Association of pre-chemotherapy peripheral blood pro-inflammatory and coagulation factors with reduced relative dose intensity in women with breast cancer

Yuan Yuan, Nilesh Vora, Can-Lan Sun, Daneng Li, Enrique Soto-Perez-de-Celis, Joanne Mortimer, The-Hang Luu, George Somlo, James Waisman, David Smith, Joseph Chao, Vani Katheria, Timothy Synold, Vivi Tran, Shu Mi, Abrahm Levi, Anait Arsenyan, Jennifer Choi, Laura Zavala, Susan Yost, Arti Hurria, Yuan Yuan, Nilesh Vora, Can-Lan Sun, Daneng Li, Enrique Soto-Perez-de-Celis, Joanne Mortimer, The-Hang Luu, George Somlo, James Waisman, David Smith, Joseph Chao, Vani Katheria, Timothy Synold, Vivi Tran, Shu Mi, Abrahm Levi, Anait Arsenyan, Jennifer Choi, Laura Zavala, Susan Yost, Arti Hurria

Abstract

Background: Chemotherapy decreases the risk of relapse and mortality in early-stage breast cancer (BC), but it comes with the risk of toxicity. Chemotherapy efficacy depends on relative dose intensity (RDI), and an RDI < 85% is associated with worse overall survival. The pro-inflammatory (interleukin (IL)-6, C-reactive protein (CRP)) and coagulation factors (D-dimer) serve as biomarkers of aging. The purpose of this study is to determine if these biomarkers are associated with reduced RDI in women with stage I-III BC.

Methods: This study enrolled women with stage I-III BC. Prior to adjuvant or neoadjuvant chemotherapy, peripheral blood was collected for biomarker measurement. Dose reductions and delays were captured and utilized to calculate the RDI delivered. Univariate and multivariate analyses were performed to describe the association between pre-chemotherapy IL-6, CRP, and D-dimer levels and an RDI < 85%, controlling for relevant tumor and patient factors (age, stage, receptor status, chemotherapy regimen, and pre-chemotherapy physical function and comorbidity).

Results: A total of 159 patients (mean age 58 years, range 30-81, SD 11.3) with stage I-III BC were enrolled. An RDI < 85% occurred in 22.6% (N = 36) of patients and was associated with higher pre-chemotherapy IL-6 (OR 1.14, 95% CI 1.04-1.25; p = 0.006) and D-dimer (OR 2.32, 95% CI 1.27-4.24; p = 0.006) levels, increased age (p = 0.001), increased number of comorbidities (p = 0.01), and decreased physical function by the Medical Outcomes Survey Activities of Daily Living (ADL) Scale (p = 0.009) in univariate analysis. A multivariate model, including two biomarkers (IL-6 and D-dimer), age, ADL, BC stage, and chemotherapy regimen, demonstrated a significant association between the increased biomarkers and reduced RDI < 85% (OR 2.54; p = 0.04).

Conclusions: Increased pre-chemotherapy biomarkers of aging (IL-6 and D-dimer) are associated with reduced RDI (<85%). Future studies are underway to validate these findings.

Trial registration: ClinicalTrials.gov, NCT01030250 . Registered on 3 November 2016.

Keywords: Activities of Daily Living; Adjuvant; Aging; Biomarkers; Blood coagulation factors; Breast Cancer; Chemotherapy; Cytokines; Dose-response relationship; Drug; Neoadjuvant; Older adults.

Conflict of interest statement

Ethics approval and consent to participate

This prospective longitudinal study was open at two participating institutions (City of Hope and Long Beach Memorial Medical Center). The study was approved by the institutional review boards of both participating institutions. Participating patients completed the informed consent process.

Consent for publication

Not applicable.

Competing interests

I confirm that I have read BioMed Central's guidance on competing interests and have included a statement indicating that none of the authors have any competing interests in the manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

    1. Shayne M, Crawford J, Dale DC, Culakova E, Lyman GH, Group ANCS. Predictors of reduced dose intensity in patients with early-stage breast cancer receiving adjuvant chemotherapy. Breast Cancer Res Treat. 2006;100:255–62. doi: 10.1007/s10549-006-9254-4.
    1. Bonadonna G, Valagussa P, Moliterni A, Zambetti M, Brambilla C. Adjuvant cyclophosphamide, methotrexate, and fluorouracil in node-positive breast cancer: the results of 20 years of follow-up. N Engl J Med. 1995;332:901–6. doi: 10.1056/NEJM199504063321401.
    1. Wood WC, Budman DR, Korzun AH, Cooper MR, Younger J, Hart RD, et al. Dose and dose intensity of adjuvant chemotherapy for stage II, node-positive breast carcinoma. N Engl J Med. 1994;330:1253–9. doi: 10.1056/NEJM199405053301801.
    1. Budman DR, Berry DA, Cirrincione CT, Henderson IC, Wood WC, Weiss RB, et al. Dose and dose intensity as determinants of outcome in the adjuvant treatment of breast cancer. The Cancer and Leukemia Group B. J Natl Cancer I. 1998;90:1205–11. doi: 10.1093/jnci/90.16.1205.
    1. Piccart MJ, Biganzoli L, Di Leo A. The impact of chemotherapy dose density and dose intensity on breast cancer outcome: what have we learned? Eur J Cancer. 2000;36:S4–10. doi: 10.1016/S0959-8049(99)00256-7.
    1. Chang J. Chemotherapy dose reduction and delay in clinical practice. evaluating the risk to patient outcome in adjuvant chemotherapy for breast cancer. Eur J Cancer. 2000;36:S11–14. doi: 10.1016/S0959-8049(99)00259-2.
    1. Citron ML, Berry DA, Cirrincione C, Hudis C, Winer EP, Gradishar WJ, et al. Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J Clin Oncol. 2003;21:1431–9. doi: 10.1200/JCO.2003.09.081.
    1. Hubbard JM, Cohen HJ, Muss HB. Incorporating biomarkers into cancer and aging research. J Clin Oncol. 2014;32:2611–6. doi: 10.1200/JCO.2014.55.4261.
    1. Gross CP, McAvay GJ, Guo Z, Tinetti ME. The impact of chronic illnesses on the use and effectiveness of adjuvant chemotherapy for colon cancer. Cancer. 2007;109:2410–9. doi: 10.1002/cncr.22726.
    1. Muss HB, Woolf S, Berry D, Cirrincione C, Weiss RB, Budman D, et al. Adjuvant chemotherapy in older and younger women with lymph node-positive breast cancer. JAMA. 2005;293:1073–81. doi: 10.1001/jama.293.9.1073.
    1. Sargent DJ, Goldberg RM, Jacobson SD, Macdonald JS, Labianca R, Haller DG, et al. A pooled analysis of adjuvant chemotherapy for resected colon cancer in elderly patients. N Engl J Med. 2001;345(15):1091–7. doi: 10.1056/NEJMoa010957.
    1. Taaffe DR, Harris TB, Ferrucci L, Rowe J, Seeman TE. Cross-sectional and prospective relationships of interleukin-6 and C-reactive protein with physical performance in elderly persons: MacArthur Studies of Successful Aging. J Gerontol A Biol Sci Med Sci. 2000;55:M709–15. doi: 10.1093/gerona/55.12.M709.
    1. Cesari M, Penninx BWJH, Pahor M, Lauretani F, Corsi AM, Williams GR, et al. Inflammatory markers and physical performance in older persons: The InCHIANTI study. J Gerontol A Biol Sci Med Sci. 2004;59:242–8. doi: 10.1093/gerona/59.3.M242.
    1. Ferrucci L, Harris TB, Guralnik JM, Tracy RP, Corti MC, Cohen HJ, et al. Serum IL-6 level and the development of disability in older persons. J Am Geriatr Soc. 1999;47(6):639–46. doi: 10.1111/j.1532-5415.1999.tb01583.x.
    1. Peterson MJ, Thompson DK, Pieper CF, Morey MC, Kraus VB, Kraus WE, et al. A novel analytic technique to measure associations between circulating biomarkers and physical performance across the adult life span. J Gerontol A Biol Sci Med Sci. 2016;7:196–202. doi: 10.1093/gerona/glv007.
    1. Lu Y, Tan C, Nyunt M, Mok E, Camous X, Kared H, et al. Inflammatory and immune markers associated with physical frailty syndrome: findings from Singapore Longitudinal Aging Studies. Oncotarget. 2016;7:28783–95. doi: 10.18632/oncotarget.8939.
    1. Harris TB, Ferrucci L, Tracy RP, Corti MC, Wacholder S, Ettinger WH, et al. Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am J Med. 1999;106:506–12. doi: 10.1016/S0002-9343(99)00066-2.
    1. Stewart AL & Ware, Jr. JE, editors. Measuring functioning and well-being: the medical outcomes study approach. Durham: Duke University Press; 1992.
    1. Fillenbaum GG, Smyer MA. The development, validity, and reliability of the OARS multidimensional functional assessment questionnaire. J Gerontol. 1981;36:428–34. doi: 10.1093/geronj/36.4.428.
    1. Karnofsky DA, Burchenal JH. The Clinical evaluation of chemotherapeutic agents in Cancer. In: MacLeod CM, editors. New York: Evaluation of Chemotherapeutic Agents, Columbia University Press; 1949.
    1. Podsiadlo D, Richardson S. The Timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39:142–8. doi: 10.1111/j.1532-5415.1991.tb01616.x.
    1. George LK, Fillenbaum GG. OARS Methodology. J Am Geriatr Soc. 1985;33:607–15. doi: 10.1111/j.1532-5415.1985.tb06317.x.
    1. Pieper CF, Rao KM, Currie MS, Harris TB, Cohen HJ. Age, functional status, and racial differences in plasma D-dimer levels in community-dwelling elderly persons. J Gerontol A Biol Sci Med Sci. 2000;55:M649–57. doi: 10.1093/gerona/55.11.M649.
    1. Allin KH, Bojesen SE, Nordestgaard BG. Baseline C-reactive protein is associated with incident cancer and survival in patients with cancer. J Clin Oncol. 2009;27:2217–24. doi: 10.1200/JCO.2008.19.8440.
    1. Wilson CJ, Cohen HJ, Pieper CF. Cross-linked fibrin degradation products (D-Dimer), plasma cytokines, and cognitive decline in community-dwelling elderly persons. J Am Geriatr Soc. 2003;51:1374–81. doi: 10.1046/j.1532-5415.2003.51454.x.
    1. Lyman GH. Impact of chemotherapy dose intensity on cancer patient outcomes. J Natl Compr Canc Netw. 2009;7:99–108. doi: 10.6004/jnccn.2009.0009.
    1. Yuan JQ, Wang SM, Tang LL, Mao J, Wu YH, Hai J, et al. Relative dose intensity and therapy efficacy in different breast cancer molecular subtypes: a retrospective study of early stage breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Res Treat. 2015;151:405–13. doi: 10.1007/s10549-015-3418-z.
    1. Loibl S, Skacel T, Nekljudova V, Lück HJ, Schwenkglenks M, Brodowicz T, et al. Evaluating the impact of relative total dose intensity (RTDI) on patients’ short and long-term outcome in taxane-and anthracycline-based chemotherapy of metastatic breast cancer − a pooled analysis. BMC Cancer. 2011;11:131. doi: 10.1186/1471-2407-11-131.
    1. Lyman GH, Dale DC, Crawford J. Incidence and predictors of low dose-intensity in adjuvant breast cancer chemotherapy: a nationwide study of community practices. J Clin Oncol. 2003;21:4524–31. doi: 10.1200/JCO.2003.05.002.
    1. Crivellari D, Bonetti M, Castiglione-Gertsch M, Gelber RD, Rudenstam C-M, Thürlimann B, et al. Burdens and benefits of adjuvant cyclophosphamide, methotrexate, and fluorouracil and tamoxifen for elderly patients with breast cancer: the International Breast Cancer Study Group Trial VII. J Clin Oncol. 2000;18:1412–22. doi: 10.1200/JCO.2000.18.7.1412.
    1. Dees EC, O'Reilly S, Goodman SN, Sartorius S, Levine MA, Jones RJ, et al. A prospective pharmacologic evaluation of age-related toxicity of adjuvant chemotherapy in women with breast cancer. Cancer Invest. 2000;18:521–9. doi: 10.3109/07357900009012191.
    1. Mayers C, Panzarella T, Tannock IF. Analysis of the prognostic effects of inclusion in a clinical trial and of myelosuppression on survival after adjuvant chemotherapy for breast carcinoma. Cancer. 2001;91:2246–57. doi: 10.1002/1097-0142(20010615)91:12<2246::AID-CNCR1255>;2-4.
    1. Sandy J, Della‐Fiorentina S. Relative dose intensity in early stage breast cancer chemotherapy: A retrospective analysis of incidence, risk factors and outcomes at a south‐west Sydney cancer clinic. Asia Pac J Clin Oncol. 2013;9:365–72. doi: 10.1111/ajco.12093.
    1. Weycker D, Barron R, Edelsberg J, Kartashov A, Lyman GH. Incidence of reduced chemotherapy relative dose intensity among women with early stage breast cancer in US clinical practice. Breast Cancer Res Treat. 2012;133:301–10. doi: 10.1007/s10549-011-1949-5.
    1. Falandry C, Bonnefoy M, Freyer G, Gilson E. Biology of cancer and aging: a complex association with cellular senescence. J Clin Oncol. 2014;32:2604–10. doi: 10.1200/JCO.2014.55.1432.
    1. Pallis AG, Hatse S, Brouwers B, Pawelec G, Falandry C, Wedding U, et al. Evaluating the physiological reserves of older patients with cancer: the value of potential biomarkers of aging? J Geriatr Oncol. 2014;5:204–18. doi: 10.1016/j.jgo.2013.09.001.
    1. Ferrucci L, Cavazzini C, Corsi A, Bartali B, Russo CR, Lauretani F, et al. Biomarkers of frailty in older persons. J Endocrinol Invest. 2002;25:S10–5. doi: 10.1007/BF03344008.
    1. Singh T, Newman AB. Inflammatory markers in population studies of aging. Ageing Res Rev. 2011;10:319–29. doi: 10.1016/j.arr.2010.11.002.
    1. Walston J, McBurnie M, Newman A, et al. Frailty and activation of the inflammation and coagulation systems with and without clinical comorbidities: results from the Cardiovascular Health Study. Arch Intern Med. 2002;162:2333–41. doi: 10.1001/archinte.162.20.2333.
    1. Zhang GJ, Adachi I. Serum interleukin-6 levels correlate to tumor progression and prognosis in metastatic breast carcinoma. Anticancer Res. 1999;19:1427–32.
    1. Blackwell K, Haroon Z, Broadwater G, Berry D, Harris L, Iglehart JD, et al. Plasma D-dimer levels in operable breast cancer patients correlate with clinical stage and axillary lymph node status. J Clin Oncol. 2000;18:600–8. doi: 10.1200/JCO.2000.18.3.600.
    1. Sanoff HK, Deal AM, Krishnamurthy J, Torrice C, Dillon P, Sorrentino J, et al. Effect of cytotoxic chemotherapy on markers of molecular age in patients with breast cancer. J Natl Cancer Inst. 2014;106:dju057. doi: 10.1093/jnci/dju057.
    1. Brouwers B, Hatse S, Dal Lago L, Neven P, Vuylsteke P, Dalmasso B, et al. The impact of adjuvant chemotherapy in older breast cancer patients on clinical and biological aging parameters. Oncotarget. 2016;7:29977. doi: 10.18632/oncotarget.8796.
    1. Extermann M, Leeuwenburgh C, Samiian L, Sehovic M, Xu J, Cubitt C, et al. Impact of chemotherapy on medium-term physical function and activity of older breast cancer survivors, and associated biomarkers. J Geriatr Oncol. 2016;8:69–75. doi: 10.1016/j.jgo.2016.09.004.

Source: PubMed

Подписаться