Plasma Metabolomic Alterations Induced by COVID-19 Vaccination Reveal Putative Biomarkers Reflecting the Immune Response

Ioanna Dagla, Aikaterini Iliou, Dimitra Benaki, Evagelos Gikas, Emmanuel Mikros, Tina Bagratuni, Efstathios Kastritis, Meletios A Dimopoulos, Evangelos Terpos, Anthony Tsarbopoulos, Ioanna Dagla, Aikaterini Iliou, Dimitra Benaki, Evagelos Gikas, Emmanuel Mikros, Tina Bagratuni, Efstathios Kastritis, Meletios A Dimopoulos, Evangelos Terpos, Anthony Tsarbopoulos

Abstract

Vaccination is currently the most effective strategy for the mitigation of the COVID-19 pandemic. mRNA vaccines trigger the immune system to produce neutralizing antibodies (NAbs) against SARS-CoV-2 spike proteins. However, the underlying molecular processes affecting immune response after vaccination remain poorly understood, while there is significant heterogeneity in the immune response among individuals. Metabolomics have often been used to provide a deeper understanding of immune cell responses, but in the context of COVID-19 vaccination such data are scarce. Mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR)-based metabolomics were used to provide insights based on the baseline metabolic profile and metabolic alterations induced after mRNA vaccination in paired blood plasma samples collected and analysed before the first and second vaccination and at 3 months post first dose. Based on the level of NAbs just before the second dose, two groups, "low" and "high" responders, were defined. Distinct plasma metabolic profiles were observed in relation to the level of immune response, highlighting the role of amino acid metabolism and the lipid profile as predictive markers of response to vaccination. Furthermore, levels of plasma ceramides along with certain amino acids could emerge as predictive biomarkers of response and severity of inflammation.

Trial registration: ClinicalTrials.gov NCT04743388.

Keywords: COVID-19; LC-MS; NMR; ceramides; metabolomics; neutralizing antibodies (NAbs).

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Correlation of NMR metabolic features with immune response. (A) Manhattan-type plot showing the analysis of the 6555 CPMG NMR features with response at day 22. The signed −log10(p-value) is derived from Spearman correlation analysis with adjustment for age and sex. The dotted lines represent the threshold after multiple Bonferroni testing correction (blue line, p-value < 1.8 × 10−5) or FDR (black, p-value < 2.3 × 10−4), and the red dots represent the data points that remain significant after FDR. The horizontal axis is the NMR chemical shift (in ppm). In the upper panel, the 58 spectra (cyan) and their means (red) are depicted. Associations with (i) l-histidine (His), l-phenylalanine (Phe) and 3-methylhistidine (3-MH) and (ii) l-Glutamine (Gln) are shown. (B) Boxplots of the significant metabolites at all the 3 time points. In black, comparison of low vs. high responders within each time point. In orange, comparison between the three time points in the low responders group. In blue, comparison between the three time points in the high responders group. (C) Longitudinal change of the significant metabolites among the three time points. Asterisks indicate statistical significance using ANOVA: **** p < 0.0001, *** 0.0001 < p < 0.001, ** 0.001 < p < 0.01, * 0.01 < p < 0.05, ns: no significance.
Figure 2
Figure 2
Fold-change of high vs. low responders of metabolic ratios in Day 1. Columns show the numerator and rows the denominator of each ratio. For example, the l-Glutamine/d-Glucose ratio exhibits a 3.49-fold increase in the high responders compared to the low responders. The changes in the metabolic ratios found statistically significant using t-tests (p-value < 0.05) are in boxes. Asterisks (*) indicate statistical significance after FDR correction (p-value < 4.62 × 10−4). Color coding is based on conditional formatting of fold-change values.
Figure 3
Figure 3
NMR Multivariate Analysis. (A) Scores plots obtained from the OPLS-DA analysis of NMR CPMG from plasma samples of high vs. low responders at Day 1, Day 22 and 3 Months. The two groups are discriminated in all time points, with the discrimination being clearer at Day 1 and Day 22. (B) S-plot obtained from the OPLS-DA of NMR CPMG from plasma samples of high vs. low responders after first dose at Day 1. Spectral variables on the top-right corner (blue) are considered significantly increased in the high responders, while those on the lower-left corner (red) are increased in the low responders. Metabolites with p and p(corr)~0 (colored in grey) do not significantly impact the separation. Significant spectral variables and their assigned metabolites are shown.
Figure 4
Figure 4
Analysis of longitudinal encode-decode (LED) spectra. (A) LED NMR spectra (n = 58) with assignment. (B) Scores plots obtained from the OPLS-DA of high vs. low responders at Day 1 after first dose. The two groups are discriminated into (●) Low responders at Day 1 and (●) High responders at Day 1. (C) Boxplots of the statistically significant lipids. The p-value of t-test is indicated on the top. Lipids numbering is according to Table S5. Asterisks indicate statistical significance: *** 0.0001 < p < 0.001, ** 0.001 < p < 0.01, * 0.01 < p < 0.05.
Figure 5
Figure 5
LC–MS Multivariate Analysis. (A) Scores plots obtained from the partial least squares-discriminant analysis of ESI (−) MS analysis from plasma samples of high vs. low responders after first dose at Day 1 and (B) Scores plots obtained from the orthogonal partial least squares-discriminant analysis of ESI (−) MS analysis from plasma samples of high vs. low responders after 1st dose at Day 1. Clear clustering is observed between low and high responders: (■) Low responders at Day 1; (▲) High responders at Day 1.
Figure 6
Figure 6
Box and whiskers plots of the detected ceramides for the low vs. high responders. (A) Day 1: The differences were statistically significant; p-values < 0.05. (B) three months after the first dose (3M): The differences were not statistically significant; p-values > 0.05. Asterisks indicate statistical significance: *** 0.0001 < p < 0.001, ** 0.001 < p < 0.01, * 0.01< p < 0.05; ns: not significant.
Figure 7
Figure 7
Comparison of the Cer(d18:0/22:0) levels, employing ANOVA test, among the three time points; Day 1 (D1), Day 22 (D22) and 3 Months (3M) for low and high responders. Asterisks indicate statistical significance: *** 0.0001 p < 0.001, ** 0.001 < p < 0.01; ns: not significant.

References

    1. Dolgin E. The tangled history of mRNA vaccines. Nature. 2021;597:318–324. doi: 10.1038/d41586-021-02483-w.
    1. Bettini E., Locci M. SARS-CoV-2 mRNA Vaccines: Immunological mechanism and beyond. Vaccines. 2021;9:147. doi: 10.3390/vaccines9020147.
    1. Terpos E., Trougakos I.P., Karalis V., Ntanasis-Stathopoulos I., Gumeni S., Apostolakou F., Sklirou A.D., Gavriatopoulou M., Skourti S., Kastritis E., et al. Kinetics of Anti-SARS-CoV-2 Antibody Responses 3 Months Post Complete Vaccination with BNT162b2; A Prospective Study in 283 Health Workers. Cells. 2021;10:1942. doi: 10.3390/cells10081942.
    1. Terpos E., Trougakos I.P., Apostolakou F., Charitaki I., Sklirou A.D., Mavrianou N., Papanagnou E.D., Liacos C.I., Gumeni S., Rentziou G., et al. Age-dependent and gender-dependent antibody responses against SARS-CoV-2 in health workers and octogenarians after vaccination with the BNT162b2 mRNA vaccine. Am. J. Hematol. 2021;96:E257–E259. doi: 10.1002/ajh.26185.
    1. Loftus R.M., Finlay D.K. Immunometabolism: Cellular Metabolism Turns Immune Regulator. J. Biol. Chem. 2016;291:1–10. doi: 10.1074/jbc.R115.693903.
    1. Johnson C.H., Siuzdak G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016;17:451–459. doi: 10.1038/nrm.2016.25.
    1. Waddington K.E., Papadaki A., Coelewij L., Adriani M., Nytrova P., Kubala Havrdova E., Fogdell-Hahn A., Farrell R., Dönnes P., Pineda-Torra I., et al. Using Serum Metabolomics to Predict Development of Anti-drug Antibodies in Multiple Sclerosis Patients Treated With IFNβ. Front. Immunol. 2020;11:1–15. doi: 10.3389/fimmu.2020.01527.
    1. Diray-Arce J., Conti M.G., Petrova B., Kanarek N., Angelidou A., Levy O. Integrative metabolomics to identify molecular signatures of responses to vaccines and infections. Metabolites. 2020;10:492. doi: 10.3390/metabo10120492.
    1. Papamichael M.M., Katsardis C., Sarandi E., Georgaki S., Frima E.S., Varvarigou A., Tsoukalas D. Application of metabolomics in pediatric asthma: Prediction, diagnosis and personalized treatment. Metabolites. 2021;11:251. doi: 10.3390/metabo11040251.
    1. Amberg A., Riefke B., Schlotterbeck G., Ross A., Senn H., Dieterle F., Keck M. NMR and MS Methods for Metabolomics. Methods Mol. Biol. 2017;1641:229–258. doi: 10.1007/978-1-4939-7172-5_13.
    1. Emwas A.H.M. The Strengths and Weaknesses of NMR Spectroscopy and Mass Spectrometry with Particular Focus on Metabolomics Research. Methods Mol. Biol. 2015;1277:161–193. doi: 10.1007/978-1-4939-2377-9_13.
    1. Mussap M., Fanos V. Could metabolomics drive the fate of COVID-19 pandemic? A narrative review on lights and shadows. Clin. Chem. Lab. Med. 2021;59:1891–1905. doi: 10.1515/cclm-2021-0414.
    1. Lawler N.G., Gray N., Kimhofer T., Boughton B., Gay M., Yang R., Morillon A.C., Chin S.T., Ryan M., Begum S., et al. Systemic Perturbations in Amine and Kynurenine Metabolism Associated with Acute SARS-CoV-2 Infection and Inflammatory Cytokine Responses. J. Proteome Res. 2021;20:2796–2811. doi: 10.1021/acs.jproteome.1c00052.
    1. Wang Y., Wang X., Don Wai Luu L., Chen S., Jin F., Wang S., Huang X., Wang L., Zhou X., Chen X., et al. Proteomic and metabolomic signatures associated with the immune response in 2 healthy individuals immunized with an inactivated SARS-CoV-2 vaccine 3 4. medRxiv. 2021;13:242. doi: 10.1101/2021.07.21.21260959.
    1. Takis P.G., Takis P.G., Jiménez B., Jiménez B., Sands C.J., Sands C.J., Chekmeneva E., Chekmeneva E., Lewis M.R., Lewis M.R. SMolESY: An efficient and quantitative alternative to on-instrument macromolecular 1 H-NMR signal suppression. Chem. Sci. 2020;11:6000–6011. doi: 10.1039/D0SC01421D.
    1. Fages A., Duarte-Salles T., Stepien M., Ferrari P., Fedirko V., Pontoizeau C., Trichopoulou A., Aleksandrova K., Tjønneland A., Olsen A., et al. Metabolomic profiles of hepatocellular carcinoma in a European prospective cohort. BMC Med. 2015;13:242. doi: 10.1186/s12916-015-0462-9.
    1. Kimhofer T., Lodge S., Whiley L., Gray N., Loo R.L., Lawler N.G., Nitschke P., Bong S.H., Morrison D.L., Begum S., et al. Integrative Modeling of Quantitative Plasma Lipoprotein, Metabolic, and Amino Acid Data Reveals a Multiorgan Pathological Signature of SARS-CoV-2 Infection. J. Proteome Res. 2020;19:4442–4454. doi: 10.1021/acs.jproteome.0c00519.
    1. Barberis E., Timo S., Amede E., Vanella V.V., Puricelli C., Cappellano G., Raineri D., Cittone M.G., Rizzi E., Pedrinelli A.R., et al. Large-Scale Plasma Analysis Revealed New Mechanisms and Molecules Associated with the Host Response to SARS-CoV-2. Int. J. Mol. Sci. 2020;21:8623. doi: 10.3390/ijms21228623.
    1. Wu D., Shu T., Yang X., Song J.X., Zhang M., Yao C., Liu W., Huang M., Yu Y., Yang Q., et al. Plasma metabolomic and lipidomic alterations associated with COVID-19. Natl. Sci. Rev. 2020;7:1157–1168. doi: 10.1093/NSR/NWAA086.
    1. Caterino M., Gelzo M., Sol S., Fedele R., Annunziata A., Calabrese C., Fiorentino G., D’Abbraccio M., Dell’Isola C., Fusco F.M., et al. Dysregulation of lipid metabolism and pathological inflammation in patients with COVID-19. Sci. Rep. 2021;11:2941. doi: 10.1038/S41598-021-82426-7.
    1. Li P., Yin Y.L., Li D., Kim W.S., Wu G. Amino acids and immune function. Br. J. Nutr. 2007;98:237–252. doi: 10.1017/S000711450769936X.
    1. Tomé D. Amino acid metabolism and signalling pathways: Potential targets in the control of infection and immunity. Nutr. Diabetes. 2021;11:20. doi: 10.1038/s41387-021-00164-1.
    1. Peterson J.W., Boldogh I., Popov V.L., Saini S.S., Chopra A.K. Anti-inflammatory and antisecretory potential of histidine in Salmonella-challenged mouse small intestine. Lab. Investig. 1998;78:523–534.
    1. Holeček M. Histidine in Health and Disease: Metabolism, Physiological Importance, and Use as a Supplement. Nutrients. 2020;12:848. doi: 10.3390/nu12030848.
    1. Demopoulos C., Antonopoulou S., Theoharides T.C. COVID-19, microthromboses, inflammation, and platelet activating factor. Biofactors. 2020;46:927–933. doi: 10.1002/biof.1696.
    1. Poon I.K.H., Patel K.K., Davis D.S., Parish C.R., Hulett M.D. Histidine-rich glycoprotein: The Swiss Army knife of mammalian plasma. Blood. 2011;117:2093–2101. doi: 10.1182/blood-2010-09-303842.
    1. Völlmy F., van den Toorn H., Chiozzi R.Z., Zucchetti O., Papi A., Volta C.A., Marracino L., Sega F.V.D., Fortini F., Demichev V., et al. A serum proteome signature to predict mortality in severe COVID-19 patients. Life Sci. Alliance. 2021;4:e202101099. doi: 10.26508/lsa.202101099.
    1. Depelchin A., Letesson J.J. Adrenaline influence on the immune response. I. Accelerating or suppressor effects according to the time of application. Immunol. Lett. 1981;3:199–205. doi: 10.1016/0165-2478(81)90075-4.
    1. NW K., VM S. It takes nerve to tell T and B cells what to do. J. Leukoc. Biol. 2006;79:1093–1104. doi: 10.1189/JLB.1105625.
    1. Shi D., Yan R., Lv L., Jiang H., Lu Y., Sheng J., Xie J., Wu W., Xia J., Xu K., et al. The serum metabolome of COVID-19 patients is distinctive and predictive. Metabolism. 2021;118:154739. doi: 10.1016/j.metabol.2021.154739.
    1. Ansone L., Briviba M., Silamikelis I., Terentjeva A., Perkons I., Birzniece L., Rovite V., Rozentale B., Viksna L., Kolesova O., et al. Amino Acid Metabolism is Significantly Altered at the Time of Admission in Hospital for Severe COVID-19 Patients: Findings from Longitudinal Targeted Metabolomics Analysis. Microbiol. Spectr. 2021;9:e0033821. doi: 10.1128/spectrum.00338-21.
    1. Atila A., Alay H., Yaman M.E., Akman T.C., Cadirci E., Bayrak B., Celik S., Atila N.E., Yaganoglu A.M., Kadioglu Y., et al. The serum amino acid profile in COVID-19. Amino Acids. 2021;53:1569–1588. doi: 10.1007/s00726-021-03081-w.
    1. Ananieva E. Targeting amino acid metabolism in cancer growth and anti-tumor immune response. World J. Biol. Chem. 2015;6:281. doi: 10.4331/wjbc.v6.i4.281.
    1. Carr E.L., Kelman A., Wu G.S., Gopaul R., Senkevitch E., Aghvanyan A., Turay A.M., Frauwirth K.A. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J. Immunol. 2010;185:1037–1044. doi: 10.4049/jimmunol.0903586.
    1. Newsholme P. Why is L-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection? J. Nutr. 2001;131:2515S–2522S. doi: 10.1093/jn/131.9.2515S.
    1. Cengiz M., Borku Uysal B., Ikitimur H., Ozcan E., Islamoğlu M.S., Aktepe E., Yavuzer H., Yavuzer S. Effect of oral l-Glutamine supplementation on COVID-19 treatment. Clin. Nutr. Exp. 2020;33:24–31. doi: 10.1016/j.yclnex.2020.07.003.
    1. Mohajeri M., Horriatkhah E., Mohajery R. Correction to: The effect of glutamine supplementation on serum levels of some inflammatory factors, oxidative stress, and appetite in COVID-19 patients: A case-control study. Inflammopharmacology. 2021;30:353. doi: 10.1007/s10787-021-00898-5.
    1. Matsuyama T., Yoshinaga S.K., Shibue K., Mak T.W. Comorbidity-associated glutamine deficiency is a predisposition to severe COVID-19. Cell Death Differ. 2021;28:3199–3213. doi: 10.1038/s41418-021-00892-y.
    1. Doğan H.O., Şenol O., Bolat S., Yıldız Ş.N., Büyüktuna S.A., Sarıismailoğlu R., Doğan K., Hasbek M., Hekim S.N. Understanding the pathophysiological changes via untargeted metabolomics in COVID-19 patients. J. Med. Virol. 2021;93:2340–2349. doi: 10.1002/jmv.26716.
    1. Hirabara S.M., Gorjao R., Levada-Pires A.C., Masi L.N., Hatanaka E., Cury-Boaventura M.F., da Silva E.B., dos Santos-Oliveira L.C., Sousa Diniz V.L., Duarte Serdan T.A., et al. Host cell glutamine metabolism as a potential antiviral target. Clin. Sci. 2021;135:305–325. doi: 10.1042/CS20201042.
    1. Serhan C.N., Yacoubian S., Yang R. Anti-inflammatory and proresolving lipid mediators. Annu. Rev. Pathol. 2008;3:279–312. doi: 10.1146/annurev.pathmechdis.3.121806.151409.
    1. Seo J.W., Yang E.J., Yoo K.H., Choi I.H. Macrophage Differentiation from Monocytes Is Influenced by the Lipid Oxidation Degree of Low Density Lipoprotein. Mediators Inflamm. 2015;2015:235797. doi: 10.1155/2015/235797.
    1. Hubler M.J., Kennedy A.J. Role of lipids in the metabolism and activation of immune cells. J. Nutr. Biochem. 2016;34:1–7. doi: 10.1016/j.jnutbio.2015.11.002.
    1. Toms T.E., Panoulas V.F., Kitas G.D. Dyslipidaemia in rheumatological autoimmune diseases. Open Cardiovasc. Med. J. 2011;5:64–75. doi: 10.2174/1874192401105010064.
    1. Sappati Biyyani R.S.R., Putka B.S., Mullen K.D. Dyslipidemia and lipoprotein profiles in patients with inflammatory bowel disease. J. Clin. Lipidol. 2010;4:478–482. doi: 10.1016/j.jacl.2010.08.021.
    1. Wei X., Zeng W., Su J., Wan H., Yu X., Cao X., Tan W., Wang H. Hypolipidemia is associated with the severity of COVID-19. J. Clin. Lipidol. 2020;14:297–304. doi: 10.1016/j.jacl.2020.04.008.
    1. Hu X., Chen D., Wu L., He G., Ye W. Declined serum high density lipoprotein cholesterol is associated with the severity of COVID-19 infection. Clin. Chim. Acta. 2020;510:105–110. doi: 10.1016/j.cca.2020.07.015.
    1. Li Y., Zhang Y., Lu R., Dai M., Shen M., Zhang J., Cui Y., Liu B., Lin F., Chen L., et al. Lipid metabolism changes in patients with severe COVID-19. Clin. Chim. Acta. 2021;517:66–73. doi: 10.1016/j.cca.2021.02.011.
    1. Fan J., Wang H., Ye G., Cao X., Xu X., Tan W., Zhang Y. Letter to the Editor: Low-density lipoprotein is a potential predictor of poor prognosis in patients with coronavirus disease 2019. Metabolism. 2020;107:154243. doi: 10.1016/j.metabol.2020.154243.
    1. Masana L., Correig E., Ibarretxe D., Anoro E., Arroyo J.A., Jericó C., Guerrero C., Miret M.L., Näf S., Pardo A., et al. Low HDL and high triglycerides predict COVID-19 severity. Sci. Rep. 2021;11:7217. doi: 10.1038/s41598-021-86747-5.
    1. Sanders D.W., Jumper C.C., Ackerman P.J., Bracha D., Donlic A., Kim H., Kenney D., Castello-Serrano I., Suzuki S., Tamura T., et al. SARS-CoV-2 requires cholesterol for viral entry and pathological syncytia formation. eLife. 2021;10:e65962. doi: 10.7554/eLife.65962.
    1. Radenkovic D., Chawla S., Pirro M., Sahebkar A., Banach M. Cholesterol in Relation to COVID-19: Should We Care about It? J. Clin. Med. 2020;9:1909. doi: 10.3390/jcm9061909.
    1. Albeituni S., Stiban J., Albeituni S., Stiban J. Roles of Ceramides and Other Sphingolipids in Immune Cell Function and Inflammation. Adv. Exp. Med. Biol. 2019;1161:169–191. doi: 10.1007/978-3-030-21735-8_15.
    1. Franchi L., Malisan F., Tomassini B., Testi R. Ceramide catabolism critically controls survival of human dendritic cells. J. Leukoc. Biol. 2006;79:166–172. doi: 10.1189/jlb.1004601.
    1. Sprent J. Antigen-Presenting Cells: Professionals and amateurs. Curr. Biol. 1995;5:1095–1097. doi: 10.1016/S0960-9822(95)00219-3.
    1. Eiz-Vesper B., Schmetzer H.M. Antigen-Presenting Cells: Potential of Proven und New Players in Immune Therapies. Transfus. Med. Hemother. 2020;47:429–431. doi: 10.1159/000512729.
    1. Galati D., Zanotta S., Capitelli L., Bocchino M. A bird’s eye view on the role of dendritic cells in SARS-CoV-2 infection: Perspectives for immune-based vaccines. Allergy Eur. J. Allergy Clin. Immunol. 2022;77:100–110. doi: 10.1111/all.15004.
    1. Teijaro J.R., Farber D.L. COVID-19 vaccines: Modes of immune activation and future challenges. Nat. Rev. Immunol. 2021:195–197. doi: 10.1038/s41577-021-00526-x.
    1. Hivroz C., Chemin K., Tourret M., Bohineust A. Crosstalk between T Lymphocytes and Dendritic Cells. Crit. Rev. Immunol. 2012;32:139–155. doi: 10.1615/CritRevImmunol.v32.i2.30.
    1. Sallusto F., Nicolò C., De Maria R., Corinti S., Testi R. Ceramide Inhibits Antigen Uptake and Presentation by Dendritic Cells. J. Exp. Med. 1996;184:2411–2416. doi: 10.1084/jem.184.6.2411.

Source: PubMed

Подписаться