Patterned functional network disruption in amyotrophic lateral sclerosis

Stefan Dukic, Roisin McMackin, Teresa Buxo, Antonio Fasano, Rangariroyashe Chipika, Marta Pinto-Grau, Emmet Costello, Christina Schuster, Michaela Hammond, Mark Heverin, Amina Coffey, Michael Broderick, Parameswaran M Iyer, Kieran Mohr, Brighid Gavin, Niall Pender, Peter Bede, Muthuraman Muthuraman, Edmund C Lalor, Orla Hardiman, Bahman Nasseroleslami, Stefan Dukic, Roisin McMackin, Teresa Buxo, Antonio Fasano, Rangariroyashe Chipika, Marta Pinto-Grau, Emmet Costello, Christina Schuster, Michaela Hammond, Mark Heverin, Amina Coffey, Michael Broderick, Parameswaran M Iyer, Kieran Mohr, Brighid Gavin, Niall Pender, Peter Bede, Muthuraman Muthuraman, Edmund C Lalor, Orla Hardiman, Bahman Nasseroleslami

Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease primarily affecting motor function, with additional evidence of extensive nonmotor involvement. Despite increasing recognition of the disease as a multisystem network disorder characterised by impaired connectivity, the precise neuroelectric characteristics of impaired cortical communication remain to be fully elucidated. Here, we characterise changes in functional connectivity using beamformer source analysis on resting-state electroencephalography recordings from 74 ALS patients and 47 age-matched healthy controls. Spatiospectral characteristics of network changes in the ALS patient group were quantified by spectral power, amplitude envelope correlation (co-modulation) and imaginary coherence (synchrony). We show patterns of decreased spectral power in the occipital and temporal (δ- to β-band), lateral/orbitofrontal (δ- to θ-band) and sensorimotor (β-band) regions of the brain in patients with ALS. Furthermore, we show increased co-modulation of neural oscillations in the central and posterior (δ-, θ- and γl -band) and frontal (δ- and γl -band) regions, as well as decreased synchrony in the temporal and frontal (δ- to β-band) and sensorimotor (β-band) regions. Factorisation of these complex connectivity patterns reveals a distinct disruption of both motor and nonmotor networks. The observed changes in connectivity correlated with structural MRI changes, functional motor scores and cognitive scores. Characteristic patterned changes of cortical function in ALS signify widespread disease-associated network disruption, pointing to extensive dysfunction of both motor and cognitive networks. These statistically robust findings, that correlate with clinical scores, provide a strong rationale for further development as biomarkers of network disruption for future clinical trials.

Keywords: EEG; amyotrophic lateral sclerosis; functional connectivity; motor neurone disease; resting state; source localisation.

© 2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.

Figures

Figure 1
Figure 1
In amyotrophic lateral sclerosis (ALS), spectral power is significantly decreased between δ and β frequency bands. Notice the dominant decrease in the posterior and temporal regions. Statistical difference between healthy controls (n = 47) and ALS patients (n = 74) was assessed in the six defined frequency bands using empirical Bayesian inference (EBI). False discovery rate (FDR) was set to 10%, yielding an estimated statistical power of 1–β = .82 and posterior probability of P1 = .64 (across all frequency bands). AUC, area under the receiver operating characteristic curve. No changes were detected in the γ frequency bands; therefore, they are not shown. Frequency bands: δ (2–4 Hz), θ (5–7 Hz), α (8–13 Hz) and β (14–30 Hz) [Color figure can be viewed at http://wileyonlinelibrary.com]
Figure 2
Figure 2
In amyotrophic lateral sclerosis (ALS), the average co‐modulation is significantly increased in the δ, θ and γ frequency bands. Notice the increase of amplitude envelope correlation (AEC) in the central and posterior regions (δ‐, θ‐ and γl‐band) and frontal regions (δ‐ and γl‐band). Statistical difference between healthy controls (n = 47) and ALS patients (n = 74) was assessed in the six defined frequency bands using empirical Bayesian inference (EBI). False discovery rate (FDR) was set to 10%, yielding an estimated statistical power of 1–β = .93 and posterior probability of P1 = .71 (across all frequency bands). AUC, area under the receiver operating characteristic curve. Frequency bands: δ (2–4 Hz), θ (5–7 Hz), α (8–13 Hz), β (14–30 Hz) and γ (γl: 31–47 Hz, γh: 53–97 Hz) [Color figure can be viewed at http://wileyonlinelibrary.com]
Figure 3
Figure 3
In amyotrophic lateral sclerosis (ALS), the average synchrony is significantly decreased in the δ and β frequency bands. Notice the decrease of imaginary coherence (iCoh) in temporal and frontal lobes (δ‐, θ‐ and α‐band), and in the sensorimotor cortex (β‐band). Statistical difference between healthy controls (n = 47) and ALS patients (n = 74) was assessed in the six defined frequency bands using empirical Bayesian inference (EBI). False discovery rate (FDR) was set to 10%, yielding an estimated statistical power of 1–β = .55 and posterior probability of P1 = .77 (across all frequency bands). AUC, area under the receiver operating characteristic curve. No changes were detected in the γ frequency bands; therefore, they are not shown. Frequency bands: δ (2–4 Hz), θ (5–7 Hz), α (8–13 Hz) and β (14–30 Hz) [Color figure can be viewed at http://wileyonlinelibrary.com]
Figure 4
Figure 4
The increase of point‐to‐point co‐modulation and the decrease of point‐to‐point synchrony have a widespread pattern in amyotrophic lateral sclerosis (ALS) patients. Note that the widespread patterns of increased co‐modulation [amplitude envelope correlation (AEC)] are predominantly in the θ‐ and γl‐bands, while synchrony [imaginary coherence (iCoh)] patterns were predominantly in the δ‐ and β‐bands. Statistical difference between healthy controls (n = 47) and ALS patients (n = 74) was assessed separately in the six defined frequency bands using empirical Bayesian inference (EBI). False discovery rate (FDR) was set to 10% (in each frequency band), yielding an estimated statistical power of 1–β = .96 and posterior probability of P1 = .56 in the θ‐band AEC and an estimated statistical power of 1–β = .89 and posterior probability of P1 = .7 in the γl‐band AEC. For synchrony measures, the 10% FDR threshold yielded an estimated statistical power of 1–β = .39 and posterior probability of P1 = .8 in the δ‐band iCoh and an estimated statistical power of 1–β = .16 and posterior probability of P1 = .83 in the β‐band iCoh. AUC, area under the receiver operating characteristic curve. No changes were detected in the other frequency bands; therefore, they are not shown. The abbreviations ‘Front’, ‘Cntr/Prtl’, ‘Occp’, ‘Tmp’ and ‘Subcort’ stand for frontal, central/parietal, occipital, temporal and subcortical, respectively. For the order of ROIs used in the connectivity matrix, see Figure S2, Supporting Information. Frequency bands: δ (2–4 Hz), θ (5–7 Hz), β (14–30 Hz) and γl (31–47 Hz) [Color figure can be viewed at http://wileyonlinelibrary.com]
Figure 5
Figure 5
The connectivity modules reveal the (sub‐)network with frequency‐specific increase of co‐modulation and decrease of synchrony in amyotrophic lateral sclerosis (ALS). The factorised (sub‐)networks resemble the occipital network (a), motor loops of basal ganglia and/or thalamus (b), frontal network (c), sensorimotor network (d), frontoparietal network (e), frontotemporal network (f) and combined occipitofrontal and uncinate fasciculus (g). The connectivity modules from non‐negative matrix factorisation analysis of the affected co‐modulation or synchrony in ALS reveal the altered brain networks, while the changes in module's weights show the increase or decrease in the activity of these networks. Statistical analysis between ALS patients and healthy controls (nc = 47 and np = 47) of the weights corresponding to the connectivity modules reached significance in all cases (marked with asterisk) as controlled by adaptive false discovery rate (aFDR) at q = 0.05. Frequency bands: δ (2–4 Hz), θ (5–7 Hz), β (14–30 Hz) and γl (31–47 Hz) [Color figure can be viewed at http://wileyonlinelibrary.com]
Figure 6
Figure 6
The observed electroencephalography (EEG) spectral power and connectivity changes are not different between amyotrophic lateral sclerosis (ALS) subgroups. The comparison shows the differences between healthy controls and ALS subgroups. Statistical difference between healthy controls and pooled ALS patients was assessed using Mann–Whitney U test, whereas statistical difference between patient subgroups was assessed using two‐way analysis of variance (ANOVA) in all three measures, each in two frequency bands with the most prominent changes (see Figures 1, 2, 3). None of the measures showed statistically significant difference among ALS subgroups. Spectral power data were log‐transformed for plotting purposes. The abbreviations ‘HC’, ‘SPN’, ‘BULB’, ‘C9‐’ and ‘C9+’ stand for healthy controls, spinal, bulbar, C9ORF72‐negative and C9ORF72‐postive, respectively. The number of ALS patients in each subgroup are N = 55, 15, 63 and 7, respectively. There are six C9ORF72‐postive patients in the spinal and one in the bulbar subgroup. Frequency bands: δ (2–4 Hz), θ (5–7 Hz) and β (14–30 Hz)
Figure 7
Figure 7
The changes in electroencephalography (EEG) connectivity correlate with the structural atrophy in MRI in the motor (a) and cognitive (b) networks, as well as measures of functional motor impairment [(c) amyotrophic lateral sclerosis Functional Rating Scale (ALSFRS‐R)], functional cognitive impairment [(d and e) standardised neuropsychological battery scores]. The values of r and p correspond to Spearman's partial correlation corrected for age (a–c) and Spearman's correlation (d and e), whereas 1‐β0.05 represents statistical power at 0.05. The number of ALS patients used in the analyses are N = 37, 37, 61, 34 and 34, respectively. The shown p‐values are adaptive false discovery rate (aFDR) corrected at q = 0.05. Frequency bands: δ (2–4 Hz), θ (5–7 Hz), β (14–30 Hz) and γl (31–47 Hz) [Color figure can be viewed at http://wileyonlinelibrary.com]

References

    1. Abrahams, S. , Goldstein, L. H. , Simmons, A. , Brammer, M. , Williams, S. C. R. , Giampietro, V. , & Leigh, P. N. (2004). Word retrieval in amyotrophic lateral sclerosis: A functional magnetic resonance imaging study. Brain, 127, 1507–1517. 10.1093/brain/awh170
    1. Abrahams, S. , Goldstein, L. H. , Suckling, J. , Ng, V. , Simmons, A. , Chitnis, X. , … Leigh, P. N. (2005). Frontotemporal white matter changes in amyotrophic lateral sclerosis. Journal of Neurology, 252, 321–331. 10.1007/s00415-005-0646-x
    1. Abrahams, S. , Newton, J. , Niven, E. , Foley, J. , & Bak, T. H. (2014). Screening for cognition and behaviour changes in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 15, 9–14. 10.3109/21678421.2013.805784
    1. Achi, E. Y. , & Rudnicki, S. A. (2012). ALS and Frontotemporal dysfunction: A review. Neurology Research International, 2012, 806306–806309. 10.1155/2012/806306
    1. Agosta, F. , Canu, E. , Valsasina, P. , Riva, N. , Prelle, A. , Comi, G. , & Filippi, M. (2013). Divergent brain network connectivity in amyotrophic lateral sclerosis. Neurobiology of Aging, 34, 419–427. 10.1016/j.neurobiolaging.2012.04.015
    1. Agosta, F. , Valsasina, P. , Absinta, M. , Riva, N. , Sala, S. , Prelle, A. , … Filippi, M. (2011). Sensorimotor functional connectivity changes in amyotrophic lateral sclerosis. Cerebral Cortex, 21, 2291–2298. 10.1093/cercor/bhr002
    1. Barbas, H. (2015). General cortical and special prefrontal connections: Principles from structure to function. Annual Review of Neuroscience, 38, 269–289. 10.1146/annurev-neuro-071714-033936
    1. Baron‐Cohen, S. , Wheelwright, S. , Hill, J. , Raste, Y. , & Plumb, I. (2001). The ‘Reading the mind in the eyes’ test revised version: A study with Normal adults, and adults with Asperger syndrome or high‐functioning autism. Journal of Child Psychology and Psychiatry, 42, 241–251. 10.1111/1469-7610.00715
    1. Beasley, T. M. , Erickson, S. , & Allison, D. B. (2009). Rank‐based inverse Normal transformations are increasingly used, but are they merited? Behavior Genetics, 39, 580–595. 10.1007/s10519-009-9281-0
    1. Bede, P. , Bokde, A. , Elamin, M. , Byrne, S. , McLaughlin, R. L. , Jordan, N. , … Hardiman, O. (2013). Grey matter correlates of clinical variables in amyotrophic lateral sclerosis (ALS): A neuroimaging study of ALS motor phenotype heterogeneity and cortical focality. Journal of Neurology, Neurosurgery, and Psychiatry, 84, 766–773. 10.1136/jnnp-2012-302674
    1. Bede, P. , Iyer, P. M. , Finegan, E. , Omer, T. , & Hardiman, O. (2017). Virtual brain biopsies in amyotrophic lateral sclerosis: Diagnostic classification based on in vivo pathological patterns. NeuroImage: Clinical, 15, 653–658. 10.1016/j.nicl.2017.06.010
    1. Bede, P. , Omer, T. , Finegan, E. , Chipika, R. H. , Iyer, P. M. , Doherty, M. A. , … Hardiman, O. (2018). Connectivity‐based characterisation of subcortical grey matter pathology in frontotemporal dementia and ALS: A multimodal neuroimaging study. Brain Imaging and Behavior, 12, 1696–1707. 10.1007/s11682-018-9837-9
    1. Benjamini, Y. , Krieger, A. M. , & Yekutieli, D. (2006). Adaptive linear step‐up procedures that control the false discovery rate. Biometrika, 93, 491–507. 10.1093/biomet/93.3.491
    1. Bizovičar, N. , Dreo, J. , Koritnik, B. , & Zidar, J. (2014). Decreased movement‐related beta desynchronization and impaired post‐movement beta rebound in amyotrophic lateral sclerosis. Clinical Neurophysiology, 125, 1689–1699. 10.1016/J.CLINPH.2013.12.108
    1. Blain‐Moraes, S. , Mashour, G. A. , Lee, H. , Huggins, J. E. , & Lee, U. (2013). Altered cortical communication in amyotrophic lateral sclerosis. Neuroscience Letters, 543, 172–176. 10.1016/J.NEULET.2013.03.028
    1. Bowers, D. , Blonder, L. X. , & Heilman, K. M. (1991). Florida affect battery. Gainesville, FL: Center for Neuropsychological Studies, University of Florida.
    1. Brookes, M. J. , Hale, J. R. , Zumer, J. M. , Stevenson, C. M. , Francis, S. T. , Barnes, G. R. , … Nagarajan, S. S. (2011). Measuring functional connectivity using MEG: Methodology and comparison with fcMRI. NeuroImage, 56, 1082–1104. 10.1016/j.neuroimage.2011.02.054
    1. Brookes, M. J. , Woolrich, M. W. , & Barnes, G. R. (2012). Measuring functional connectivity in MEG: A multivariate approach insensitive to linear source leakage. NeuroImage, 63, 910–920. 10.1016/j.neuroimage.2012.03.048
    1. Bruns, A. , Eckhorn, R. , Jokeit, H. , & Ebner, A. (2000). Amplitude envelope correlation detects coupling among incoherent brain signals. Neuroreport, 11, 1509–1514. 10.1097/00001756-200005150-00028
    1. Burke, T. , Pinto‐Grau, M. , Lonergan, K. , Bede, P. , O'Sullivan, M. , Heverin, M. , … Hardiman, O. (2017). A cross‐sectional population‐based investigation into behavioral change in amyotrophic lateral sclerosis: Subphenotypes, staging, cognitive predictors, and survival. Annals of Clinical and Translational Neurology, 4, 305–317. 10.1002/acn3.407
    1. Buzsáki, G. , & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304, 1926–1929. 10.1126/science.1099745
    1. Cassim, F. , Monaca, C. , Szurhaj, W. , Bourriez, J.‐L. , Defebvre, L. , Derambure, P. , & Guieu, J.‐D. (2001). Does post‐movement beta synchronization reflect an idling motor cortex? Neuroreport, 12, 3859–3863.
    1. Cedarbaum, J. M. , Stambler, N. , Malta, E. , Fuller, C. , Hilt, D. , Thurmond, B. , & Nakanishi, A. (1999). The ALSFRS‐R: A revised ALS functional rating scale that incorporates assessments of respiratory function. Journal of the Neurological Sciences, 169, 13–21. 10.1016/S0022-510X(99)00210-5
    1. Delis, D. C. , Kaplan, E. , & Kramer, J. H. (2001). Delis‐Kaplan Executive Function System (D‐KEFS). San Antonio, TX: Psychological Corporation.
    1. Douaud, G. , Filippini, N. , Knight, S. , Talbot, K. , & Turner, M. R. (2011). Integration of structural and functional magnetic resonance imaging in amyotrophic lateral sclerosis. Brain, 134, 3470–3479. 10.1093/brain/awr279
    1. Dukic, S. , Iyer, P. M. , Mohr, K. , Hardiman, O. , Lalor, E. C. , & Nasseroleslami, B. (2017). Estimation of coherence using the median is robust against EEG artefacts. In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 3949–3952). Jeju Island, Republic of Korea: IEEE. 10.1109/EMBC.2017.8037720
    1. Efron, B. (2007). Size, power and false discovery rates. The Annals of Statistics, 35, 1351–1377. 10.1214/009053606000001460
    1. Efron, B. , Tibshirani, R. , Storey, J. D. , & Tusher, V. (2001). Empirical Bayes analysis of a microarray experiment. Journal of the American Statistical Association, 96, 1151–1160. 10.1198/016214501753382129
    1. Engel, A. K. , Gerloff, C. , Hilgetag, C. C. , & Nolte, G. (2013). Intrinsic coupling modes: Multiscale interactions in ongoing brain activity. Neuron, 80, 867–886. 10.1016/J.NEURON.2013.09.038
    1. Fraschini, M. , Lai, M. , Demuru, M. , Puligheddu, M. , Floris, G. , Borghero, G. , & Marrosu, F. (2018). Functional brain connectivity analysis in amyotrophic lateral sclerosis: An EEG source‐space study. Biomedical Physics & Engineering Express, 4, 037004 10.1088/2057-1976/aa9c64
    1. Graves, R. E. , Bezeau, S. C. , Fogarty, J. , & Blair, R. (2004). Boston naming test short forms: A comparison of previous forms with new item response theory based forms. Journal of Clinical and Experimental Neuropsychology, 26, 891–902. 10.1080/13803390490510716
    1. Hardiman, O. , Van Den Berg, L. H. , & Kiernan, M. C. (2011). Clinical diagnosis and management of amyotrophic lateral sclerosis. Nature Reviews Neurology, 7, 639–649. 10.1038/nrneurol.2011.153
    1. Heimrath, J. , Gorges, M. , Kassubek, J. , Müller, H.‐P. , Birbaumer, N. , Ludolph, A. C. , & Lulé, D. (2014). Additional resources and the default mode network: Evidence of increased connectivity and decreased white matter integrity in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 15, 537–545. 10.3109/21678421.2014.911914
    1. Hipp, J. F. , Hawellek, D. J. , Corbetta, M. , Siegel, M. , & Engel, A. K. (2012). Large‐scale cortical correlation structure of spontaneous oscillatory activity. Nature Neuroscience, 15, 884–890. 10.1038/nn.3101
    1. Hipp, J. F. , & Siegel, M. (2015). BOLD fMRI correlation reflects frequency‐specific neuronal correlation. Current Biology, 25, 1368–1374. 10.1016/J.CUB.2015.03.049
    1. Iyer, P. M. , Egan, C. , Pinto‐Grau, M. , Burke, T. , Elamin, M. , Nasseroleslami, B. , … Hardiman, O. (2015). Functional connectivity changes in resting‐state EEG as potential biomarker for amyotrophic lateral sclerosis. PLoS One, 10, e0128682 10.1371/journal.pone.0128682
    1. Iyer, P. M. , Mohr, K. , Broderick, M. , Gavin, B. , Burke, T. , Bede, P. , … Nasseroleslami, B. (2017). Mismatch negativity as an indicator of cognitive sub‐domain dysfunction in amyotrophic lateral sclerosis. Frontiers in Neurology, 8, 395 10.3389/fneur.2017.00395
    1. Jensen, O. , Bonnefond, M. , Marshall, T. R. , & Tiesinga, P. (2015). Oscillatory mechanisms of feedforward and feedback visual processing. Trends in Neurosciences, 38, 192–194. 10.1016/J.TINS.2015.02.006
    1. Kassubek, J. , Müller, H.‐P. , Del Tredici, K. , Lulé, D. , Gorges, M. , Braak, H. , & Ludolph, A. C. (2018). Imaging the pathoanatomy of amyotrophic lateral sclerosis in vivo: Targeting a propagation‐based biological marker. Journal of Neurology, Neurosurgery, and Psychiatry, 89, 374–381. 10.1136/jnnp-2017-316365
    1. Kay, J. , Lesser, R. , & Coltheart, M. (1992). Psycholinguistic assessments of language processing in aphasia (PALPA). Hove, England: Lawrence Erlbaum Associates.
    1. Khanna, P. , & Carmena, J. M. (2015). Neural oscillations: Beta band activity across motor networks. Current Opinion in Neurobiology, 32, 60–67. 10.1016/J.CONB.2014.11.010
    1. Kopell, N. , Kramer, M. A. , Malerba, P. , & Whittington, M. A. (2010). Are different rhythms good for different functions? Frontiers in Human Neuroscience, 4, 187 10.3389/fnhum.2010.00187
    1. Laufs, H. (2008). Endogenous brain oscillations and related networks detected by surface EEG‐combined fMRI. Human Brain Mapping, 29, 762–769. 10.1002/hbm.20600
    1. Leopold, D. A. , Murayama, Y. , & Logothetis, N. K. (2003). Very slow activity fluctuations in monkey visual cortex: Implications for functional brain imaging. Cerebral Cortex, 13, 422–433. 10.1093/cercor/13.4.422
    1. Ludolph, A. , Drory, V. , Hardiman, O. , Nakano, I. , Ravits, J. , Robberecht, W. , … The WFN Research Group On ALS/MND . (2015). A revision of the El Escorial criteria ‐ 2015. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 16, 291–292. 10.3109/21678421.2015.1049183
    1. McMackin, R. , Bede, P. , Pender, N. , Hardiman, O. , & Nasseroleslami, B. (2019). Neurophysiological markers of network dysfunction in neurodegenerative diseases. NeuroImage: Clinical, 22, 101706 10.1016/j.nicl.2019.101706
    1. McMackin, R. , Dukic, S. , Broderick, M. , Iyer, P. M. , Pinto‐Grau, M. , Mohr, K. , … Nasseroleslami, B. (2019). Dysfunction of attention switching networks in amyotrophic lateral sclerosis. NeuroImage: Clinical, 22, 101707 10.1016/J.NICL.2019.101707
    1. McMackin, R. , Muthuraman, M. , Groppa, S. , Babiloni, C. , Taylor, J.‐P. , Kiernan, M. C. , … Hardiman, O. (2019). Measuring network disruption in neurodegenerative diseases: New approaches using signal analysis. Journal of Neurology, Neurosurgery, and Psychiatry. 10.1136/jnnp-2018-319581
    1. Munk, M. H. , Roelfsema, P. R. , König, P. , Engel, A. K. , & Singer, W. (1996). Role of reticular activation in the modulation of intracortical synchronization. Science, 272, 271–274. 10.1126/SCIENCE.272.5259.271
    1. Murphy, J. , Henry, R. , & Lomen‐Hoerth, C. (2007). Establishing subtypes of the continuum of frontal lobe impairment in amyotrophic lateral sclerosis. Archives of Neurology, 64, 330–334. 10.1001/archneur.64.3.330
    1. Nasseroleslami, B. (2018). An implementation of empirical Bayesian inference and non‐null bootstrapping for threshold selection and power estimation in multiple and single statistical testing. BioRxiv, 342964 10.1101/342964
    1. Nasseroleslami, B. , Dukic, S. , Broderick, M. , Mohr, K. , Schuster, C. , Gavin, B. , … Hardiman, O. (2019). Characteristic increases in EEG connectivity correlate with changes of structural MRI in amyotrophic lateral sclerosis. Cerebral Cortex, 29, 27–41. 10.1093/cercor/bhx301
    1. Neary, D. , Snowden, J. S. , Gustafson, L. , Passant, U. , Stuss, D. , Black, S. , … Benson, D. F. (1998). Frontotemporal lobar degeneration. Neurology, 51, 1546–1554 Retrieved from
    1. Nihei, K. , McKee, A. C. , & Kowall, N. W. (1993). Patterns of neuronal degeneration in the motor cortex of amyotrophic lateral sclerosis patients. Acta Neuropathologica, 86, 55–64. 10.1007/BF00454899
    1. Nolte, G. , Bai, O. , Wheaton, L. , Mari, Z. , Vorbach, S. , & Hallett, M. (2004). Identifying true brain interaction from EEG data using the imaginary part of coherency. Clinical Neurophysiology, 115, 2292–2307. 10.1016/J.CLINPH.2004.04.029
    1. Omer, T. , Finegan, E. , Hutchinson, S. , Doherty, M. , Vajda, A. , McLaughlin, R. L. , … Bede, P. (2017). Neuroimaging patterns along the ALS‐FTD spectrum: A multiparametric imaging study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 18, 611–623. 10.1080/21678421.2017.1332077
    1. Oostenveld, R. , Fries, P. , Maris, E. , & Schoffelen, J.‐M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 156869–156869. 10.1155/2011/156869
    1. Paatero, P. , & Tapper, U. (1994). Positive matrix factorization: A non‐negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5, 111–126. 10.1002/env.3170050203
    1. Palva, J. M. , Wang, S. H. , Palva, S. , Zhigalov, A. , Monto, S. , Brookes, M. J. , … Jerbi, K. (2018). Ghost interactions in MEG/EEG source space: A note of caution on inter‐areal coupling measures. NeuroImage, 173, 632–643. 10.1016/J.NEUROIMAGE.2018.02.032
    1. Perrin, F. , Pernier, J. , Bertrand, O. , & Echallier, J. F. (1989). Spherical splines for scalp potential and current density mapping. Electroencephalography and Clinical Neurophysiology, 72, 184–187. 10.1016/0013-4694(89)90180-6
    1. Pinto‐Grau, M. , Burke, T. , Lonergan, K. , McHugh, C. , Mays, I. , Madden, C. , … Pender, N. (2017). Screening for cognitive dysfunction in ALS: Validation of the Edinburgh Cognitive and Behavioural ALS Screen (ECAS) using age and education adjusted normative data. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 18, 99–106. 10.1080/21678421.2016.1249887
    1. Proudfoot, M. , Colclough, G. L. , Quinn, A. , Wuu, J. , Talbot, K. , Benatar, M. , … Turner, M. R. (2018). Increased cerebral functional connectivity in ALS: A resting‐state magnetoencephalography study. Neurology, 90, e1418–e1424. 10.1212/WNL.0000000000005333
    1. Proudfoot, M. , Rohenkohl, G. , Quinn, A. , Colclough, G. L. , Wuu, J. , Talbot, K. , … Turner, M. R. (2017). Altered cortical beta‐band oscillations reflect motor system degeneration in amyotrophic lateral sclerosis. Human Brain Mapping, 38, 237–254. 10.1002/hbm.23357
    1. Proudfoot, M. , van Ede, F. , Quinn, A. , Colclough, G. L. , Wuu, J. , Talbot, K. , … Turner, M. R. (2018). Impaired corticomuscular and interhemispheric cortical beta oscillation coupling in amyotrophic lateral sclerosis. Clinical Neurophysiology, 129, 1479–1489. 10.1016/j.clinph.2018.03.019
    1. Ptak, R. (2012). The frontoparietal attention network of the human brain. The Neuroscientist, 18, 502–515. 10.1177/1073858411409051
    1. Riva, N. , Falini, A. , Inuggi, A. , Gonzalez‐Rosa, J. J. , Amadio, S. , Cerri, F. , … Leocani, L. (2012). Cortical activation to voluntary movement in amyotrophic lateral sclerosis is related to corticospinal damage: Electrophysiological evidence. Clinical Neurophysiology, 123, 1586–1592. 10.1016/J.CLINPH.2011.12.013
    1. Schmidt, R. , Verstraete, E. , de Reus, M. A. , Veldink, J. H. , van den Berg, L. H. , & van den Heuvel, M. P. (2014). Correlation between structural and functional connectivity impairment in amyotrophic lateral sclerosis. Human Brain Mapping, 35, 4386–4395. 10.1002/hbm.22481
    1. Schoffelen, J.‐M. , & Gross, J. (2009). Source connectivity analysis with MEG and EEG. Human Brain Mapping, 30, 1857–1865. 10.1002/hbm.20745
    1. Schuster, C. , Elamin, M. , Hardiman, O. , & Bede, P. (2016). The segmental diffusivity profile of amyotrophic lateral sclerosis associated white matter degeneration. European Journal of Neurology, 23, 1361–1371. 10.1111/ene.13038
    1. Schuster, C. , Hardiman, O. , & Bede, P. (2017). Survival prediction in amyotrophic lateral sclerosis based on MRI measures and clinical characteristics. BMC Neurology, 17, 73 10.1186/s12883-017-0854-x
    1. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464. 10.2307/2958889
    1. Siegel, M. , Donner, T. H. , & Engel, A. K. (2012). Spectral fingerprints of large‐scale neuronal interactions. Nature Reviews Neuroscience, 13, 121–134. 10.1038/nrn3137
    1. Sorrentino, P. , Rucco, R. , Jacini, F. , Trojsi, F. , Lardone, A. , Baselice, F. , … Sorrentino, G. (2018). Brain functional networks become more connected as amyotrophic lateral sclerosis progresses: A source level magnetoencephalographic study. NeuroImage: Clinical, 20, 564–571. 10.1016/J.NICL.2018.08.001
    1. Tagliazucchi, E. , von Wegner, F. , Morzelewski, A. , Brodbeck, V. , & Laufs, H. (2012). Dynamic BOLD functional connectivity in humans and its electrophysiological correlates. Frontiers in Human Neuroscience, 6, 339 10.3389/fnhum.2012.00339
    1. Tzourio‐Mazoyer, N. , Landeau, B. , Papathanassiou, D. , Crivello, F. , Etard, O. , Delcroix, N. , … Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single‐subject brain. NeuroImage, 15, 273–289. 10.1006/NIMG.2001.0978
    1. Van Veen, B. D. , Van Drongelen, W. , Yuchtman, M. , & Suzuki, A. (1997). Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Transactions on Biomedical Engineering, 44, 867–880. 10.1109/10.623056
    1. Vucic, S. , Cheah, B. C. , Yiannikas, C. , & Kiernan, M. C. (2011). Cortical excitability distinguishes ALS from mimic disorders. Clinical Neurophysiology, 122, 1860–1866. 10.1016/J.CLINPH.2010.12.062
    1. Walhout, R. , Westeneng, H.‐J. , Verstraete, E. , Hendrikse, J. , Veldink, J. H. , van den Heuvel, M. P. , & van den Berg, L. H. (2015). Cortical thickness in ALS: Towards a marker for upper motor neuron involvement. Journal of Neurology, Neurosurgery and Psychiatry, 86, 288–294 Retrieved from
    1. Wechsler, D. (2014). Wechsler adult intelligence scale‐Fourth Edition (WAIS–IV). San Antonio, TX: Psychological Corporation.
    1. Zhou, X.‐H. , McClish, D. , & Obuchowski, N. (2011). Statistical methods in diagnostic medicine. Wiley series in probability and statistics. Hoboken, NJ: Wiley.

Source: PubMed

Подписаться