Bone mineral density in HIV participants randomized to raltegravir and lopinavir/ritonavir compared with standard second line therapy

Allison Martin, Cecilia Moore, Patrick W G Mallon, Jennifer Hoy, Sean Emery, Waldo Belloso, Praphan Phanuphak, Samuel Ferret, David A Cooper, Mark A Boyd, Second Line study team, Nagalingeswaran Kumarasamy, Sharne Foulkes, Robin Wood, Ploenchan Chetchotisakd, Praphan Phanuphak, Lerato Mohapi, Adeeba Kamarulzaman, Oscar Messina, Allison Martin, Cecilia Moore, Patrick W G Mallon, Jennifer Hoy, Sean Emery, Waldo Belloso, Praphan Phanuphak, Samuel Ferret, David A Cooper, Mark A Boyd, Second Line study team, Nagalingeswaran Kumarasamy, Sharne Foulkes, Robin Wood, Ploenchan Chetchotisakd, Praphan Phanuphak, Lerato Mohapi, Adeeba Kamarulzaman, Oscar Messina

Abstract

Objective: To compare changes over 48 weeks in bone mineral density (BMD) between participants randomized to lopinavir/ritonavir (LPV/r) + raltegravir (RAL) or LPV/r + 2-3 nucleoside/nucleotide reverse transcriptase inhibitors (N(t)RTIs) as second line therapy.

Design: 48-week open-label sub-study of the Second Line trial conducted in South Africa, India, Thailand, Malaysia and Argentina.

Methods: Dual energy X-ray absorptiometry scans of proximal femur and lumbar spine were performed at baseline and week 48. Linear regression was used to compare means of differences between arms. McNemars test compared osteopenia and osteoporosis. Associations between percentage BMD changes and baseline variables were assessed by multivariate linear regression.

Results: Two hundred and ten participants were randomized. Analyses were adjusted for sex, BMI and smoking status. Mean (95% CI) proximal femur BMD% reduced over 48 weeks by -5.2% (-6.7 to -3.8%) in the LPV/r+2-3N(t)RTIs arm and by -2.9% (-4.3 to -1.5%) in the LPV/r+RAL arm (P = 0.0001). Lumbar spine BMD reduced by -4.2% (-5.7 to -2.7%) in the LPV/r+2-3N(t)RTIs arm and by -2.0% (-3.5 to -0.6%) in the LPV/r+RAL arm (P = 0.0006). The incidence of osteopenia (7.6%) and osteoporosis (2.0%) assessed over 48 weeks were similar between arms. Reduced BMD over 48 weeks was significantly associated with longer duration of tenofovir on study [% change (SE) -1.58 (0.38) femur, -1.65 (0.38) spine, P = 0.0001] and low baseline BMI [% change (SE) 0.5 (0.13) femur, 0.17 (0.07) spine; P < 0.01].

Conclusion: An N(t)RTI-sparing antiretroviral regimen of LPV/r and raltegravir as second line therapy is associated with less bone loss than a LPV/r regimen containing N(t)RTIs.

© 2013 Wolters Kluwer Health | Lippincott Williams & Wilkins

Figures

Fig. 1
Fig. 1
Patient disposition of Second Line bone sub-study.
Fig. 2
Fig. 2
Mean percentage change (SE) from week 0 to 48 in proximal femur and lumbar spine bone mineral density (BMD) by treatment arm.

References

    1. Daar ES, Smith KY, Powderly WG. Long- term complications of HIV and antiretroviral therapy. Clin Care Opt 2012; 1–18
    1. Sharma A, Tian F, Yin MT, Keller MJ, Cohen M, Tien PC. Association of regional body composition with bone mineral density in HIV-infected and uninfected women: women's interagency HIV study. J Acquir Immune Defic Syndr 2012; 61:469–476
    1. Brown TT, Qaqish RB. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS 2006; 20:2165.
    1. Duvivier C, Kolta S, Assoumou L, Ghosn J, Rozenberg S, Murphy RL, et al. Greater decrease in bone mineral density with protease inhibitor regimens compared with nonnucleoside reverse transcriptase inhibitor regimens in HIV-1 infected naive patients. AIDS 2009; 27:817–824
    1. McComsey GA, Kitch D, Daar ES, Tierney C, Jahed NC, Tebas P, et al. Bone mineral density and fractures in antiretroviral-naive persons randomized to receive abacavir-lamivudine or tenofovir disoproxil fumarate-emtricitabine along with efavirenz or atazanavir-ritonavir: Aids Clinical Trials Group A5224s, a substudy of ACTG A5202. J Infect Dis 2011; 203:1791–1801
    1. van Vonderen MG, Lips P, van Agtmael MA, Hassink EA, Brinkman K, Geerlings SE, et al. First line zidovudine/lamivudine/lopinavir/ritonavir leads to greater bone loss compared to nevirapine/lopinavir/ritonavir. AIDS 2009; 23:1367–1376
    1. Brown TT, McComsey GA, King MS, Qaqish RB, Bernstein BM, da Silva BA. Loss of bone mineral density after antiretroviral therapy initiation, independent of antiretroviral regimen. J Acquir Immune Defic Syndr 2009; 51:554–561
    1. Hansen A, Obel N, Nielsen H, Pedersen C, Gerstoft J. Bone mineral density changes in protease inhibitor-sparing vs. nucleoside reverse transcriptase inhibitor-sparing highly active antiretroviral therapy: data from a randomized trial. HIV Med 2010; 12:157–165
    1. Gallant JE, Staszewski S, Pozniak AL, DeJesus E, Suleiman JM, Miller MD, et al. Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral-naive patients. JAMA 2004; 292:191–201
    1. Grund B, Peng G, Gibert CL, Hoy JF, Isaksson RL, Shlay JC, et al. Continuous antiretroviral therapy decreases bone mineral density. AIDS 2009; 23:1519.
    1. Yin MT, Kendall MA, Wu X, Tassiopoulos K, Hochberg M, Huang JS, et al. Fractures afterantiretroviral initiation: an analysis of the ACTG longitudinal linked randomized trial (ALLRT) study. AIDS 2012; 26:2175–2184
    1. Bloch M, Tong W, Hoy J, Richardson R, Baker D, Carr A. Improved low bone mineral density and bone turnover markers with switch from tenofovir to raltegravir in virologically suppressed HIV-1+ adults at 48 weeks: the TROP study. Conference on Retroviruses and Opportunistic Infections, Washington 2012
    1. Curran A, Martinez E, Saumoy M, del Rio L, Crespo M, Larrousse M, et al. Body composition changes after switching from protease inhibitors to raltegravir: SPIRAL-LIP substudy. AIDS 2012; 26:475.
    1. SECOND-LINE study group Ritonavir-boosted lopinavir plus nucleoside or nucleotide reverse transcriptase inhibitors versus ritonavir-boosted lopinavir plus raltegravir for treatment of HIV-1 infection in adults with virological failure of a standard first-line ART regimen (SECOND-LINE): a randomised, open-label, noninferiority study. Lancet 2013; 381:2091–2099
    1. Wohl DA, Young L, Hyslop WB, Blevins S, Ragan D, Walsh K, et al. Effects of raltegravir (RAL) combined with tenofovir (TDF) and emtricitabine (FTC) on body shape, bone density and lipids in HIV+ african-americans initiating therapy: metabolic outcomes of the UNC-REAL study. XIX International AIDS Conferencexs Washington, DC 2012
    1. Haskelberg H, Hoy JF, Amin J, Ebeling PR, Emery S, Carr A. Changes in bone turnover and bone loss in HIV-infected patients changing treatment to tenofovir-emtricitabine or abacavir-lamivudine. PloS one 2012; 7:e38377.
    1. Tebas P, Powderly WG, Claxton S, Marin D, Tantisiriwat W, Teitelbaum SL, et al. Accelerated bone mineral loss in HIV-infected patients receiving potent antiretroviral therapy. AIDS 2000; 14:F63.
    1. Carr A, Miller J, Eisman JA, Cooper DA. Osteopenia in HIV-infected men: association with asymptomatic lactic acidemia and lower weight preantiretroviral therapy. AIDS 2001; 15:703–709
    1. Nolan D, Upton R, McKinnon E, John M, James I, Adler B, et al. Stable or increasing bone mineral density in HIV-infected patients treated with nelfinavir or indinavir. AIDS 2001; 15:1275–1280
    1. Tomažič J, Ul K, Volčanšek G, Gorenšek S, Pfeifer M, Karner P, et al. Prevalence and risk factors for osteopenia/osteoporosis in an HIV-infected male population. Wiener Klinische Wochenschrift 2007; 119:639–646
    1. Cazanave C, Dupon M, Lavignolle-Aurillac V, Barthe N, Lawson-Ayayi S, Mehsen N, et al. Reduced bone mineral density in HIV-infected patients: prevalence and associated factors. AIDS 2008; 22:395.
    1. Bruera D, Luna N, David DO, Bergoglio LM, Zamudio J. Decreased bone mineral density in HIV-infected patients is independent of antiretroviral therapy. AIDS 2003; 17:1917–1923
    1. Dolan SE, Carpenter S, Grinspoon S. Effects of weight, body composition, and testosterone on bone mineral density in HIV-infected women. J Acquir Immune Defic Syndr 2007; 45:161–167
    1. Mallon PW. HIV and bone mineral density. Curr Opin Infect Dis 2010; 23:1.
    1. Bolland MJ, Grey AB, Gamble GD, Reid IR. Low body weight mediates the relationship between HIV infection and low bone mineral density: a meta-analysis. J Clin Endocrinol Metab 2007; 92:4522–4528
    1. Martin A, Bloch M, Amin J, Baker D, Cooper DA, Emery S, et al. Simplification of antiretroviral therapy with tenofovir-emtricitabine or abacavir-lamivudine: a randomized, 96-week trial. Clin Infect Dis 2009; 49:1591–1601
    1. Stellbrink HJ, Orkin C, Arribas JR, Compston J, Gerstoft J, Van Wijngaerden E, et al. Comparison of changes in bone density and turnover with abacavir-lamivudine versus tenofovir-emtricitabine in HIV-infected adults: 48-week results from the ASSERT study. Clin Infect Dis 2010; 51:963–972
    1. Jacobson DL, Spiegelman D, Knox TK, Wilson IB. Evolution and predictors of change in total bone mineral density over time in HIV-infected men and women in the nutrition for healthy living study. J Acquir Immune Defic Syndr 2008; 49:298.
    1. Calmy A, Fux CA, Norris R, Vallier N, Delhumeau C, Samaras K, et al. Low bone mineral density, renal dysfunction, and fracture risk in HIV infection: a cross-sectional study. J Infect Dis 2009; 200:1746–1754
    1. Bedimo R, Maalouf NM, Zhang S, Drechsler H, Tebas P. Osteoporotic fracture risk associated with cumulative exposure to tenofovir and other antiretroviral agents. AIDS 2012; 26:825.
    1. Fux CA, Rauch A, Simcock M, Bucher HC, Hirschel B, Opravil M, et al. Short communication Tenofovir use is associated with an increase in serum alkaline phosphatase in the Swiss HIV Cohort Study. Antivir=Ther 2008; 13:1077–1082
    1. Young B, Dao CN, Buchacz K, Baker R, Brooks JT. Increased rates of bone fracture among HIV-infected persons in the HIV Outpatient Study (HOPS) compared with the US general population, 2000–2006. Clin Infect Dis 2011; 52:1061–1068
    1. Triant VA, Brown TT, Lee H, Grinspoon SK. Fracture prevalence among human immunodeficiency virus (HIV)-infected versus non-HIV-infected patients in a large US healthcare system. J Clin Endocrinol Metab 2008; 93:3499–3504
    1. Paul TV, Asha HS, Thomas N, Seshadri MS, Rupali P, Abraham OC, et al. Hypovitaminosis D and bone mineral density in human immunodeficiency virus-infected men from India, with or without antiretroviral therapy. Endocrine Pract 2010; 16:547–553
    1. Mulligan K, Glidden D, Gonzales P, Ramirez-Cardich ME, Liu AY, Namwongprom S, et al. Effects of emtricitabine/tenofovir on bone mineral density in seronegative men from 4 continents: DEXA results of the global iPrEx study. 18th Conference on Retroviruses and Opportunistic Infections, Boston, 2011. 2011

Source: PubMed

Подписаться