Effects of Nutritional Interventions during Pregnancy on Infant and Child Cognitive Outcomes: A Systematic Review and Meta-Analysis

Rachael M Taylor, Shanna M Fealy, Alessandra Bisquera, Roger Smith, Clare E Collins, Tiffany-Jane Evans, Alexis J Hure, Rachael M Taylor, Shanna M Fealy, Alessandra Bisquera, Roger Smith, Clare E Collins, Tiffany-Jane Evans, Alexis J Hure

Abstract

Background: Epidemiological studies have demonstrated that folate, iodine and iron intake during pregnancy impacts on foetal brain development and cognitive function. However, in human studies, the relationship with other dietary nutrients is less clear.

Objective: This systematic review aims to critically appraise the current literature and meta-analyses results from nutritional interventions during pregnancy that aimed to optimise infant and child cognitive outcomes.

Design: Ten electronic databases were searched for articles published up to August 2017. The search was limited to articles published in English. Randomised controlled trials (RCTs) testing the impact of any nutritional intervention (dietary counselling, education, nutrient supplementation, fortified foods and/or foods) during pregnancy on cognitive outcomes of children (<10 years old). Two independent reviewers assessed study eligibility and quality using the American Dietetic Association quality criteria checklist for primary research. Standardised mean differences were used for nine cognitive domains to measure effects for meta-analyses.

Results: A total of 34 RCTs were included (21 studies included children aged less than 35 months, 10 studies included children aged 36-60 months and 3 studies included children aged 61-119 months). The types of nutritional interventions included nutrient supplements, whole foods, fortified foods and nutrition education. The following nine cognition outcomes: attention, behaviour, crystallised intelligence, fluid intelligence, global cognition, memory, motor skills, visual processing, and problem solving were not significantly impacted by nutritional interventions, although 65% of studies conducted post-hoc data analyses and were likely to be underpowered. Although, long chain polyunsaturated fatty acids (LCPUFA) supplementation was associated with a marginal increase in crystallised intelligence (Effect size (ES): 0.25; 95% confidence interval (95% CI): -0.04, 0.53), the effect was not statistically significant (p = 0.09), with significant study heterogeneity (p = 0.00).

Conclusions: LCPUFA supplementation may be associated with an improvement in child crystallised intelligence, however further research is warranted. The remaining eight cognition domains were not significantly impacted by maternal nutritional interventions.

Keywords: behaviour; child; cognition; cognitive function; infant; nutrition; pregnancy; supplement.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow chart for study selection process.
Figure 2
Figure 2
Forest plot for child behaviour outcomes. The overall effect size was estimated by standardised mean difference (SMD). LCPUFA, long chain polyunsaturated fatty acids. D+L, random-effects estimate (Der Simonian and Laird method) and I-V, fixed-effects estimate (inverse variance method).
Figure 3
Figure 3
Forest plot for child motor skills outcomes. The overall effect size was estimated by standardised mean difference (SMD). LCPUFA, long chain polyunsaturated fatty acids; MMN, multiple micronutrient. D+L, random-effects estimate (Der Simonian and Laird method) and I-V, fixed-effects estimate (inverse variance method).
Figure 4
Figure 4
Forest plot for child fluid intelligence outcomes. The overall effect size was estimated by standardised mean difference (SMD). LCPUFA, long chain polyunsaturated fatty acids; MMN, multiple micronutrient. D+L, random-effects estimate (Der Simonian and Laird method) and I-V, fixed-effects estimate (inverse variance method).
Figure 5
Figure 5
Forest plot for child global cognition outcomes. The overall effect size was estimated by standardised mean difference (SMD). LCPUFA, long chain polyunsaturated fatty acids; MMN, multiple micronutrient. D+L, random-effects estimate (Der Simonian and Laird method) and I-V, fixed-effects estimate (inverse variance method).
Figure 6
Figure 6
Forest plot for child crystallised intelligence outcomes. The overall effect size was estimated by standardised mean difference (SMD). LCPUFA, long chain polyunsaturated fatty acids; MMN, multiple micronutrient. D+L, random-effects estimate (Der Simonian and Laird method) and I-V, fixed-effects estimate (inverse variance method).
Figure 7
Figure 7
Funnel plot for child crystallized intelligence outcomes with 95% confidence limits. meanSE, mean standard error.

References

    1. Couperus J.W., Nelson C.A. Early brain development and plasticity. In: McCartney K., Phillips D., editors. The Blackwell Handbook of Early Childhood Development. Blackwell Publishing Ltd.; Malden, MA, USA: 2006. pp. 85–105.
    1. Hibbard E.D., Smithells R.W. Folic acid metabolism and human embryopathy. Lancet. 1965;285:1254. doi: 10.1016/S0140-6736(65)91895-7.
    1. Wald N., Sneddon J. Prevention of neural tube defects: Results of the Medical Research Council Vitamin Study. Lancet. 1991;338:131–137. doi: 10.1016/0020-7292(92)90076-U.
    1. Smithells R.W., Sheppard S., Schorah C.J. Vitamin deficiencies and neural tube defects. Arch. Dis. Child. 1976;51:944–950. doi: 10.1136/adc.51.12.944.
    1. Smithells R.W., Sheppard S., Schorah C.J., Seller M.J., Nevin N.C., Harris R., Read A.P., Fielding D.W. Apparent prevention of neural tube defects by periconceptional vitamin supplementation. Arch. Dis. Child. 1981;56:911–918. doi: 10.1136/adc.56.12.911.
    1. Czeizel A.E., Dudas I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamins supplementation. N. Engl. J. Med. 1992;327:1832–1835. doi: 10.1056/NEJM199212243272602.
    1. Thompson R.A., Nelson C.A. Developmental science and the media. Early brain development. Am. Psychol. 2001;56:5–15. doi: 10.1037/0003-066X.56.1.5.
    1. Bernal J., Nunez J. Thyroid hormones and brain development. Eur. J. Endocrinol. 1995;133:390–398. doi: 10.1530/eje.0.1330390.
    1. Rao R., Tkac I., Townsend E.L., Ennis K., Gruetter R., Georgieff M.K. Perinatal iron deficiency predisposes the developing rat hippocampus to greater injury from mild to moderate hypoxia-ischemia. J. Cereb. Blood Flow Metab. 2007;27:729–740. doi: 10.1038/sj.jcbfm.9600376.
    1. Ward K.L., Tkac I., Jing Y., Felt B., Beard J., Connor J., Schallert T., Georgieff M.K., Rao R. Gestational and lactational iron deficiency alters the developing striatal metabolome and associated behaviors in young rats. J. Nutr. 2007;137:1043–1049.
    1. Wiesinger J.A., Buwen J.P., Cifelli C.J., Unger E.L., Jones B.C., Beard J.L. Down-regulation of dopamine transporter by iron chelation in vitro is mediated by altered trafficking, not synthesis. J. Neurochem. 2007;100:167–179. doi: 10.1111/j.1471-4159.2006.04175.x.
    1. Lozoff B., De Andraca I., Castillo M., Smith J.B., Walter T., Pino P. Behavioral and Developmental Effects of Preventing Iron-Deficiency Anemia in Healthy Full-Term Infants. Pediatrics. 2003;112:846–854.
    1. Fox S.E., Levitt P., Nelson C.A. How the Timing and Quality of Early Experiences Influence the Development of Brain Architecture. Child. Dev. 2010;81:28–40. doi: 10.1111/j.1467-8624.2009.01380.x.
    1. Cusick S.E., Georgieff M.K. The Role of Nutrition in Brain Development: The Golden Opportunity of the “First 1000 Days”. J. Pediatr. 2016;175:16–21. doi: 10.1016/j.jpeds.2016.05.013.
    1. Sampaio R.C., Truwit C.L. Myelination in the developing human brain. In: Nelson C.A., Luciana M., editors. Handbook of Developmental Cognitive Neuroscience. MIT Press; Cambridge, MA, USA: 2001. pp. 35–44.
    1. Thatcher R.W. Maturation of the human frontal lobes: Physiological evidence for staging. Dev. Neuropsychol. 1991;7:397–419. doi: 10.1080/87565649109540500.
    1. Bryan J., Osendarp S., Hughes D., Calvaresi E., Baghurst K., Van Klinken J.W. Nutrients for cognitive development in school-aged children. Nutr. Rev. 2004;62:295–306. doi: 10.1111/j.1753-4887.2004.tb00055.x.
    1. Anjos T., Altmae S., Emmett P., Tiemeier H., Closa-Monasterolo R., Luque V., Wiseman S., Pérez-García M., Lattka E., Demmelmair H., et al. Nutrition and neurodevelopment in children: Focus on NUTRIMENTHE project. Eur. J. Nutr. 2013;52:1825–1842. doi: 10.1007/s00394-013-0560-4.
    1. Prado E.L., Dewey K.G. Nutrition and brain development in early life. Nutr. Rev. 2014;72:267–284. doi: 10.1111/nure.12102.
    1. Florence M., Asbridge M., Veugelers P.J. Diet quality and academic performance. J. School Health. 2008;78:209–215. doi: 10.1111/j.1746-1561.2008.00288.x.
    1. Farrington D.P. Early predictors of adolescent aggression and adult violence. Violence Vict. 1989;4:79–100.
    1. Kaslow F.W., Lipsitt P.D., Buka S.L., Lipsitt L.P. Family law issues in family therapy practice: Early intelligence scores and subsequent delinquency: A Prospective study. Am. J. Fam. Ther. 1990;18:197–208. doi: 10.1080/01926189008250804.
    1. Hinshaw S.P. Externalizing behavior problems and academic underachievement in childhood and adolescence: Causal relationships and underlying mechanisms. Psychol. Bull. 1992;111:127–155. doi: 10.1037/0033-2909.111.1.127.
    1. Fergusson D.M., Horwood L.J., Ridder E.M. Show me the child at seven II: Childhood intelligence and later outcomes in adolescence and young adulthood. J. Child Psychol. Psychiatry Allied Discip. 2005;46:850–858. doi: 10.1111/j.1469-7610.2005.01472.x.
    1. Stattin H., Klackenberg-Larsson I. Early language and intelligence development and their relationship to future criminal behavior. J. Abnorm. Psychol. 1993;102:369–378. doi: 10.1037/0021-843X.102.3.369.
    1. Frisell T., Pawitan Y., Långström N. Is the Association between General Cognitive Ability and Violent Crime Caused by Family-Level Confounders? PLoS ONE. 2012;7:e41783. doi: 10.1371/journal.pone.0041783.
    1. Wildeman C., Muller C. Mass Imprisonment and Inequality in Health and Family Life. Annu. Rev. Law Soc. Sci. 2012;8:11–30. doi: 10.1146/annurev-lawsocsci-102510-105459.
    1. Larson L.M., Yousafzai A.K. A meta-analysis of nutrition interventions on mental development of children under-two in low- and middle-income countries. Mater. Child Nutr. 2017;13 doi: 10.1111/mcn.12229.
    1. Liberati A., Altman D., Tetzlaff J., Mulrow C., Gøtzsche P.C., Ioannidis J.P.A., Clarke M., Devereaux P.J., Kleijnen J., Moher D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009;339 doi: 10.1136/bmj.b2700.
    1. Gresham E., Bisquera A., Byles J.E., Hure A.J. Effects of dietary interventions on pregnancy outcomes: A systematic review and meta-analysis. Mater. Child Nutr. 2014;12:5–23. doi: 10.1111/mcn.12142.
    1. McCall R.B. Childhood IQ as Predictors of Adult Educational and Occupational Status. Science. 1977;197:482–483. doi: 10.1126/science.197.4302.482.
    1. Carroll J. Human Cognitive Abilities: A Survey of Factor-Analytic Studies. Cambridge University Press; New York, NY, USA: 1993.
    1. Fernandes M., Stein A., Newton C.R., Cheikh-Ismail L., Kihara M., Wulff K., de León Quintana E., Aranzeta L., Soria-Frisch A., Acedo J., et al. The INTERGROWTH-21st Project Neurodevelopment Package: A Novel Method for the Multi-Dimensional Assessment of Neurodevelopment in Pre-School Age Children. PLoS ONE. 2014;9:e113360. doi: 10.1371/journal.pone.0113360.
    1. Bayley N. Bayley Scales of Infant Development. 3rd ed. Harcourt Assessment; San Antorio, TX, USA: 2005.
    1. Eilander A., Gera T., Sachdev H.S., Transler C., van der Knaap H.C., Kok F.J., Osendarp S.J. Multiple micronutrient supplementation for improving cognitive performance in children: Systematic review of randomized controlled trials. Am. J. Clin. Nutr. 2010;91:115–130. doi: 10.3945/ajcn.2009.28376.
    1. Academy of Nutrition and Dietetics . Evidence Analysis Manual: Steps in the Academy Evidence Analysis Process. ADA Research and Strategic Business Development; Chicago, IL, USA: 2012.
    1. The World Bank Group Country and Lending Groups: High Income OCED Members 2015. [(accessed on 23 January 2015)]; Available online: .
    1. Gera T., Sachdev H.P.S., Nestel P. Effect of combining multiple micronutrients with iron supplementation on Hb response in children: Systematic review of randomized controlled trials. Public Health Nutr. 2009;12:756–773. doi: 10.1017/S1368980008003145.
    1. Roberts J.L., Stein A.D. The Impact of Nutritional Interventions beyond the First 2 Years of Life on Linear Growth: A Systematic Review and Meta-Analysis. Adv. Nutr. 2017;8:323–336. doi: 10.3945/an.116.013938.
    1. Murphy S.P., White K.K., Park S.Y., Sharma S. Multivitamin-multimineral supplements’ effect on total nutrient intake. Am. J. Clin. Nutr. 2007;85:280S–284S.
    1. Sanchez-Meca J., Marin-Martinez F., Chacon-Moscoso S. Effect-size indices for dichotomized outcomes in meta-analysis. Psychol. Methods. 2003;8:448–467. doi: 10.1037/1082-989X.8.4.448.
    1. Borenstein M., Hedges L.V., Higgins J.P.T., Rothstein H.R. Introduction to Meta-Analysis. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2009. Effect Sizes Based on Correlations; pp. 41–43.
    1. DerSimonian R., Laird N. Meta-analysis in clinical trials. Control. Clin. Trials. 1986;7:177–188. doi: 10.1016/0197-2456(86)90046-2.
    1. Higgins J.P.T., Thompson S.G., Deeks J.J., Altman D.G. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–560. doi: 10.1136/bmj.327.7414.557.
    1. Cheatham C., Davis Goldman B., Fischer L., da Costa K.A., Reznick J.S., Zeisel S.H. Phosphatidylcholine supplementation in pregnant women consuming moderate-choline diets does not enhance infant cognitive function: A randomized, double-blind, placebo-controlled trial. Am. J. Clin. Nutr. 2012;96:1465–1472. doi: 10.3945/ajcn.112.037184.
    1. Dunstan J.A., Simmer K., Dixon G., Prescott S.L. Cognitive assessment of children at age 2(1/2) years after maternal fish oil supplementation in pregnancy: A randomised controlled trial. Arch. Dis. Child. Fetal Neonatal Ed. 2008;93:F45–F50. doi: 10.1136/adc.2006.099085.
    1. Gould J., Makrides M., Colombo J., Smithers L. Randomized controlled trial of maternal omega-3 long-chain PUFA supplementation during pregnancy and early childhood development of attention, working memory, and inhibitory control. Am. J. Clin. Nutr. 2014;99:851–859. doi: 10.3945/ajcn.113.069203.
    1. Hanieh S., Ha T.T., Simpson J.A., Casey G.J., Khuong N.C., Thoang D.D., Thung T.T., Pasricha R.S., Tran T.D., Tuan T., et al. The effect of intermittent antenatal iron supplementation on maternal and infant outcomes in rural Viet Nam: A cluster randomised trial. PLoS Med. 2013;10:e1001470. doi: 10.1371/journal.pmed.1001470.
    1. Helland I., Saugstad O., Smith L., Saarem K., Solvoll K., Ganes T., Drevon C. A. Similar effects on infants of n-3 and n-6 fatty acids supplementation to pregnant and lactating women. Pediatrics. 2001;108:E82. doi: 10.1542/peds.108.5.e82.
    1. Helland I., Smith L., Blomen B., Saarem K., Saugstad O., Drevon C. Effect of supplementing pregnant and lactating mothers with n-3 very-long-chain fatty acids on children’s IQ and body mass index at 7 years of age. Pediatrics. 2008;122:e472–e479. doi: 10.1542/peds.2007-2762.
    1. Helland I., Smith L., Saarem K., Saugstad O., Drevon C. Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age. Pediatrics. 2003;111:e39–e44. doi: 10.1542/peds.111.1.e39.
    1. Makrides M., Gibson R.A., McPhee A.J., Yelland L., Quinlivan J., Ryan P. Effect of DHA supplementation during pregnancy on maternal depression and neurodevelopment of young children: A randomized controlled trial. JAMA. 2010;304:1675–1683. doi: 10.1001/jama.2010.1507.
    1. Prado E.L., Ullman M.T., Muadz H., Alcock K.J., Shankar A.H. The effect of maternal multiple micronutrient supplementation on cognition and mood during pregnancy and postpartum in indonesia: A randomized trial. PLoS ONE. 2012;7:e32519. doi: 10.1371/journal.pone.0032519.
    1. Santiago P., Velasco I., Muela J.A., Sanchez B., Martinez J., Rodriguez A., Berrio M., Gutierrez Repiso C., Carreira M., Monreno A., et al. Infant neurocognitive development is independent of the use of iodised salt or iodine supplements given during pregnancy. Br. J. Nutr. 2013;110:831–839. doi: 10.1017/S0007114512005880.
    1. Tamura T., Goldenberg R.L., Ramey S.L., Nelson K.G., Chapman V.R. Effect of zinc supplementation of pregnant women on the mental and psychomotor development of their children at 5 y of age. Am. J. Clin. Nutr. 2003;77:1512–1516.
    1. Van Goor S.A., Dijck-Brouwer D.A.J., Erwich J., Schaafsma A., Hadders-Algra M. The influence of supplemental docosahexaenoic and arachidonic acids during pregnancy and lactation on neurodevelopment at eighteen months. Prostaglandins Leukot. Essent. Fat. Acids. 2011;84:139–146. doi: 10.1016/j.plefa.2011.01.002.
    1. Caulfield L., Putnick D., Zavaleta N., Lazarte F., Albornoz C., Dipietro J., Chen P., Bornstein M. Maternal gestational zinc supplementation does not influence multiple aspects of child development at 54 mo of age in Peru. Am. J. Clin. Nutr. 2010;92:130–136. doi: 10.3945/ajcn.2010.29407.
    1. Hamadani J.D., Fuchs G.J., Osendarp S.J., Huda S.N., Grantham-McGregor S.M. Zinc supplementation during pregnancy and effects on mental development and behaviour of infants: A follow-up study. Lancet. 2002;360:290–294. doi: 10.1016/S0140-6736(02)09551-X.
    1. Judge M., Harel O., Lammi-Keefe C. Maternal consumption of a docosahexaenoic acid-containing functional food during pregnancy: Benefit for infant performance on problem-solving but not on recognition memory tasks at age 9 mo. Am. J. Clin. Nutr. 2007;85:1572–1577.
    1. Li Q., Yan H., Zeng L., Cheng Y., Liang W., Dang S., Wang Q., Tsuji I. Effects of Maternal Multimicronutrient Supplementation on the Mental Development of Infants in Rural Western China: Follow-up Evaluation of a Double-Blind, Randomized, Controlled Trial. Pediatrics. 2009;123:e685–e692. doi: 10.1542/peds.2008-3007.
    1. McGrath N., Bellinger D., Robins J., Msamanga G.I., Tronick E., Fawzi W.W. Effect of Maternal Multivitamin Supplementation on the Mental and Psychomotor Development of Children Who Are Born to HIV-1–Infected Mothers in Tanzania. Pediatrics. 2006;117:e216–e225. doi: 10.1542/peds.2004-1668.
    1. Mulder K.A., King D.J., Innis S.M. Omega-3 fatty acid deficiency in infants before birth identified using a randomized trial of maternal DHA supplementation in pregnancy. PLoS ONE. 2014;9:e83764. doi: 10.1371/journal.pone.0083764.
    1. Tofail F., Kabir I., Hamadani J., Chowdhury F., Yesmin S., Mehreen F., Huda S. Supplementation of Fish-oil and Soy-oil during Pregnancy and Psychomotor Development of Infants. J. Health Popul. Nutr. 2006;24:48–56.
    1. Tofail F., Persson L., El Arifeen S., Hamadani J., Mehrin F., Ridout D., Ekstrom E., Huda S., Grantham-McGregor S. Effects of prenatal food and micronutrient supplementation on infant development: A randomized trial from the Maternal and Infant Nutrition Interventions, Matlab (MINIMat) study. Am. J. Clin. Nutr. 2008;87:704–711.
    1. Zhou S., Gibson R., Crowther C.A., Baghurst P., Makrides M. Effect of iron supplementation during pregnancy on the intelligence quotient and behavior of children at 4 y of age: Long-term follow-up of a randomized controlled trial. Am. J. Clin. Nutr. 2006;83:1112–1117.
    1. Catena A., Muñoz-Machicao J.A., Torres-Espínola F.J., Martínez-Zaldívar C., Diaz-Piedra C., Gil A., Haile G., Gyorei E., Molloy A.M., Decsi T., et al. Folate and long-chain polyunsaturated fatty acid supplementation during pregnancy has long-term effects on the attention system of 8.5-y-old offspring: A randomized controlled trial. Am. J. Clin. Nutr. 2016;103:115–127. doi: 10.3945/ajcn.115.109108.
    1. Christian P., Kim J., Mehra S., Shaikh S., Ali H., Shamim A.A., Wu L., Klemm R., Labrique A.B., West K.P. Effects of prenatal multiple micronutrient supplementation on growth and cognition through 2 y of age in rural Bangladesh: The JiVitA-3 Trial. Am. J. Clin. Nutr. 2016;104:1175–1182. doi: 10.3945/ajcn.116.135178.
    1. Hurtado J.A., Iznaola C., Pena M., Ruiz J., Pena-Quintana L., Kajarabille N., Rodriguez-Santana Y., Sanjurjo P., Aldamiz-Echevarria L., Ochoa J., et al. Effects of Maternal Omega-3 Supplementation on Fatty Acids and on Visual and Cognitive Development. J. Pediatr. Gastroenterol. Nutr. 2015;61:472–480. doi: 10.1097/MPG.0000000000000864.
    1. Schmidt M.K., Muslimatun S., West C.E., Schultink W., Hautvast J.G. Mental and psychomotor development in Indonesian infants of mothers supplemented with vitamin A in addition to iron during pregnancy. Br. J. Nutr. 2004;91:279–286. doi: 10.1079/BJN20031043.
    1. Zhou S.J., Skeaff S.A., Ryan P., Doyle L.W., Anderson P.J., Kornman L., McPhee A.J., Yelland L.N., Makrides M. The effect of iodine supplementation in pregnancy on early childhood neurodevelopment and clinical outcomes: Results of an aborted randomised placebo-controlled trial. Trials. 2015;16:563. doi: 10.1186/s13063-015-1080-8.
    1. Christian P., Murray-Kolb L.E., Khatry S.K., Katz J., Schaefer B.A., Cole P.M., Leclerq S.C., Tielsch J.M. Prenatal micronutrient supplementation and intellectual and motor function in early school-aged children in Nepal. JAMA. 2010;304:2716–2723. doi: 10.1001/jama.2010.1861.
    1. Brei C., Stecher L., Brunner S., Ensenauer R., Heinen F., Wagner P., Hermsdorfer J., Hauner H. Impact of the n-6:n-3 long-chain PUFA ratio during pregnancy and lactation on offspring neurodevelopment: 5-year follow-up of a randomized controlled trial. Eur. J. Clin. Nutr. 2017;71:1114–1120. doi: 10.1038/ejcn.2017.79.
    1. Chang S., Zeng L., Brouwer I.D., Kok F.J., Yan H. Effect of iron deficiency anemia in pregnancy on child mental development in rural China. Pediatrics. 2013;131:e755–e763. doi: 10.1542/peds.2011-3513.
    1. Ramakrishnan U., Gonzalez-Casanova I., Schnaas L., DiGirolamo A., Quezada A.D., Pallo B.C., Hao W., Neufeld L.M., Rivera J.A., Stein A.D., et al. Prenatal supplementation with DHA improves attention at 5 y of age: A randomized controlled trial. Am. J. Clin. Nutr. 2016;104:1075–1082. doi: 10.3945/ajcn.114.101071.
    1. Srinivasan K., Thomas T., Kapanee A.R.M., Ramthal A., Bellinger D.C., Bosch R.J., Kurpad A.V., Duggan C. Effects of maternal vitamin B12 supplementation on early infant neurocognitive outcomes: A randomized controlled clinical trial. Mater. Child Nutr. 2017;13 doi: 10.1111/mcn.12325.
    1. Vuori L., Christiansen N., Clement J., Mora J., Wagner M., Herrera M. Nutritional supplementation and the outcome of pregnancy. II. Visual habituation at 15 days. Am. J. Clin. Nutr. 1979;32:463–469.
    1. World Health Organisation . Case Definition for Acquired Immune Deficiency Syndrome (AIDS) World Health Organisation; Geneva, Switzerland: 1986. pp. 69–73.
    1. Pelphrey K., Reznick J., Goldman B.D., Sasson N., Morrow J., Donahoe A., Hodgson K. Development of visuospatial short-term memory in the second half of the first year. Dev. Psychol. 2004;40:836–851. doi: 10.1037/0012-1649.40.5.836.
    1. Diamond A., Doar B. The performance of human infants on a measure of frontal cortex function, delayed response task. Dev. Psychol. 1989;22:271–294. doi: 10.1002/dev.420220307.
    1. Schwartz B., Reznick J. Measuring infant spatial working memory using a modified delayed-response procedure. Memory. 1999;7:1–17. doi: 10.1080/741943714.
    1. Meltzoff A., Moore M. Newborn infants imitate adult facial gestures. Child Dev. 1983;54:702–709. doi: 10.2307/1130058.
    1. Fenson L., Marchman V., Thal D., Dale P., Reznick J., Bates E. The MacArthur-Bates Communicative Development Inventories: User’s Guide and Technical Manual. 2nd ed. Paul H. Brookes Publishing Co.; Baltimore, MD, USA: 2007.
    1. Mullen E. Mullen Scales of Early Learning, AGS Edition: Manual and Item Assessment Book. American Guidance Service Inc.; Circle Pines, MN, USA: 1995.
    1. Thorndike R., Hagen E., Sattler J. Stanford-Binet Intelligence Scale: Technical Manual. 4th ed. The Riverside Publishing Company; Itasca, IL, USA: 1986.
    1. Goodman R. Strengths and Difficulties Questionnaire 1999. [(accessed on 25 January 2015)]; Available online:
    1. Bayley N. Bayley Scales of Infant Development. 2nd ed. Psychological Corporation; San Antonio, TX, USA: 1993.
    1. Huang H., Tao S., Zhang Y. Standarization of Bayley scales of infant development in Shanghai. Chin. J. Child Health. 1993;1:158–160.
    1. Ireton H. Child Development Inventory Manual. Behavior Science Systems; Minneapolis, MN, USA: 1992.
    1. Brandstetter G., Siebler V., Schneider H., Grässle A., Steinmacher J., Bode H. Elternfragebogenzur Entwicklung im Kleinkindalter (EFkE)—Ein Screeninginstrument: I. Normierung Kinderarztl Prax. 2002;5:338–344.
    1. Hermsdorfer J., Mai N., Marquardt C. Evaluation of precision grip using pneumatically controlled loads. J. Neurosci. Methods. 1992;45:117–126. doi: 10.1016/0165-0270(92)90049-J.
    1. Uttner I., Mai N., Esslinger O., Danek A. Quantitative evaluation of mirror movements in adults with focal brain lesions. Eur. J. Neurol. 2005;12:964–975. doi: 10.1111/j.1468-1331.2005.01098.x.
    1. Griffiths R. A Comprehensive System of Mental Measurement for the First Eight Years of Life. Child Development Research Centre; London, UK: 1970. The abilities of young children.
    1. Dunn L.M., Dunn L. Peabody Picture Vocabulary Test-Revised (PPVT-R) American Guidance Service; Pine Circle, MN, USA: 1981.
    1. Achenbach T. Manual for the Child Behaviour Checklist 1.5–5 and 1991 Profile. University of Vermont Department of Psychiatry; Burlington, VT, USA: 1991.
    1. Colombo J., Kannass K., Shaddy D., Kundurthi S., Maikranz J., Anderson C.J., Blaga O.M., Carlson S.E. Maternal DHA and the development of attention in infancy and toddlerhood. Child Dev. 2004;75:1254–1267. doi: 10.1111/j.1467-8624.2004.00737.x.
    1. Kannass K., Colombo J., Carlson S. Maternal DHA levels and toddler free-play attention. Dev. Neuropsychol. 2009;34:159–174. doi: 10.1080/87565640802646734.
    1. Sparrow S., Balla D., Cicchetti D. Vineland Adaptive Behavior Scales: Interview Edition, Survey Form Manual. American Guidance Service; Circle Pines, MN, USA: 1984.
    1. Fagan J., Detterman D. The Fagan test of infant intelligence: A technical summary. J. Appl. Dev. Psychol. 1992;13:173–193. doi: 10.1016/0193-3973(92)90028-G.
    1. Kaufman A.S., Kaufman N.L. Kaufman Assessment Battery for Children. 2nd ed. American Guidance Service; Circle Pines, MN, USA: 2004.
    1. Willatts P. Beyond the couch potato infant: How infants use their knowledge to regulate action, solve problems and achieve goals. In: Bremmer J.G., Slater A., Butterworth G., editors. Infant Development: Recent Advances Hove. Psychology Press; Hove, UK: 1997. pp. 109–135.
    1. Willatts P. Development of means-end behavior in young infants: Pulling a support to retrieve a distant object. Dev. Psychol. 1999;35:651–667. doi: 10.1037/0012-1649.35.3.651.
    1. Willatts P. The stage-IV infant’s solution of problems requiring the use of supports. Infant Behav. Dev. 1984;7:125–134. doi: 10.1016/S0163-6383(84)80053-3.
    1. Willatts P. Stages in the development of intentional search by young infants. Dev. Psychol. 1984;20:389–396. doi: 10.1037/0012-1649.20.3.389.
    1. McCarthy D. The Psychological Corporation. Harcourt Brace Jovanovich Inc.; New York, NY, USA: 1972. Manual for the McCarthy scales of children’s abilities.
    1. Reynolds C.R., Kamphaus R.W. The Clinician’s Guide to the Behavior Assessment System for Children (BASC) The Guilford Press; New York, NY, USA: 2002.
    1. Conners C.K. Conners’ Continuous Performance Test II: Computer Program for Windows Technical Guide and Software Manual. Multi-Health Systems Inc.; Tonawanda, NY, USA: 2000.
    1. Wolfe D., Skuse D., Mathisen V. Behavioral style in failure to thrive infants: A preliminary communication. J. Pediatr. Psychol. 1990;15:237–254.
    1. Rueda M.R., Fan J., McCandliss B.D., Halparin J.D., Gruber D.B., Lercari L.P., Posner M.I. Development of attentional networks in childhood. Neuropsychologia. 2004;42:1029–1040. doi: 10.1016/j.neuropsychologia.2003.12.012.
    1. Fan J., McCandliss B.D., Sommer T., Raz A., Posner M.I. Testing the efficiency and independence of attentional networks. J. Cogn. Neurosci. 2002;14:340–347. doi: 10.1162/089892902317361886.
    1. Bracken B.A., McCallum R.S. Universal Non-Verbal Intelligence Test (UNIT) PRO-ED; Austin, TX, USA: 1998.
    1. Konishi S., Nakajima K., Uchida I., Sekihara K., Miyashita Y. No-go dominant brain activity in human inferior prefrontal cortex revealed by functional magnetic resonance imaging. Eur. J. Neurosci. 1998;10:1209–1213. doi: 10.1046/j.1460-9568.1998.00167.x.
    1. Bull R., Scerif G. Executive functioning as a predictor of children’s mathematics ability: Inhibition, switching, and working memory. Dev. Neuropsychol. 2001;19:273–293. doi: 10.1207/S15326942DN1903_3.
    1. Wechsler D. Wechsler Preschool and Primary Scale of Intelligence. 3rd ed. Harvcourt Assessment Inc.; San Antonio, TX, USA: 2002.
    1. Henderson S.E., Sugden D.A. Movement Assessment Battery for Children (MABC) Psychological Corp; London, UK: 1992.
    1. Reitan R.M., Wolfson D. The Halstead-Reitan Neuropsychological Test Battery: Theory & Clinical Interpretation. Neuropsychology Press; Tucson, AZ, USA: 1985.
    1. Joos S.K., Pollitt E., Mueller W.H., Albright D.L. The Bacon Chow Study: Maternal Nutritional Supplementation and Infant Behavioral Development. Child Dev. 1983;54:669–676. doi: 10.2307/1130054.
    1. Bayley N. Manual for Bayley Scales of Infant Development. 1st ed. Psychological Corp; New York, NY, USA: 1969.
    1. Squires J., Potter L., Bricker D. The Ages and Stages Questionnaire User’s Guide. 2nd ed. Paul H. Brookes Publishing, Co.; Baltimore, MD, USA: 1999.
    1. Dunn L.M., Dunn L., Whetton C., Burley J. British Picture Vocabulary Scale. 2nd ed. NFER-Nelson Publishing Co., Ltd.; London, UK: 1997.
    1. Elliot C. British Ability Scales. 2nd ed. NFER-Nelson Publishing Co., Ltd.; London, UK: 1996.
    1. Korkman M., Kirk U., Kemp S. NEPSY: A Developmental Neuropsychological Assessment. The Psychological Corporation; Orlando, FL, USA: 1998.
    1. Kochanska G., Murray K., Harlan E. Eftortful control in early childhood: Continuity and change, antecedents and implications for social development. Dev. Psychol. 2000;36:220–232. doi: 10.1037/0012-1649.36.2.220.
    1. Carlson S.M. Developmentally sensitive measures of executive function in preschool children. Dev. Neuropsychol. 2005;28:595–616. doi: 10.1207/s15326942dn2802_3.
    1. Russell J., Mauthner N., Sharpe S., Tidswell T. The ‘windows task’ as a measure of strategic deception in preschoolers and autistic subjects. Br. J. Dev. Psychol. 1991;9:331–349. doi: 10.1111/j.2044-835X.1991.tb00881.x.
    1. Waber D.P., Vuori Christiansen L., Ortiz N., Clement J.R., Christiansen N.E., Mora J.O., Reed R.B., Herrera M.G. Nutritional supplementation, maternal education, and cognitive development of infants at risk of malnutrition. Am. J. Clin. Nutr. 1981;34:807–813.
    1. Corman H., Escalona S. Stages of sensorimotor development: A replication study. Merrill-Palmer Q. 1969;15:351–361.
    1. Elliott C.D. Differential Ability Scales Mannual 2: Technical Handbook. National Foundation for Educational Research-Nelson; Berkshire, UK: 1983.
    1. Kirk S., McCarthy J., Kirk W. Illinois Test of Pycholinguistic Abilities (Revised) University of Illinois Press; Champaign, IL, USA: 1968.
    1. Stone M., Wright B. Knox’s Cube Test. Stoelting Company; Chicago, IL, USA: 1980.
    1. Folio M., Fewell R. Peabody Development Motor Scales and Acuity Cards. DLM Teaching Resources; Allen, TX, USA: 1983.
    1. Wilson B., Lacoviello J., Wilson J., Risucci D. Purde pegboard performance of normal children. J. Clin. Neurophysiol. 1982;4:19–26.
    1. Fein G.G. Toys and stories. In: Pellegrini A.D., editor. The Future of Play Theory: A Multidisciplinary Inquiry into the Contributions of Brian Sutton-Smith. State University of New York Press; Albany, NY, USA: 1995.
    1. Morrow L. Effects of structural guidance in story telling on children’s dictation of original stories. J. Read. Behav. 1986;18:135–152. doi: 10.1080/10862968609547561.
    1. Harris D. Children’s Drawings as Measures of Intellectual Maturity: A Revision and Extension of the Goodenough Draw-a-Man Test. Harcourt, Brace and World; New York, NY, USA: 1963.
    1. Selman R. The Growth of Interpersonal Understanding: Developmental and Clinical Analyses. Academic Press; New York, NY, USA: 1980.
    1. Serafica F.C. Conceptions of friendship and interaction between friends: An Organismic-Developmental Perspective. In: Serafica F.C., editor. Social Cognitive Development in Context. The Guilford Press; New York, NY, USA: 1982.
    1. Behar L., Stringfield S. A behaviour rating scale for the preschool child. Dev. Psychol. 1974;10:601–610. doi: 10.1037/h0037058.
    1. Isaacs E., Oates J. Nutrition and cognition assessing cognitive abilities in children and young people. Eur. J. Nutr. 2008;47:4–24. doi: 10.1007/s00394-008-3002-y.
    1. Wainwright P.E., Colombo J. Nutrition and the development of cognitive functions: Interpretation of behavioral studies in animals and human infants. Am. J. Clin. Nutr. 2006;84:961–970.
    1. Yetley E.A. Multivitamin and multimineral dietary supplements: Definitions, characterization, bioavailability, and drug interactions. Am. J. Clin. Nutr. 2007;85:269S–276S.
    1. Huang H.Y., Appel L.J. Supplementation of Diets with α-Tocopherol Reduces Serum Concentrations of γ- and δ-Tocopherol in Humans. J. Nutr. 2003;133:3137–3140.
    1. Cheatham C., Sheppard K. Synergistic Effects of Human Milk Nutrients in the Support of Infant Recognition Memory: An Observational Study. Nutrients. 2015;7:9079–9095. doi: 10.3390/nu7115452.
    1. Black M.M. Effects of Vitamin B12 and Folate Deficiency on Brain Development in Children. Food Nutr. Bull. 2008;29:S126–S131. doi: 10.1177/15648265080292S117.
    1. Benton D. The influence of dietary status on the cognitive performance of children. Mol. Nutr. Food Res. 2010;54:457–470. doi: 10.1002/mnfr.200900158.
    1. Nyaradi A., Jiang Hong L., Hickling S., Foster J., Oddy W.H. The role of nutrition in children’s neurocognitive development, from pregnancy through childhood. Front. Hum. Neurosci. 2013;7:1–16. doi: 10.3389/fnhum.2013.00097.
    1. Muller O., Krawinkel M. Malnutrition and health in developing countries. CMAJ. 2005;173:279–286. doi: 10.1503/cmaj.050342.

Source: PubMed

Подписаться