THUNDER 2: THeragnostic Utilities for Neoplastic DisEases of the Rectum by MRI guided radiotherapy

Giuditta Chiloiro, Davide Cusumano, Luca Boldrini, Angela Romano, Lorenzo Placidi, Matteo Nardini, Elisa Meldolesi, Brunella Barbaro, Claudio Coco, Antonio Crucitti, Roberto Persiani, Lucio Petruzziello, Riccardo Ricci, Lisa Salvatore, Luigi Sofo, Sergio Alfieri, Riccardo Manfredi, Vincenzo Valentini, Maria Antonietta Gambacorta, Giuditta Chiloiro, Davide Cusumano, Luca Boldrini, Angela Romano, Lorenzo Placidi, Matteo Nardini, Elisa Meldolesi, Brunella Barbaro, Claudio Coco, Antonio Crucitti, Roberto Persiani, Lucio Petruzziello, Riccardo Ricci, Lisa Salvatore, Luigi Sofo, Sergio Alfieri, Riccardo Manfredi, Vincenzo Valentini, Maria Antonietta Gambacorta

Abstract

Background: Neoadjuvant chemoradiation therapy (nCRT) is the standard treatment modality in locally advanced rectal cancer (LARC). Since response to radiotherapy (RT) is dose dependent in rectal cancer, dose escalation may lead to higher complete response rates. The possibility to predict patients who will achieve complete response (CR) is fundamental. Recently, an early tumour regression index (ERI) was introduced to predict pathological CR (pCR) after nCRT in LARC patients. The primary endpoints will be the increase of CR rate and the evaluation of feasibility of delta radiomics-based predictive MRI guided Radiotherapy (MRgRT) model.

Methods: Patients affected by LARC cT2-3, N0-2 or cT4 for anal sphincter involvement N0-2a, M0 without high risk features will be enrolled in the trial. Neoadjuvant CRT will be administered using MRgRT. The initial RT treatment will consist in delivering 55 Gy in 25 fractions on Gross Tumor Volume (GTV) plus the corresponding mesorectum and 45 Gy in 25 fractions on the drainage nodes. Chemotherapy with 5-fluoracil (5-FU) or oral capecitabine will be administered continuously. A 0.35 Tesla MRI will be acquired at simulation and every day during MRgRT. At fraction 10, ERI will be calculated: if ERI will be inferior than 13.1, the patient will continue the original treatment; if ERI will be higher than 13.1 the treatment plan will be reoptimized, intensifying the dose to the residual tumor at the 11th fraction to reach 60.1 Gy. At the end of nCRT instrumental examinations are to be performed in order to restage patients. In case of stable disease or progression, the patient will undergo surgery. In case of major or complete clinical response, conservative approaches may be chosen. Patients will be followed up to evaluate toxicity and quality of life. The number of cases to be enrolled will be 63: all the patients will be treated at Fondazione Policlinico Universitario A. Gemelli IRCCS in Rome.

Discussion: This clinical trial investigates the impact of RT dose escalation in poor responder LARC patients identified using ERI, with the aim of increasing the probability of CR and consequently an organ preservation benefit in this group of patients.

Trial registration: ClinicalTrials.gov Identifier: NCT04815694 (25/03/2021).

Keywords: Chemoradiotherapy; Early Regression Index; Magnetic Resonance guided Radiation Therapy; Radiomics; Rectal cancer.

Conflict of interest statement

Dr. Luca Boldrini and Dr. Davide Cusumano have active research agreements with ViewRay Inc (Mountain View, CA, USA). and received speaker honoraria for scientific presentations and travel reimbursements. Prof. Vincenzo Valentini has received departmental research grants from Varian Medical Systems, ViewRay Inc., Elekta, Merck-Serono, Roche. Prof. Riccardo Manfredi received speaker honoraria from Bracco and Bayer. Dr. Lisa Salvatore received speaker, advisory board and consultancy honoraria from Amgen, Merck, Bayer, Servier, AstraZeneca, Pierre-Fabre. Dr. Lorenzo Placidi reports a consulting agreement and research grants with ViewRay, outside the submitted work.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
THUNDER 2: THeragnostic Utilities for Neoplastic DisEases of the Rectum by MRI guided radiotherapy treatment algorithm. LARC: locally advanced rectal cancer; CRT: chemoradiotherapy; GTV: gross tumor volume; ERI: early regression index; PTV: planning target volume; RT: radiation therapy; MR: magnetic resonance.
Fig. 2
Fig. 2
Example of dose escalation in accordance with the ERI index. Figure 2A shows the simulation plan according to the SIB 2 protocol. Figure 2B represents the dose escalation obtained at the tenth treatment fraction, where the red colourwash isodose line represents the V95% of the 60.1 Gy prescribed to PTV3. The orange colourwash isodose line represents the V95% of 55 Gy prescribed to PTV2, while the yellow colourwash isodose line represents the V95% of 45 Gy prescribed to PTV1

References

    1. Sauer R, Becker H, Hohenberger W, Rödel C, Wittekind C, Fietkau R, et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med. 2004;351:1731–1740.
    1. Belluco C, De Paoli A, Canzonieri V, Sigon R, Fornasarig M, Buonadonna A, et al. Long-term outcome of patients with complete pathologic response after neoadjuvant chemoradiation for cT3 rectal cancer: implications for local excision surgical strategies. Ann Surg Oncol. 2011;18:3686–3693.
    1. Tamas K, Walenkamp AME, de Vries EGE, van Vugt MATM, Beets-Tan RG, van Etten B, et al. Rectal and colon cancer: not just a different anatomic site. Cancer Treat Rev. 2015;41:671–679.
    1. Capirci C, Valentini V, Cionini L, De Paoli A, Rodel C, Glynne-Jones R, et al. Prognostic value of pathologic complete response after neoadjuvant therapy in locally advanced rectal cancer: long-term analysis of 566 ypCR patients. Int J Radiat Oncol Biol Phys. 2008;72:99–107.
    1. Gambacorta MA, Masciocchi C, Chiloiro G, Meldolesi E, Macchia G, van Soest J, et al. Timing to achieve the highest rate of pCR after preoperative radiochemotherapy in rectal cancer: a pooled analysis of 3085 patients from 7 randomized trials. Radiother Oncol. 2021;154:154–160.
    1. Maas M, Nelemans PJ, Valentini V, Das P, Rödel C, Kuo L-J, et al. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol. 2010;11:835–844.
    1. van der Valk MJM, Hilling DE, Bastiaannet E, Kranenbarg EM-K, Beets GL, Figueiredo NL, et al. Long-term outcomes of clinical complete responders after neoadjuvant treatment for rectal cancer in the International Watch & Wait Database (IWWD): an international multicentre registry study. The Lancet. 2018;391:2537–2545.
    1. Maas M, Beets-Tan RGH, Lambregts DMJ, Lammering G, Nelemans PJ, Engelen SME, et al. Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer. J Clin Oncol. 2011;29:4633–4640.
    1. Martin ST, Heneghan HM, Winter DC. Systematic review and meta-analysis of outcomes following pathological complete response to neoadjuvant chemoradiotherapy for rectal cancer. Br J Surg. 2012;99:918–928.
    1. Cusumano D, Dinapoli N, Boldrini L, Chiloiro G, Gatta R, Masciocchi C, et al. Fractal-based radiomic approach to predict complete pathological response after chemo-radiotherapy in rectal cancer. Radiol Med. 2018;123:286–295.
    1. Barbaro B, Fiorucci C, Tebala C, Valentini V, Gambacorta MA, Vecchio FM, et al. Locally advanced rectal cancer: MR imaging in prediction of response after preoperative chemotherapy and radiation therapy. Radiology. 2009;250:730–739.
    1. Beets-Tan RGH, Lambregts DMJ, Maas M, Bipat S, Barbaro B, Curvo-Semedo L, et al. Magnetic resonance imaging for clinical management of rectal cancer: Updated recommendations from the 2016 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting. Eur Radiol. 2018;28:1465–1475.
    1. Dinapoli N, Barbaro B, Gatta R, Chiloiro G, Casà C, Masciocchi C, et al. Magnetic Resonance, Vendor-independent, Intensity Histogram Analysis Predicting Pathologic Complete Response After Radiochemotherapy of Rectal Cancer. Int J Radiat Oncol Biol Phys. 2018;102:765–774.
    1. Boldrini L, Cusumano D, Chiloiro G, Casà C, Masciocchi C, Lenkowicz J, et al. Delta radiomics for rectal cancer response prediction with hybrid 0.35 T magnetic resonance-guided radiotherapy (MRgRT): a hypothesis-generating study for an innovative personalized medicine approach. Radiol Med. 2019;124:145–153.
    1. Cusumano D, Boldrini L, Yadav P, Yu G, Musurunu B, Chiloiro G, et al. External Validation of Early Regression Index (ERITCP) as Predictor of Pathologic Complete Response in Rectal Cancer Using Magnetic Resonance-Guided Radiation Therapy. International Journal of Radiation Oncology, Biology, Physics. 2020;0.
    1. Chiloiro G, Rodriguez-Carnero P, Lenkowicz J, Casà C, Masciocchi C, Boldrini L, et al. Delta Radiomics Can Predict Distant Metastasis in Locally Advanced Rectal Cancer: The Challenge to Personalize the Cure. Front Oncol. 2020;10:595012.
    1. Jeon SH, Song C, Chie EK, Kim B, Kim YH, Chang W, et al. Delta-radiomics signature predicts treatment outcomes after preoperative chemoradiotherapy and surgery in rectal cancer. Radiat Oncol. 2019;14:43.
    1. Chen H, Shi L, Nguyen KNB, Monjazeb AM, Matsukuma KE, Loehfelm TW, et al. MRI Radiomics for Prediction of Tumor Response and Downstaging in Rectal Cancer Patients after Preoperative Chemoradiation. Adv Radiat Oncol. 2020;5:1286–1295.
    1. Fiorino C, Passoni P, Palmisano A, Gumina C, Cattaneo GM, Broggi S, et al. Accurate outcome prediction after neo-adjuvant radio-chemotherapy for rectal cancer based on a TCP-based early regression index. Clin Transl Radiat Oncol. 2019;19:12–16.
    1. Fiorino C, Gumina C, Passoni P, Palmisano A, Broggi S, Cattaneo GM, et al. A TCP-based early regression index predicts the pathological response in neo-adjuvant radio-chemotherapy of rectal cancer. Radiother Oncol. 2018;128:564–568.
    1. Burbach JPM, den Harder AM, Intven M, van Vulpen M, Verkooijen HM, Reerink O. Impact of radiotherapy boost on pathological complete response in patients with locally advanced rectal cancer: a systematic review and meta-analysis. Radiother Oncol. 2014;113:1–9.
    1. Zhang M, Li X, Guan B, Guan G, Lin X, Wu X, et al. Dose escalation of preoperative short-course radiotherapy followed by neoadjuvant chemotherapy in locally advanced rectal cancer: protocol for an open-label, single-centre, phase I clinical trial. BMJ Open. 2019;9:e025944.
    1. Parker JJ, Jones JC, Strober S, Knox SJ. Characterization of direct radiation-induced immune function and molecular signaling changes in an antigen presenting cell line. Clin Immunol. 2013;148:44–55.
    1. Scheithauer H, Belka C, Lauber K, Gaipl US. Immunological aspects of radiotherapy. Radiat Oncol. 2014;9:185.
    1. Cusumano D, Boldrini L, Yadav P, Yu G, Musurunu B, Chiloiro G, et al. Delta radiomics for rectal cancer response prediction using low field magnetic resonance guided radiotherapy: an external validation. Phys Med. 2021;84:186–191.
    1. Dhadda AS, Dickinson P, Zaitoun AM, Gandhi N, Bessell EM. Prognostic importance of Mandard tumour regression grade following pre-operative chemo/radiotherapy for locally advanced rectal cancer. Eur J Cancer. 2011;47:1138–1145.
    1. A’Hern RP. Sample size tables for exact single-stage phase II designs. Stat Med. 2001;20:859–866.
    1. Stallard N. Sample size determination for phase II clinical trials based on Bayesian decision theory. Biometrics. 1998;54:279–294.
    1. Meldolesi E, van Soest J, Damiani A, Dekker A, Alitto AR, Campitelli M, et al. Standardized data collection to build prediction models in oncology: a prototype for rectal cancer. Future Oncol. 2016;12:119–136.
    1. Dinapoli N, Alitto AR, Vallati M, Gatta R, Autorino R, Boldrini L, et al. Moddicom: a complete and easily accessible library for prognostic evaluations relying on image features. Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:771–774.
    1. Cusumano D, Meijer G, Lenkowicz J, Chiloiro G, Boldrini L, Masciocchi C, et al. A field strength independent MR radiomics model to predict pathological complete response in locally advanced rectal cancer. Radiol Med. 2021;126:421–429.
    1. Hajian-Tilaki K. Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. Caspian J Intern Med. 2013;4:627–635.
    1. Chiloiro G, Boldrini L, Meldolesi E, Re A, Cellini F, Cusumano D, et al. MR-guided radiotherapy in rectal cancer: First clinical experience of an innovative technology. Clin Transl Radiat Oncol. 2019;18:80–86.
    1. Valentini V, Gambacorta MA, Barbaro B, Chiloiro G, Coco C, Das P, et al. International consensus guidelines on Clinical Target Volume delineation in rectal cancer. Radiother Oncol. 2016;120:195–201.
    1. Joiner MC, Bentzen SM. Fractionation: The linear-quadratic approach. In: In: Basic Clinical Radiobiology. 5th ed. CRC Press; 2018.
    1. Hodapp N. The ICRU Report 83: prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (IMRT) Strahlenther Onkol. 2012;188:97–99.
    1. Placidi L, Romano A, Chiloiro G, Cusumano D, Boldrini L, Cellini F, et al. On-line adaptive MR guided radiotherapy for locally advanced pancreatic cancer: Clinical and dosimetric considerations. Technical Innovations & Patient Support in Radiation Oncology. 2020;15:15–21.
    1. Rosen R, Brown C, Heiman J, Leiblum S, Meston C, Shabsigh R, et al. The Female Sexual Function Index (FSFI): a multidimensional self-report instrument for the assessment of female sexual function. J Sex Marital Ther. 2000;26:191–208.
    1. Rosen RC, Riley A, Wagner G, Osterloh IH, Kirkpatrick J, Mishra A. The international index of erectile function (IIEF): a multidimensional scale for assessment of erectile dysfunction. Urology. 1997;49:822–830.
    1. Temple LK, Bacik J, Savatta SG, Gottesman L, Paty PB, Weiser MR, et al. The development of a validated instrument to evaluate bowel function after sphincter-preserving surgery for rectal cancer. Dis Colon Rectum. 2005;48:1353–1365.
    1. Appelt AL, Pløen J, Vogelius IR, Bentzen SM, Jakobsen A. Radiation dose-response model for locally advanced rectal cancer after preoperative chemoradiation therapy. Int J Radiat Oncol Biol Phys. 2013;85:74–80.
    1. Rödel C, Graeven U, Fietkau R, Hohenberger W, Hothorn T, Arnold D, et al. Oxaliplatin added to fluorouracil-based preoperative chemoradiotherapy and postoperative chemotherapy of locally advanced rectal cancer (the German CAO/ARO/AIO-04 study): final results of the multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2015;16:979–989.
    1. Boldrini L, Intven M, Bassetti M, Valentini V, Gani C. MR-Guided Radiotherapy for Rectal Cancer: Current Perspective on Organ Preservation. Front Oncol. 2021;11:619852.
    1. Gani C, Boldrini L, Valentini V. Online MR guided radiotherapy for rectal cancer. New opportunities Clin Transl Radiat Oncol. 2019;18:66–67.
    1. Appelt AL, Vogelius IR, Pløen J, Rafaelsen SR, Lindebjerg J, Havelund BM, et al. Long term results of a randomized trial in locally advanced rectal cancer: No benefit from adding a brachytherapy boost. Int J Radiat Oncol Biol Phys. 2014;90:110–118.
    1. Boldrini L, Chiloiro G, Pesce A, Romano A, Teodoli S, Placidi L, et al. Hybrid MRI guided radiotherapy in locally advanced cervical cancer: Case report of an innovative personalized therapeutic approach. Clin Transl Radiat Oncol. 2020;20:27–29.
    1. Wibe A, Rendedal PR, Svensson E, Norstein J, Eide TJ, Myrvold HE, et al. Prognostic significance of the circumferential resection margin following total mesorectal excision for rectal cancer. Br J Surg. 2002;89:327–334.
    1. Horn A, Dahl O, Morild I. Venous and neural invasion as predictors of recurrence in rectal adenocarcinoma. Dis Colon Rectum. 1991;34:798–804.
    1. Bahadoer RR, Dijkstra EA, van Etten B, Marijnen CAM, Putter H, Kranenbarg EM-K, et al. Short-course radiotherapy followed by chemotherapy before total mesorectal excision (TME) versus preoperative chemoradiotherapy, TME and optional adjuvant chemotherapy in locally advanced rectal cancer (RAPIDO): a randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22:29–42.
    1. Conroy T, Bosset J-F, Etienne P-L, Rio E, François É, Mesgouez-Nebout N, et al. Neoadjuvant chemotherapy with FOLFIRINOX and preoperative chemoradiotherapy for patients with locally advanced rectal cancer (UNICANCER-PRODIGE 23): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22:702–715.
    1. Palmisano A, Esposito A, Di Chiara A, Ambrosi A, Passoni P, Slim N, et al. Could early tumour volume changes assessed on morphological MRI predict the response to chemoradiation therapy in locally-advanced rectal cancer? Clin Radiol. 2018;73:555–563.
    1. Cusumano D, Catucci F, Romano A, Boldrini L, Piras A, Broggi S, et al. Evaluation of an Early Regression Index (ERITCP) as Predictor of Pathological Complete Response in Cervical Cancer: A Pilot-Study. Appl Sci. 2020;10:8001.
    1. Mazzei MA, Nardone V, Di Giacomo L, Bagnacci G, Gentili F, Tini P, et al. The role of delta radiomics in gastric cancer. Quant Imaging Med Surg. 2018;8:719–721.
    1. Cusumano D, Boldrini L, Dhont J, Fiorino C, Green O, Güngör G, et al. Artificial Intelligence in magnetic Resonance guided Radiotherapy: Medical and physical considerations on state of art and future perspectives. Phys Med. 2021;85:175–191.

Source: PubMed

Подписаться