Genetic Contribution of Variants near SORT1 and APOE on LDL Cholesterol Independent of Obesity in Children

Clara Breitling, Arnd Gross, Petra Büttner, Sebastian Weise, Dorit Schleinitz, Wieland Kiess, Markus Scholz, Peter Kovacs, Antje Körner, Clara Breitling, Arnd Gross, Petra Büttner, Sebastian Weise, Dorit Schleinitz, Wieland Kiess, Markus Scholz, Peter Kovacs, Antje Körner

Abstract

Objective: To assess potential effects of variants in six lipid modulating genes (SORT1, HMGCR, MLXIPL, FADS2, APOE and MAFB) on early development of dyslipidemia independent of the degree of obesity in children, we investigated their association with total (TC), low density lipoprotein (LDL-C), high density lipoprotein (HDL-C) cholesterol and triglyceride (TG) levels in 594 children. Furthermore, we evaluated the expression profile of the candidate genes during human adipocyte differentiation.

Results: Expression of selected genes increased 10(1) to >10(4) fold during human adipocyte differentiation, suggesting a potential link with adipogenesis. In genetic association studies adjusted for age, BMI SDS and sex, we identified significant associations for rs599839 near SORT1 with TC and LDL-C and for rs4420638 near APOE with TC and LDL-C. We performed Bayesian modelling of the combined lipid phenotype of HDL-C, LDL-C and TG to identify potentially causal polygenic effects on this multi-dimensional phenotype and considering obesity, age and sex as a-priori modulating factors. This analysis confirmed that rs599839 and rs4420638 affect LDL-C.

Conclusion: We show that lipid modulating genes are dynamically regulated during adipogenesis and that variants near SORT1 and APOE influence lipid levels independent of obesity in children. Bayesian modelling suggests causal effects of these variants.

Conflict of interest statement

Competing Interests: A.K. declares on behalf of all authors there are no competing interests that could be perceived to bias their work, acknowledging all financial support and any other relevant financial or non-financial competing interests.

Figures

Fig 1. Bayesian Model.
Fig 1. Bayesian Model.
We present the structure of the Bayesian model analysed. Black arrows represent possible impacts of considered covariables (SNPs, age, BMI SDS, sex) on the distribution means of lipid phenotypes. Grey arrows refer to the covariance between the lipids which is accounted for in the model.
Fig 2. Inclusion probabilities of covariables for…
Fig 2. Inclusion probabilities of covariables for each lipid phenotype.
For each SNP, results are given for the recessive (first number) and dominant part (second number). Results for inclusion probabilities are rounded to integers of percentage. Effect estimates are illustrated by the shade of grey as indicated. Results rounded to zero are omitted. Results for the lipid phenotypes LDL-C, HDL-C and TG are presented. TC is omitted due to high correlation with LDL-C.
Fig 3. mRNA expression profiles of target…
Fig 3. mRNA expression profiles of target genes during human adipogenesis.
Fold change of gene expression for SORT1, HMGCR, MLXIPL, FADS2, APOE and MAFB mRNA during human adipocyte differentiation of SGBS cells. Data shown are averaged over 3 independent experiments, each performed in triplicates and results are given in mean±SEM. For all candidates, p<0.001 was achieved by one-way ANOVA test with Dunnet´s posthoc test.

References

    1. Report by the Central Committee for Report by the Central Committee for Medical and Community Program of the American Heart AssociationMedical and Community Program of the American Heart Association. Dietary fat and its relation to heart attacks and strokes. JAMA. 1961;175:389–91.
    1. Mendivil CO, Rimm EB, Furtado J, Chiuve SE, Sacks FM. Low-density lipoproteins containing apolipoprotein C-III and the risk of coronary heart disease. Circulation; 2011. 2011. p. 2065–72. 10.1161/CIRCULATIONAHA.111.056986
    1. Cullen P. Evidence that triglycerides are an independent coronary heart disease risk factor. AmJCardiol. 2000;86(9):943–9.
    1. Tan MH. HDL-cholesterol: the negative risk factor for coronary heart disease. AnnAcadMedSingap. 1980;9(4):491–5.
    1. Rippe JM, Crossley S, Ringer R. Obesity as a chronic disease: modern medical and lifestyle management. J Am Diet Assoc. 1998;98(10 Suppl 2):S9–15.
    1. Ruderman N, Chisholm D, Pi-Sunyer X, Schneider S. The metabolically obese, normal-weight individual revisited. Diabetes; 1998. 1998. p. 699–713.
    1. Kathiresan S, Melander O, Guiducci C, Surti A, Burtt NP, Rieder MJ, et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. NatGenet. 2008;40(2):189–97.
    1. Kathiresan S, Willer CJ, Peloso GM, Demissie S, Musunuru K, Schadt EE, et al. Common variants at 30 loci contribute to polygenic dyslipidemia. NatGenet. 2009;41(1):56–65.
    1. Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, Clarke R, et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. NatGenet. 2008;40(2):161–9.
    1. Aulchenko YS, Ripatti S, Lindqvist I, Boomsma D, Heid IM, Pramstaller PP, et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. NatGenet. 2009;41(1):47–55.
    1. Standl M, Lattka E, Stach B, Koletzko S, Bauer CP, von BA, et al. FADS1 FADS2 gene cluster, PUFA intake and blood lipids in children: results from the GINIplus and LISAplus studies. PLoSONE. 2012;7(5):e37780.
    1. Molto-Puigmarti C, Jansen E, Heinrich J, Standl M, Mensink RP, Plat J, et al. Genetic variation in FADS genes and plasma cholesterol levels in 2-year-old infants: KOALA Birth Cohort Study. PLoSONE. 2013;8(5):e61671.
    1. Hu P, Qin YH, Lei FY, Pei J, Hu B, Lu L. Variable frequencies of apolipoprotein E genotypes and its effect on serum lipids in the Guangxi Zhuang and Han children. IntJMolSci. 2011;12(9):5604–15.
    1. Atabek ME, Ozkul Y, Eklioglu BS, Kurtoglu S, Baykara M. Association between apolipoprotein E polymorphism and subclinic atherosclerosis in patients with type 1 diabetes mellitus. JClinResPediatrEndocrinol. 2012;4(1):8–13.
    1. Dumitrescu L, Carty CL, Taylor K, Schumacher FR, Hindorff LA, Ambite JL, et al. Genetic determinants of lipid traits in diverse populations from the population architecture using genomics and epidemiology (PAGE) study. PLoS Genet. 2011;7(6).
    1. Kooner JS, Chambers JC, Aguilar-Salinas CA, Hinds DA, Hyde CL, Warnes GR, et al. Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides. NatGenet. 2008;40(2):149–51.
    1. Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, Thompson JR, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. NatGenet. 2013;45(1):25–33.
    1. Greenawalt DM, Dobrin R, Chudin E, Hatoum IJ, Suver C, Beaulaurier J, et al. A survey of the genetics of stomach, liver, and adipose gene expression from a morbidly obese cohort. Genome research. 2011;21(7):1008–16. 10.1101/gr.112821.110
    1. Innocenti F, Cooper GM, Stanaway IB, Gamazon ER, Smith JD, Mirkov S, et al. Identification, replication, and functional fine-mapping of expression quantitative trait loci in primary human liver tissue. PLoS genetics. 2011;7(5):e1002078 10.1371/journal.pgen.1002078
    1. Schroder A, Klein K, Winter S, Schwab M, Bonin M, Zell A, et al. Genomics of ADME gene expression: mapping expression quantitative trait loci relevant for absorption, distribution, metabolism and excretion of drugs in human liver. The pharmacogenomics journal. 2013;13(1):12–20. 10.1038/tpj.2011.44
    1. Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nature genetics. 2013;45(10):1238–43. 10.1038/ng.2756
    1. Zhang X, Johnson AD, Hendricks AE, Hwang SJ, Tanriverdi K, Ganesh SK, et al. Genetic associations with expression for genes implicated in GWAS studies for atherosclerotic cardiovascular disease and blood phenotypes. Human molecular genetics. 2014;23(3):782–95. 10.1093/hmg/ddt461
    1. Zeller T, Wild P, Szymczak S, Rotival M, Schillert A, Castagne R, et al. Genetics and beyond—the transcriptome of human monocytes and disease susceptibility. PLoS One. 2010;5(5):e10693 10.1371/journal.pone.0010693
    1. Kromeyer-Hauschild K, Wabitsch M, Geller F, Ziegler A, Geiß HC, Hesse V, et al. Perzentilen für den Body Mass Index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. (Centiles for body mass index for children and adolescents derived from distinct independent German cohorts). Monatsschr Kinderheilkd. 2001;149:807–18.
    1. Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. Arch Dis Child. 1969;44(235):291–303.
    1. Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in boys. Arch Dis Child. 1970;45(239):13–23.
    1. Bernhard F, Landgraf K, Klöting N, Berthold A, Büttner P, Friebe D, et al. Functional relevance of genes implicated by obesity genome-wide association study signals for human adipocyte biology. Diabetologia. 2013;56(2):311–22. 10.1007/s00125-012-2773-0
    1. Quintana MA, Schumacher FR, Casey G, Bernstein JL, Li L, Conti DV. Incorporating prior biologic information for high-dimensional rare variant association studies. Human heredity. 2012;74(3–4):184–95. 10.1159/000346021
    1. Lunn DJ, Whittaker JC, Best N. A Bayesian toolkit for genetic association studies. GenetEpidemiol. 2006;30(3):231–47.
    1. Conti DV, Cortessis V, Molitor J, Thomas DC. Bayesian modeling of complex metabolic pathways. Human heredity. 2003;56(1–3):83–93.
    1. Lunn DJ, Best N, Whittaker JC. Generic reversible jump MCMC using graphical models. Stat Comput. 2009;19:395–408.
    1. Kass RE, Raftery AE. Bayes Factors. Journal of the American Statistical Association. 1995;90(430):773–95.
    1. Jeffreys H. Theory of Probability. 3rd edition ed. Oxford, U.K.: Oxford University Press; 1961 1961.
    1. Wabitsch M, Brenner RE, Melzner I, Braun M, Moller P, Heinze E, et al. Characterization of a human preadipocyte cell strain with high capacity for adipose differentiation. IntJ ObesRelatMetabDisord. 2001;25(1):8–15.
    1. Ken-Dror G, Talmud PJ, Humphries SE, Drenos F. APOE/C1/C4/C2 gene cluster genotypes, haplotypes and lipid levels in prospective coronary heart disease risk among UK healthy men. MolMed. 2010;16(9–10):389–99.
    1. Klein MS, Connors KE, Shearer J, Vogel HJ, Hittel DS. Metabolomics reveals the sex-specific effects of the SORT1 low-density lipoprotein cholesterol locus in healthy young adults. Journal of proteome research. 2014;13(11):5063–70. 10.1021/pr500659r
    1. Lu Y, Feskens EJ, Dollé ME, Imholz S, Verschuren WM, Müller M, et al. Dietary n-3 and n-6 polyunsaturated fatty acid intake interacts with FADS1 genetic variation to affect total and HDL-cholesterol concentrations in the Doetinchem Cohort Study. The American Journal of Clinical Nutrition. 2010;92(1):258–65. 10.3945/ajcn.2009.29130
    1. Hiura Y, Tabara Y, Kokubo Y, Okamura T, Goto Y, Nonogi H, et al. Association of the functional variant in the 3-hydroxy-3-methylglutaryl-coenzyme a reductase gene with low-density lipoprotein-cholesterol in Japanese. Circulation journal: official journal of the Japanese Circulation Society. 2010;74(3):518–22.
    1. Donnelly LA, Doney AS, Dannfald J, Whitley AL, Lang CC, Morris AD, et al. A paucimorphic variant in the HMG-CoA reductase gene is associated with lipid-lowering response to statin treatment in diabetes: a GoDARTS study. Pharmacogenetics and genomics. 2008;18(12):1021–6. 10.1097/FPC.0b013e3283106071
    1. Vrablik M, Ceska R, Adamkova V, Peasey A, Pikhart H, Kubinova R, et al. MLXIPL variant in individuals with low and high triglyceridemia in white population in Central Europe. Human genetics. 2008;124(5):553–5. 10.1007/s00439-008-0577-6
    1. Polgár N, Járomi L, Csöngei V, Maász A, Sipeky C, Sáfrány E, et al. Triglyceride level modifying functional variants of GALTN2 and MLXIPL in patients with ischaemic stroke. European journal of neurology: the official journal of the European Federation of Neurological Societies. 2010;17(8):1033–9.
    1. Munir MS, Wang Z, Alahdab F, Steffen MW, Erwin PJ, Kullo IJ, et al. The association of 9p21-3 locus with coronary atherosclerosis: a systematic review and meta-analysis. BMC Med Genet. 2014;15:66 10.1186/1471-2350-15-66
    1. Moran A, Jacobs DR Jr, Steinberger J, Steffen LM, Pankow JS, Hong CP, et al. Changes in insulin resistance and cardiovascular risk during adolescence: establishment of differential risk in males and females. Circulation; 2008. 2008. p. 2361–8. 10.1161/CIRCULATIONAHA.107.704569
    1. Lunn DJ, Osorio C, Whittaker JC. A multivariate probit model for inferring missing haplotype/genotype data. Technical report EPH-2005-02. 2005;Department of Epidemiology and Punblic Health, Imperial College London, UK.(21).

Source: PubMed

Подписаться