Serial interval of SARS-CoV-2 was shortened over time by nonpharmaceutical interventions

Sheikh Taslim Ali, Lin Wang, Eric H Y Lau, Xiao-Ke Xu, Zhanwei Du, Ye Wu, Gabriel M Leung, Benjamin J Cowling, Sheikh Taslim Ali, Lin Wang, Eric H Y Lau, Xiao-Ke Xu, Zhanwei Du, Ye Wu, Gabriel M Leung, Benjamin J Cowling

Abstract

Studies of novel coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have reported varying estimates of epidemiological parameters, including serial interval distributions-i.e., the time between illness onset in successive cases in a transmission chain-and reproduction numbers. By compiling a line-list database of transmission pairs in mainland China, we show that mean serial intervals of COVID-19 shortened substantially from 7.8 to 2.6 days within a month (9 January to 13 February 2020). This change was driven by enhanced nonpharmaceutical interventions, particularly case isolation. We also show that using real-time estimation of serial intervals allowing for variation over time provides more accurate estimates of reproduction numbers than using conventionally fixed serial interval distributions. These findings could improve our ability to assess transmission dynamics, forecast future incidence, and estimate the impact of control measures.

Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

Figures

Fig. 1. Serial intervals of SARS-CoV-2 substantially…
Fig. 1. Serial intervals of SARS-CoV-2 substantially shortened over time in mainland China.
(A) Empirical serial interval distributions. From top to bottom, transmission pairs were analyzed by selecting infectors who developed symptoms during 9 to 22 January 2020 (prepeak); 23 to 29 January 2020 (peak week); 30 January to 13 February 2020 (postpeak); and 9 January to 13 February 2020 (whole period), respectively. In each panel, vertical dashed lines in red and blue colors indicate the median and interquartile range (IQR), respectively. (B) Estimated serial interval distributions by fitting a normal distribution using MCMC. From top to bottom, each group of bars corresponds to the transmission pairs with infectors who developed symptoms during the prepeak (162 pairs), peak week (339 pairs), postpeak (176 pairs), and whole 36-day period (677 pairs), respectively. Colored dots and bars correspond to the transmission pairs within households (blue), outside households (yellow), with isolation delays shorter than the median isolation delay of each period (green), and with isolation delays longer than the median isolation delay of each period (orange), respectively. Dark gray bars correspond to transmission pairs with no stratification. Dots and bars indicate the estimated median and IQR, respectively.
Fig. 2. Real-time effective serial intervals and…
Fig. 2. Real-time effective serial intervals and instantaneous reproduction number Rt.
(A) Estimated serial interval distribution for each 14-day running time window. Dark gray color indicates fitting data with no stratification, whereas green and orange indicate fitting data with isolation delay shorter and longer, respectively, than the median isolation delay of each running time window. Dots and bars indicate the estimated median and IQR, respectively. (B to D) Daily estimates of Rt by using real-time effective serial interval distributions [as in (A)] versus using a single fixed serial interval distribution. Red curves and light pink shaded regions indicate the median and 95% CrI, respectively, of daily Rt estimated using real-time effective serial interval distributions. Black dashed curves and light gray shaded regions indicate the median and 95% CrI, respectively, of daily Rt estimated using a single serial interval distribution fixed, with a mean of 7.1 and SD of 5.3 days in (B), a mean of 5.2 and SD of 4.7 days in (C), and a mean of 3.0 and SD of 4.1 days in (D).

References

    1. World Health Organization (WHO), “Coronavirus disease 2019 (‎COVID-19)‎: Situation report – 162” (WHO, 2020); .
    1. Kraemer M. U. G., Yang C.-H., Gutierrez B., Wu C.-H., Klein B., Pigott D. M., Open COVID-19 Data Working Group, du Plessis L., Faria N. R., Li R., Hanage W. P., Brownstein J. S., Layan M., Vespignani A., Tian H., Dye C., Pybus O. G., Scarpino S. V., The effect of human mobility and control measures on the COVID-19 epidemic in China. Science 368, 493–497 (2020). 10.1126/science.abb4218
    1. Wenham C., Smith J., Morgan R., Gender and COVID-19 Working Group , COVID-19: The gendered impacts of the outbreak. Lancet 395, 846–848 (2020). 10.1016/S0140-6736(20)30526-2
    1. Jin J. M., Bai P., He W., Wu F., Liu X.-F., Han D.-M., Liu S., Yang J.-K., Gender Differences in Patients With COVID-19: Focus on Severity and Mortality. Front. Public Health 8, 152 (2020). 10.3389/fpubh.2020.00152
    1. Hellewell J., Abbott S., Gimma A., Bosse N. I., Jarvis C. I., Russell T. W., Munday J. D., Kucharski A. J., Edmunds W. J., Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group, Funk S., Eggo R. M., Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob. Health 8, e488–e496 (2020). 10.1016/S2214-109X(20)30074-7
    1. Ferretti L., Wymant C., Kendall M., Zhao L., Nurtay A., Abeler-Dörner L., Parker M., Bonsall D., Fraser C., Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science 368, eabb6936 (2020). 10.1126/science.abb6936
    1. Armitage R., Nellums L. B., COVID-19 and the consequences of isolating the elderly. Lancet Public Health 5, e256 (2020). 10.1016/S2468-2667(20)30061-X
    1. Anderson R. M., Heesterbeek H., Klinkenberg D., Hollingsworth T. D., How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet 395, 931–934 (2020). 10.1016/S0140-6736(20)30567-5
    1. Koo J. R., Cook A. R., Park M., Sun Y., Sun H., Lim J. T., Tam C., Dickens B. L., Interventions to mitigate early spread of SARS-CoV-2 in Singapore: A modelling study. Lancet Infect. Dis. 20, 678–688 (2020). 10.1016/S1473-3099(20)30162-6
    1. Prem K., Liu Y., Russell T. W., Kucharski A. J., Eggo R. M., Davies N., Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group, Jit M., Klepac P., The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: A modelling study. Lancet Public Health 5, e261–e270 (2020). 10.1016/S2468-2667(20)30073-6
    1. Vink M. A., Bootsma M. C., Wallinga J., Serial intervals of respiratory infectious diseases: A systematic review and analysis. Am. J. Epidemiol. 180, 865–875 (2014). 10.1093/aje/kwu209
    1. Wu J. T., Leung K., Leung G. M., Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet 395, 689–697 (2020). 10.1016/S0140-6736(20)30260-9
    1. Chinazzi M., Davis J. T., Ajelli M., Gioannini C., Litvinova M., Merler S., Pastore Y Piontti A., Mu K., Rossi L., Sun K., Viboud C., Xiong X., Yu H., Halloran M. E., Longini I. M. Jr.., Vespignani A., The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science 368, 395–400 (2020). 10.1126/science.aba9757
    1. Nishiura H., Linton N. M., Akhmetzhanov A. R., Serial interval of novel coronavirus (COVID-19) infections. Int. J. Infect. Dis. 93, 284–286 (2020). 10.1016/j.ijid.2020.02.060
    1. Cheng H. Y., Jian S.-W., Liu D.-P., Ng T.-C., Huang W.-T., Lin H.-H., Taiwan COVID-19 Outbreak Investigation Team , Contact Tracing Assessment of COVID-19 Transmission Dynamics in Taiwan and Risk at Different Exposure Periods Before and After Symptom Onset. JAMA Intern. Med. 10.1001/jamainternmed.2020.2020 (2020). 10.1001/jamainternmed.2020.2020
    1. Du Z., Xu X., Wu Y., Wang L., Cowling B. J., Meyers L. A., Serial Interval of COVID-19 among Publicly Reported Confirmed Cases. Emerg. Infect. Dis. 26, 1341–1343 (2020). 10.3201/eid2606.200357
    1. Li Q., Guan X., Wu P., Wang X., Zhou L., Tong Y., Ren R., Leung K. S. M., Lau E. H. Y., Wong J. Y., Xing X., Xiang N., Wu Y., Li C., Chen Q., Li D., Liu T., Zhao J., Liu M., Tu W., Chen C., Jin L., Yang R., Wang Q., Zhou S., Wang R., Liu H., Luo Y., Liu Y., Shao G., Li H., Tao Z., Yang Y., Deng Z., Liu B., Ma Z., Zhang Y., Shi G., Lam T. T. Y., Wu J. T., Gao G. F., Cowling B. J., Yang B., Leung G. M., Feng Z., Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N. Engl. J. Med. 382, 1199–1207 (2020). 10.1056/NEJMoa2001316
    1. J. M. Griffin, A. B. Collins, K. Hunt, D. McEvoy, M. Casey, A. W. Byrne, C. G. McAloon, A. Barber, E. A. Lane, S. J. More, A rapid review of available evidence on the serial interval and generation time of COVID-19. medRxiv 2020.05.08.20095075 [Preprint]. 11 May 2020. 10.1101/2020.05.08.20095075.10.1101/2020.05.08.20095075
    1. S. Ma, J. Zhang, M. Zeng, Q. Yun, W. Guo, Y. Zheng, S. Zhao, M. H. Wang, Z. Yang, Epidemiological parameters of coronavirus disease 2019: A pooled analysis of publicly reported individual data of 1155 cases from seven countries. medRxiv 2020.03.21.20040329 [Preprint]. 24 March 2020. 10.1101/2020.03.21.20040329.10.1101/2020.03.21.20040329
    1. He X., Lau E. H. Y., Wu P., Deng X., Wang J., Hao X., Lau Y. C., Wong J. Y., Guan Y., Tan X., Mo X., Chen Y., Liao B., Chen W., Hu F., Zhang Q., Zhong M., Wu Y., Zhao L., Zhang F., Cowling B. J., Li F., Leung G. M., Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med. 26, 672–675 (2020). 10.1038/s41591-020-0869-5
    1. Bi Q., Wu Y., Mei S., Ye C., Zou X., Zhang Z., Liu X., Wei L., Truelove S. A., Zhang T., Gao W., Cheng C., Tang X., Wu X., Wu Y., Sun B., Huang S., Sun Y., Zhang J., Ma T., Lessler J., Feng T., Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: A retrospective cohort study. Lancet Infect. Dis. 20, 911–919 (2020). 10.1016/S1473-3099(20)30287-5
    1. Zhang J., Litvinova M., Liang Y., Wang Y., Wang W., Zhao S., Wu Q., Merler S., Viboud C., Vespignani A., Ajelli M., Yu H., Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. Science 368, 1481–1486 (2020). 10.1126/science.abb8001
    1. Lin, PDGLin/COVID19_EffSerialInterval_NPI: Serial interval of SARS-CoV-2 was shortened over time by non-pharmaceutical interventions, version v1.0, Zenodo (2020); 10.5281/zenodo.3940300.10.5281/zenodo.3940300
    1. Tian H., Liu Y., Li Y., Wu C.-H., Chen B., Kraemer M. U. G., Li B., Cai J., Xu B., Yang Q., Wang B., Yang P., Cui Y., Song Y., Zheng P., Wang Q., Bjornstad O. N., Yang R., Grenfell B. T., Pybus O. G., Dye C., An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science 368, 638–642 (2020). 10.1126/science.abb6105
    1. Leung K., Wu J. T., Liu D., Leung G. M., First-wave COVID-19 transmissibility and severity in China outside Hubei after control measures, and second-wave scenario planning: A modelling impact assessment. Lancet 395, 1382–1393 (2020). 10.1016/S0140-6736(20)30746-7
    1. Pan A., Liu L., Wang C., Guo H., Hao X., Wang Q., Huang J., He N., Yu H., Lin X., Wei S., Wu T., Association of Public Health Interventions With the Epidemiology of the COVID-19 Outbreak in Wuhan, China. JAMA 323, 1915–1923 (2020). 10.1001/jama.2020.6130
    1. Zhang J., Litvinova M., Wang W., Wang Y., Deng X., Chen X., Li M., Zheng W., Yi L., Chen X., Wu Q., Liang Y., Wang X., Yang J., Sun K., Longini I. M. Jr.., Halloran M. E., Wu P., Cowling B. J., Merler S., Viboud C., Vespignani A., Ajelli M., Yu H., Evolving epidemiology and transmission dynamics of coronavirus disease 2019 outside Hubei province, China: A descriptive and modelling study. Lancet Infect. Dis. 20, 793–802 (2020). 10.1016/S1473-3099(20)30230-9
    1. Cori A., Ferguson N. M., Fraser C., Cauchemez S., A new framework and software to estimate time-varying reproduction numbers during epidemics. Am. J. Epidemiol. 178, 1505–1512 (2013). 10.1093/aje/kwt133
    1. Zou L., Ruan F., Huang M., Liang L., Huang H., Hong Z., Yu J., Kang M., Song Y., Xia J., Guo Q., Song T., He J., Yen H.-L., Peiris M., Wu J., SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N. Engl. J. Med. 382, 1177–1179 (2020). 10.1056/NEJMc2001737
    1. Pan Y., Zhang D., Yang P., Poon L. L. M., Wang Q., Viral load of SARS-CoV-2 in clinical samples. Lancet Infect. Dis. 20, 411–412 (2020). 10.1016/S1473-3099(20)30113-4
    1. Xu X. K., Liu X.-F., Wu Y., Ali S. T., Du Z., Bosetti P., Lau E. H. Y., Cowling B. J., Wang L., Reconstruction of Transmission Pairs for novel Coronavirus Disease 2019 (COVID-19) in mainland China: Estimation of Super-spreading Events, Serial Interval, and Hazard of Infection. Clin. Infect. Dis. 10.1093/cid/ciaa790 (2020). 10.1093/cid/ciaa790
    1. Trapman P., Ball F., Dhersin J.-S., Tran V. C., Wallinga J., Britton T., Inferring R0 in emerging epidemics-the effect of common population structure is small. J. R. Soc. Interface 13, 20160288 (2016). 10.1098/rsif.2016.0288
    1. Park S. W., Champredon D., Dushoff J., Inferring generation-interval distributions from contact-tracing data. J. R. Soc. Interface 17, 20190719 (2020). 10.1098/rsif.2019.0719
    1. Liu Q. H., Ajelli M., Aleta A., Merler S., Moreno Y., Vespignani A., Measurability of the epidemic reproduction number in data-driven contact networks. Proc. Natl. Acad. Sci. U.S.A. 115, 12680–12685 (2018). 10.1073/pnas.1811115115
    1. Bai Y., Yao L., Wei T., Tian F., Jin D.-Y., Chen L., Wang M., Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA 323, 1406–1407 (2020). 10.1001/jama.2020.2565
    1. Pan X., Chen D., Xia Y., Wu X., Li T., Ou X., Zhou L., Liu J., Asymptomatic cases in a family cluster with SARS-CoV-2 infection. Lancet Infect. Dis. 20, 410–411 (2020). 10.1016/S1473-3099(20)30114-6
    1. Arons M. M., Hatfield K. M., Reddy S. C., Kimball A., James A., Jacobs J. R., Taylor J., Spicer K., Bardossy A. C., Oakley L. P., Tanwar S., Dyal J. W., Harney J., Chisty Z., Bell J. M., Methner M., Paul P., Carlson C. M., McLaughlin H. P., Thornburg N., Tong S., Tamin A., Tao Y., Uehara A., Harcourt J., Clark S., Brostrom-Smith C., Page L. C., Kay M., Lewis J., Montgomery P., Stone N. D., Clark T. A., Honein M. A., Duchin J. S., Jernigan J. A., Public Health–Seattle and King County and CDC COVID-19 Investigation Team , Presymptomatic SARS-CoV-2 Infections and Transmission in a Skilled Nursing Facility. N. Engl. J. Med. 382, 2081–2090 (2020). 10.1056/NEJMoa2008457
    1. Ganyani T., Kremer C., Chen D., Torneri A., Faes C., Wallinga J., Hens N., Estimating the generation interval for coronavirus disease (COVID-19) based on symptom onset data, March 2020. Euro Surveill. 25, 2000257 (2020). 10.2807/1560-7917.ES.2020.25.17.2000257
    1. Wei W. E., Li Z., Chiew C. J., Yong S. E., Toh M. P., Lee V. J., Presymptomatic Transmission of SARS-CoV-2 - Singapore, January 23-March 16, 2020. MMWR Morb. Mortal. Wkly. Rep. 69, 411–415 (2020). 10.15585/mmwr.mm6914e1
    1. L. Tindale, M. Coombe, J. E. Stockdale, E. Garlock, W. Y. V. Lau, M. Saraswat, Y.-H. B. Lee, L. Zhang, D. Chen, J. Wallinga, C. Colijn, Transmission interval estimates suggest pre-symptomatic spread of COVID-19. medRxiv 2020.03.03.20029983 [Preprint]. 6 March 2020. .10.1101/2020.03.03.20029983
    1. Wölfel R., Corman V. M., Guggemos W., Seilmaier M., Zange S., Müller M. A., Niemeyer D., Jones T. C., Vollmar P., Rothe C., Hoelscher M., Bleicker T., Brünink S., Schneider J., Ehmann R., Zwirglmaier K., Drosten C., Wendtner C., Virological assessment of hospitalized patients with COVID-2019. Nature 581, 465–469 (2020). 10.1038/s41586-020-2196-x
    1. A. T. Huang, B. Garcia-Carreras, M. D. T. Hitchings, B. Yang, L. Katzelnick, S. M. Rattigan, B. Borgert, C. Moreno, B. D. Solomon, I. Rodriguez-Barraquer, J. Lessler, H. Salje, D. S. Burke, A. Wesolowski, D. A. T. Cummings, A systematic review of antibody mediated immunity to coronaviruses: Antibody kinetics, correlates of protection, and association of antibody responses with severity of disease. medRxiv 2020.04.14.20065771 [Preprint]. 17 April 2020. .10.1101/2020.04.14.20065771
    1. Rockx B., Kuiken T., Herfst S., Bestebroer T., Lamers M. M., Oude Munnink B. B., de Meulder D., van Amerongen G., van den Brand J., Okba N. M. A., Schipper D., van Run P., Leijten L., Sikkema R., Verschoor E., Verstrepen B., Bogers W., Langermans J., Drosten C., Fentener van Vlissingen M., Fouchier R., de Swart R., Koopmans M., Haagmans B. L., Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science 368, 1012–1015 (2020). 10.1126/science.abb7314
    1. Lipsitch M., Cohen T., Cooper B., Robins J. M., Ma S., James L., Gopalakrishna G., Chew S. K., Tan C. C., Samore M. H., Fisman D., Murray M., Transmission dynamics and control of severe acute respiratory syndrome. Science 300, 1966–1970 (2003). 10.1126/science.1086616
    1. K. M. Gostic, L. McGough, E. Baskerville, S. Abbott, K. Joshi, C. Tedijanto, R. Kahn, R. Niehus, J. A. Hay, P. M. De Salazar, J. Hellewell, S. Meakin, J. Munday, N. Bosse, K. Sherratt, R. M. Thompson, L. F. White, J. Huisman, J. Scire, S. Bonhoeffer, T. Stadler, J. Wallinga, S. Funk, M. Lipsitch, S. Cobey, Practical considerations for measuring the effective reproductive number, Rt. medRxiv 2020.06.18.20134858 [Preprint]. 23 June 2020. .10.1101/2020.06.18.20134858
    1. Wallinga J., Teunis P., Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am. J. Epidemiol. 160, 509–516 (2004). 10.1093/aje/kwh255
    1. Fraser C., Estimating individual and household reproduction numbers in an emerging epidemic. PLOS ONE 2, e758 (2007). 10.1371/journal.pone.0000758
    1. Li Z., Chen Q., Feng L., Rodewald L., Xia Y., Yu H., Zhang R., An Z., Yin W., Chen W., Qin Y., Peng Z., Zhang T., Ni D., Cui J., Wang Q., Yang X., Zhang M., Ren X., Wu D., Sun X., Li Y., Zhou L., Qi X., Song T., Gao G. F., Feng Z., China CDC COVID-19 Emergency Response Strategy Team , Active case finding with case management: The key to tackling the COVID-19 pandemic. Lancet 396, 63–70 (2020). 10.1016/S0140-6736(20)31278-2
    1. Wu P., Hao X., Lau E. H. Y., Wong J. Y., Leung K. S. M., Wu J. T., Cowling B. J., Leung G. M., Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020. Euro Surveill. 25, 2000044 (2020). 10.2807/1560-7917.ES.2020.25.3.2000044

Source: PubMed

Подписаться