang Yu, Benedict Duncan, Andrew Renfree, ChenGuang Wei, Liang Yu, Benedict Duncan, Andrew Renfree

Abstract

This study explored the impact of two differing warm-up protocols (involving either resistance exercises or plyometric exercises) on running economy (RE) in healthy recreationally active participants. Twelve healthy university students [three males, nine females, age 20 ± 2 years, maximal oxygen uptake (38.4 ± 6.4 ml min-1 kg-1)] who performed less than 5 h per week of endurance exercise volunteered to participant in this study. All participants completed three different warm-up protocols (control, plyometric, and resistance warm-up) in a counterbalanced crossover design with trials separated by 48 h, using a Latin-square arrangement. Dependent variables measured in this study were RE at four running velocities (7, 8, 9, and 10 km h-1), maximal oxygen uptake; heart rate; respiratory exchange rate; expired ventilation; perceived race readiness; rating of perceived exertion, time to exhaustion and leg stiffness. The primary finding of this study was that the plyometric warm-up improved RE compared to the control warm-up (6.2% at 7 km h-1, ES = 0.355, 9.1% at 8 km h-1, ES = 0.513, 4.5% at 9 km h-1, ES = 0.346, and 4.4% at 10 km h-1, ES = 0.463). There was no statistically significant difference in VO2 between control and resistance warm-up conditions at any velocity. There were also no statistically significant differences between conditions in other metabolic and pulmonary gas exchange variables; time to exhaustion; perceived race readiness and maximal oxygen uptake. However, leg stiffness increased by 20% (P = 0.039, ES = 0.90) following the plyometric warm-up and was correlated with the improved RE at a velocity of 8 km h-1 (r = 0.475, P = 0.041). No significant differences in RE were found between the control and resistance warm-up protocols. In comparison with the control warm-up protocol, an acute plyometric warm-up protocol can improve RE in healthy adults.

Keywords: leg stiffness; plyometric; post-activation potentiation; resistance; running economy; warm-up.

Copyright © 2020 Wei, Yu, Duncan and Renfree.

Figures

FIGURE 1
FIGURE 1
Experimental protocol.
FIGURE 2
FIGURE 2
Individual values and Mean ± SD for VO2 at the velocity of 7 km h– 1(A), 8 km h– 1(B), 9 km h– 1(C), and 10 km h– 1(D) within three warm-up protocols. Significant difference (∗P < 0.05, ∗∗P < 0.01) from control warm-up.
FIGURE 3
FIGURE 3
Individual values and Mean ± SD for leg stiffness within three warm-up protocols. Significant difference (∗P < 0.05) from control warm-up.

References

    1. Anderson T. (1996). Biomechanics and running economy. Sports Med. 22 76–89. 10.2165/00007256-199622020-00003
    1. Arampatzis A., De Monte G., Karamanidis K., Morey-Klapsing G., Stafilidis S., Brüggemann G. P. (2006). Influence of the muscle-tendon unit’s mechanical and morphological properties on running economy. J. Exp. Biol. 209 3345–3357. 10.1242/jeb.02340
    1. Avela J., Komi P. V. (1998). Reduced stretch reflex sensitivity and muscle stiffness after long-lasting stretch-shortening cycle exercise in humans. Eur. J. Appl. Physiol. Occup. Physiol. 78 403–410. 10.1007/s004210050438
    1. Balsalobre-Fernández C., Santos-Concejero J., Grivas G. V. (2016). Effects of strength training on running economy in highly trained runners: a systematic review with meta-analysis of controlled trials. J. Strength Cond. Res. 30 2361–2368. 10.1519/JSC.0000000000001316
    1. Barnes K. R., Hopkins W. G., McGuigan M. R., Kilding A. E. (2015). Warm-up with a weighted vest improves running performance via leg stiffness and run- ning economy. J.Sci. Med. Sport 18 103–108. 10.1016/j.jsams.2013.12.005
    1. Barnes K. R., Kilding A. E. (2015). Strategies to improve running economy. Sports Med. 45 37–56. 10.1007/s40279-014-0246-y
    1. Bassett D. R., Howley E. T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 32 70–84.
    1. Berryman N., Maurel D., Bosquet L. (2010). Effect of plyometric vs. dynamic weight training on the energy cost of running. J. Strength Cond. Res. 24 1818–1825. 10.1519/JSC.0b013e3181def1f5
    1. Bílý J., Cacek J., Kalina T., Sunday A. A. (2017). The effect of plyometric training (depth jump) on running economy and cycling economy. Studia Sportiva 11 8–15.
    1. Bishop D. (2003). Performance changes following active warm-up and how to structure the 574 warm-up. Sports Med. 33 575.
    1. Blagrove R. C., Holding K. M., Patterson S. D., Howatson G., Hayes P. R. (2019). Efficacy of depth jumps to elicit a post-activation performance enhancement in junior endurance runners. J. Sci. Med. Sport 22 239–244. 10.1016/j.jsams.2018.07.023
    1. Blagrove R. C., Howatson G., Hayes P. R. (2018). Use of loaded conditioning activities to potentiate middle- and long-distance performance: a narrative review and practical applications. J. Strength Cond. Res. 33 2288–2297. 10.1519/JSC.0000000000002456
    1. Blickhan R. (1989). The spring-mass model for running and hopping. J. Biomech. 22 1217–1227. 10.1016/0021-9290(89)90224-8
    1. Borg G. (1998). Borg’s Perceived Exertion and Pain Scales. Windsor, ON: Human kinetics.
    1. Boullosa D., Del Rosso S., Behm D. G., Foster C. (2018). Post-activation potentiation (PAP) in endurance sports: a review. Eur. J. Sport Sci. 18 595–610. 10.1080/17461391.2018.1438519
    1. Buckley S., Knapp K., Lackie A., Lewry C., Horvey K., Benko C., et al. (2015). Multimodal high-intensity interval training increases muscle function and metabolic performance in females. Appl. Physiol. Nutr. Metab. 40 1157–1162. 10.1139/apnm-2015-0238
    1. Cohen J. (1988). Statistical Power Analysis for the Behavioral Sciences, 2nd Edn Hillsdale, NJ: Erlbaum.
    1. Cornu C., Silveira M. I. A., Goubel F. (1997). Influence of plyometric training on the mechanical impedance of the human ankle joint. Eur. J. Appl. Physiol. Occup. Physiol. 76 282–288. 10.1007/s004210050249
    1. Costill D. L., Thomason H., Roberts E. (1973). Fractional utilization of the aerobic capacity during distance running. Med. Sci. Sports 5 248–252.
    1. Coyle E. F. (1995). Integration of the physiological factors determining endurance performance ability. Exerc. Sport Sci. Rev. 23 25–63.
    1. Dalleau G., Belli A., Bourdin M., Lacour J. R. (1998). The spring-mass model and the energy cost of treadmill running. Eur. J. Appl. Physiol. Occup. Physiol. 77 257–263. 10.1007/s004210050330
    1. Daniels J. A. C. K., Daniels N. A. N. C. Y. (1992). Running economy of elite male and elite female runners. Med. Sci. Sports Exerc. 24 483–489.
    1. Giovanelli N., Taboga P., Rejc E., Lazzer S. (2017). Effects of strength, explosive and plyometric training on energy cost of running in ultra-endurance athletes. Eur. J. Sport Sci. 17 805–813. 10.1080/17461391.2017.1305454
    1. Guglielmo L. G. A., Greco C. C., Denadai B. S. (2009). Effects of strength training on running economy. Int. J. Sports Med. 30 27–32. 10.1055/s-2008-1038792
    1. Hamada T., Sale D. G., MacDougall J. D., Tarnopolsky M. A. (2000). Postactivation potentiation, fiber type, and twitch contraction time in human knee extensor muscles. J. Appl.Physiol. 88 2131–2137. 10.1152/jappl.2000.88.6.2131
    1. Hodgson M., Docherty D. (2005). colaboradores. Post-activation potentiation: underlying physiology and implications for motor performance. Sports Med. 35 585–595. 10.2165/00007256-200535070-00004
    1. Ingham S. A., Fudge B. W., Pringle J. S., Jones A. M. (2013). Improvement of 800-m running performance with prior high-intensity exercise. Int .J. Sports Physiol. Perform. 8 77–83. 10.1123/ijspp.8.1.77
    1. Jones A. M., Doust J. H. (1996). A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J. Sports Sci. 14 321–327. 10.1080/026404196367796
    1. Lundin P. (1985). Plyometrics: a review of plyometric training. Strength Cond. J. 7 69–76.
    1. MacIntosh B. R. (2010). Cellular and Whole Muscle Studies of Activity Dependent Potentiation in Muscle Biophysics. New York, NY: Springer, 315–342.
    1. Marcello R. T., Greer B. K., Greer A. E. (2017). Acute effects of plyometric and resistance training on running economy in trained runners. J. Strength Cond. Res. 31 2432–2437. 10.1519/jsc.0000000000001705
    1. Millet G. P., Jaouen B. E. R. N. A. R. D., Borrani F. A. B. I. O., Candau R. O. B. I. N. (2002). Effects of concurrent endurance and strength training on running economy and VO2 kinetics. Med. Sci. Sports Exerc. 34 1351–1359. 10.1519/JSC.0b013e318280cc26
    1. Moore I. S. (2016). Is there an economical running technique? A review of modifiable biomechanical factors affecting running economy. Sports Med. 46 793–807. 10.1007/s40279-016-0474-4
    1. Morin J. B., Dalleau G., Kyröläinen H., Jeannin T., Belli A. (2005). A simple method for measuring stiffness during running. J. Appl. Biomech. 21 167–180. 10.1123/jab.21.2.167
    1. Nummela A. T., Paavolainen L. M., Sharwood K. A., Lambert M. I., Noakes T. D., Rusko H. K. (2006). Neuromuscular factors determining 5 km running performance and running economy in well-trained athletes. Eur. J. Appl. Physiol. 97:1. 10.1007/s00421-006-0147-3
    1. Rassier D. E., Macintosh B. R. (2000). Coexistence of potentiation and fatigue in skeletal muscle. Braz. J. Med. Biol. Res. 33 499–508. 10.1590/s0100-879x2000000500003
    1. Rimmer E., Sleivert G. (2000). Effects of a plyometrics intervention program on sprint performance. J. Strength Cond. Res. 14 295–301. 10.1519/00124278-200008000-00009
    1. Saunders P. U., Telford R. D., Pyne D. B., Peltola E. M., Cunningham R. B., Gore C. J., et al. (2006). Short-term plyometric training improves running economy in highly trained middle and long distance runners. J. Strength Cond. Res. 20 947. 10.1519/r-18235.1
    1. Schumann M., Pelttari P., Doma K., Karavirta L., Häkkinen K. (2016). Neuromuscular adaptations to same-session combined endurance and strength training in recreational endurance runners. Int. J. Sports Med. 37 1136–1143. 10.1055/s-0042-112592
    1. Sjodin B., Svedenhag J. (1985). Applied physiology of marathon running. Sports Med. 2 83–99. 10.2165/00007256-198502020-00002
    1. Spurrs R. W., Murphy A. J., Watsford M. L. (2003). The effect of plyometric training on distance running performance. Eur. J.Appl. Physiol. 89 1–7. 10.1007/s00421-002-0741-y
    1. Turner A. M., Owings M., Schwane J. A. (2003). Improvement in running economy after 6 weeks of plyometric training. J. Strength Cond. Res. 17 60–67. 10.1519/00124278-200302000-00010
    1. Weltman A. (1995). The blood lactate response to exercise. Hum. Kinet. 18 81–97.

Source: PubMed

Подписаться