Executive Function, Behavioral Self-Regulation, and School Related Well-Being Did Not Mediate the Effect of School-Based Physical Activity on Academic Performance in Numeracy in 10-Year-Old Children. The Active Smarter Kids (ASK) Study

Katrine N Aadland, Eivind Aadland, John R Andersen, Arne Lervåg, Vegard F Moe, Geir K Resaland, Yngvar Ommundsen, Katrine N Aadland, Eivind Aadland, John R Andersen, Arne Lervåg, Vegard F Moe, Geir K Resaland, Yngvar Ommundsen

Abstract

Inconsistent findings exist for the effect of school-based physical activity interventions on academic performance. The Active Smarter Kids (ASK) study revealed a favorable intervention effect of school-based physical activity on academic performance in numeracy in a subsample of 10-year-old elementary schoolchildren performing poorer at baseline in numeracy. Aiming to explain this finding, we investigated the mediating effects of executive function, behavioral self-regulation, and school related well-being in the relation between the physical activity intervention and child's performance in numeracy. An ANCOVA model with latent variable structural equation modeling was estimated using data from 360 children (the lower third in academic performance in numeracy at baseline). The model consisted of the three latent factors as mediators; executive function, behavioral self-regulation, and school related well-being. We found no mediating effects of executive function, behavioral self-regulation or school related well-being in the relationship between the ASK intervention and academic performance in numeracy (p ≥ 0.256). Our results suggest that the effect of the intervention on performance in numeracy in the present sample is not explained by change in executive function, behavioral self-regulation, or school related well-being. We suggest this finding mainly could be explained by the lack of effect of the intervention on the mediators, which might be due to an insufficient dose of physical activity. Trial registration: Clinicaltrials.gov registry, trial registration number: NCT02132494.

Keywords: behavioral self-regulation; elementary school children; executive function; school related well-being; structural equation modeling.

Figures

FIGURE 1
FIGURE 1
The hypothesized model. t1 = baseline; t2 = follow-up; group allocation = intervention/control.
FIGURE 2
FIGURE 2
Flow diagram of the included children (n = schools [children]).
FIGURE 3
FIGURE 3
The mediation model. All path coefficients are reported as standardized β-estimates. Significant paths are in bold lines. t1 = baseline, t2 = follow-up. ∗p ≤ 0.05, ∗∗p ≤ 0.01, ∗∗∗p ≤ 0.001.

References

    1. Aadland K. N., Moe V. F., Aadland E., Anderssen S. A., Resaland G. K., Ommundsen Y. (2017a). Relationships between physical activity, sedentary time, aerobic fitness, motor skills and executive function and academic performance in children. Ment. Health Phys. Act. 12 10–18. 10.1016/j.mhpa.2017.01.001
    1. Aadland K. N., Ommundsen Y., Aadland E., Brønnick K. S., Lervåg A., Resaland G. K., et al. (2017b). Executive functions do not mediate prospective relations between indices of physical activity and academic performance: the active smarter kids (ASK) study. Front. Psychol. 8:1088. 10.3389/fpsyg.2017.01088
    1. Aadland K. N., Ommundsen Y., Anderssen S. A., Brønnick K. S., Moe V. F., Resaland G. K., et al. (2017c). Effects of the active smarter kids (ASK) physical activity school-based intervention on executive functions: a cluster-randomized controlled trial. Scand. J. Educ. Res. 1–15. 10.1080/00313831.2017.1336477
    1. Andersen J. R., Natvig G. K., Haraldstad K., Skrede T., Aadland E., Resaland G. K. (2015). Is the Kidscreen-27 a valid measure of health-related quality of life in 10-year-old Norwegian children? PeerJ PrePrints 3:e1134v1 10.7287/peerj.preprints.1134v1
    1. Ardila A., Ostrosky-Solís F., Bernal B. (2006). Cognitive testing toward the future: the example of semantic verbal fluency (ANIMALS). Int. J. Psychol. 41 324–332. 10.1080/00207590500345542
    1. Bailey R. (2016). Sport, physical activity and educational achievement – towards an explanatory model. Sport Soc. 20 768–788. 10.1080/17430437.2016.1207756
    1. Bartholomew J. B., Jowers E. M. (2011). Physically active academic lessons in elementary children. Prev. Med. 52(Suppl. 1), S51–S54. 10.1016/j.ypmed.2011.01.017
    1. Beck M. M., Lind R. R., Geertsen S. S., Ritz C., Lundbye-Jensen J., Wienecke J. (2016). Motor-enriched learning activities can improve mathematical performance in preadolescent children. Front. Hum. Neurosci. 10:645. 10.3389/fnhum.2016.00645
    1. Bergh I. H., Bjelland M., Grydeland M., Lien N., Andersen L. F., Klepp K. I., et al. (2012). Mid-way and post-intervention effects on potential determinants of physical activity and sedentary behavior, results of the HEIA study - a multi-component school-based randomized trial. Int. J. Behav. Nutr. Phys. Act. 9:63. 10.1186/1479-5868-9-63
    1. Best J. R. (2010). Effects of physical activity on children’s executive function: contributions of experimental research on aerobic exercise. Dev. Rev. 30 331–351. 10.1016/j.dr.2010.08.001
    1. Best J. R., Miller P. H., Naglieri J. A. (2011). Relations between executive function and academic achievement from ages 5 to 17 in a large, representative national sample. Learn. Individ. Differ. 21 327–336. 10.1016/j.lindif.2011.01.007
    1. Bronson M. B., Goodson B. D., Layzer J. I., Love J. M. (1990). Child Behavior Rating Scale. Cambridge, MA: ABT Associates.
    1. Bryce D., Whitebread D., Szucs D. (2015). The relationships among executive functions, metacognitive skills and educational achievement in 5 and 7 year-old children. Metacogn. Learn. 10 181–198. 10.1007/s11409-014-9120-4
    1. Budde H., Voelcker-Rehage C., Pietrassyk-Kendziorra S., Ribeiro P., Tidow G. (2008). Acute coordinative exercise improves attentional performance in adolescents. Neurosci. Lett. 441 219–223. 10.1016/j.neulet.2008.06.024
    1. Bull R., Scerif G. (2001). Executive functioning as a predictor of children’s mathematics ability: inhibition, switching, and working memory. Dev. Neuropsychol. 19 273–293. 10.1207/s15326942dn1903_3
    1. Cantin R. H., Gnaedinger E. K., Gallaway K. C., Hesson-McInnis M. S., Hund A. M. (2016). Executive functioning predicts reading, mathematics, and theory of mind during the elementary years. J. Exp. Child Psychol. 146 66–78. 10.1016/j.jecp.2016.01.014
    1. Carel J. C., Leger J. (2008). Precocious puberty. N. Engl. J. Med. 358 2366–2377. 10.1056/NEJMcp0800459
    1. Carlson J. A., Engelberg J. K., Cain K. L., Conway T. L., Mignano A. M., Bonilla E. A., et al. (2015). Implementing classroom physical activity breaks: associations with student physical activity and classroom behavior. Prev. Med. 81 67–72. 10.1016/j.ypmed.2015.08.006
    1. Chaddock L., Pontifex M. B., Hillman C. H., Kramer A. F. (2011). A review of the relation of aerobic fitness and physical activity to brain structure and function in children. J. Int. Neuropsychol. Soc. 17 975–985. 10.1017/s1355617711000567
    1. Chen F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Struct. Equ. Modeling 14 464–504. 10.1080/10705510701301834
    1. Cole D. A., Maxwell S. E. (2003). Testing mediational models with longitudinal data: questions and tips in the use of structural equation modeling. J. Abnorm. Psychol. 112 558–577. 10.1037/0021-843X.112.4.558
    1. Crova C., Struzzolino I., Marchetti R., Masci I., Vannozzi G., Forte R., et al. (2014). Cognitively challenging physical activity benefits executive function in overweight children. J. Sports Sci. 32 201–211. 10.1080/02640414.2013.828849
    1. Davis C. L., Tomporowski P. D., McDowell J. E., Austin B. P., Miller P. H., Yanasak N. E., et al. (2011). Exercise improves executive function and achievement and alters brain activation in overweight children: a randomized. Controlled trial. Health Psychol. 30 91–98. 10.1037/a0021766
    1. de Greeff J. W., Hartman E., Mullender-Wijnsma M. J., Bosker R. J., Doolaard S., Visscher C. (2016). Long-term effects of physically active academic lessons on physical fitness and executive functions in primary school children. Health Educ. Res. 31 185–194. 10.1093/her/cyv102
    1. Diamond A. (2013). “Executive functions,” in Annual Review of Psychology Vol. 64 ed. Fiske S. T. (Palo Alto, CA: Annual Reviews; ), 135–168.
    1. Diamond A. (2015). Effects of physical exercise on executive functions: going beyond simply moving to moving with thought. Ann. Sports Med. Res. 2:1011.
    1. Donnelly J. E., Hillman C. H., Castelli D., Etnier J. L., Lee S., Tomporowski P., et al. (2016). Physical activity, fitness, cognitive function, and academic achievement in children: a systematic review. Med. Sci. Sports Exerc. 48 1197–1222. 10.1249/mss.0000000000000901
    1. Donnelly J. E., Hillman C. H., Greene J. L., Hansen D. M., Gibson C. A., Sullivan D. K., et al. (2017). Physical activity and academic achievement across the curriculum: results from a 3-year cluster-randomized trial. Prev. Med. 99 140–145. 10.1016/j.ypmed.2017.02.006
    1. Donnelly J. E., Lambourne K. (2011). Classroom-based physical activity, cognition, and academic achievement. Prev. Med. 52 S36–S42. 10.1016/j.ypmed.2011.01.021
    1. Geiser C. (2013). Data Analysis with Mplus. New York, NY: The Guildford Press.
    1. Gestsdottir S., von Suchodoletz A., Wanless S. B., Hubert B., Guimard P., Birgisdottir F., et al. (2014). Early behavioral self-regulation, academic achievement, and gender: longitudinal findings from France, Germany, and Iceland. Appl. Dev. Sci. 18 90–109. 10.1080/10888691.2014.894870
    1. Golden C. J. (1978). Stroop Color and Word Test. Chicago, IL: Stoelting.
    1. Haapala H. L., Hirvensalo M. H., Laine K., Laakso L., Hakonen H., Kankaanpaa A., et al. (2014). Recess physical activity and school-related social factors in Finnish primary and lower secondary schools: cross-sectional associations. BMC Public Health 14:1114. 10.1186/1471-2458-14-1114
    1. Haraldstad K., Christophersen K. A., Eide H., Nativg G. K., Helseth S. (2011). Health related quality of life in children and adolescents: reliability and validity of the Norwegian version of KIDSCREEN-52 questionnaire, a cross sectional study. Int. J. Nurs. Stud. 48 573–581. 10.1016/j.ijnurstu.2010.10.001
    1. Holfve-Sabel M. A. (2014). Learning, interaction and relationships as components of student well-being: differences between classes from student and teacher perspective. Soc. Indic. Res. 119 1535–1555. 10.1007/s11205-013-0557-7
    1. Homack S., Riccio C. A. (2004). A meta-analysis of the sensitivity and specificity of the stroop color and word test with children. Arch. Clin. Neuropsychol. 19 725–743. 10.1016/j.acn.2003.09.003
    1. Janssen M., Chinapaw M. J. M., Rauh S. P., Toussaint H. M., van Mechelen W., Verhagen E. (2014a). A short physical activity break from cognitive tasks increases selective attention in primary school children aged 10-11. Ment. Health Phys. Act. 7 129–134. 10.1016/j.mhpa.2014.07.001
    1. Janssen M., Toussaint H. M., van Mechelen W., Verhagen E. A. (2014b). Effects of acute bouts of physical activity on children’s attention: a systematic review of the literature. Springerplus 3:410. 10.1186/2193-1801-3-410
    1. Kall L. B., Malmgren H., Olsson E., Linden T., Nilsson M. (2015). Effects of a curricular physical activity intervention on children’s school performance, wellness, and brain development. J. Sch. Health 85 704–713. 10.1111/josh.12303
    1. Khan N. A., Hillman C. H. (2014). The relation of childhood physical activity and aerobic fitness to brain function and cognition: a review. Pediatr. Exerc. Sci. 26 138–146. 10.1123/pes.2013-0125
    1. Kibbe D. L., Hackett J., Hurley M., McFarland A., Schubert K. G., Schultz A., et al. (2011). Ten years of TAKE 10!(R): integrating physical activity with academic concepts in elementary school classrooms. Prev. Med. 52 S43–S50. 10.1016/j.ypmed.2011.01.025
    1. Koutsandreou F., Wegner M., Niemann C., Budde H. (2016). Effects of motor versus cardiovascular exercise training on children’s working memory. Med. Sci. Sports Exerc. 48 1144–1152. 10.1249/mss.0000000000000869
    1. Lezak M. D., Howieson D. B., Bigler E. D., Tranel D. (2012). Neuropsychological Assessment, 5th Edn. New York, NY: Oxford University Press.
    1. Lim S. M., Rodger S., Brown T. (2010). Validation of child behavior rating scale in Singapore (Part 1): Rasch analysis. Hong Kong J. Occup. Ther. 20 52–62. 10.1016/S1569-1861(11)70004-3
    1. Little T. D. (2013). Longitudinal Structural Equation Modeling. New York, NY: The Guilford Press.
    1. Lohman T. G., Roche A. F. M., Martorell R. (1991). Anthropometric Standardization Reference Manual. Champaign, IL: Human Kinetics Books.
    1. Lubans D., Richards J., Hillman C., Faulkner G., Beauchamp M., Nilsson M., et al. (2016). Physical activity for cognitive and mental health in youth: a systematic review of mechanisms. Pediatrics 138:e20161642. 10.1542/peds.2016-1642
    1. Mahar M. T. (2011). Impact of short bouts of physical activity on attention-to-task in elementary school children. Prev. Med. 52(Suppl. 1), S60–S64. 10.1016/j.ypmed.2011.01.026
    1. Mahar M. T., Murphy S. K., Rowe D. A., Golden J., Shields A. T., Raedeke T. D. (2006). Effects of a classroom-based program on physical activity and on-task behavior. Med. Sci. Sports Exerc. 38 2086–2094. 10.1249/01.mss.0000235359.16685.a3
    1. McClelland M. M., Cameron C. E. (2012). Self-regulation in early childhood: improving conceptual clarity and developing ecologically valid measures. Child Dev. Perspect. 6 136–142. 10.1111/j.1750-8606.2011.00191.x
    1. McClelland M. M., Cameron C. E., Connor C. M., Farris C. L., Jewkes A. M., Morrison F. J. (2007). Links between behavioral regulation and preschoolers’ literacy, vocabulary, and math skills. Dev. Psychol. 43 947–959. 10.1037/0012-1649.43.4.947
    1. Miyake A., Friedman N. P., Emerson M. J., Witzki A. H., Howerter A., Wager T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn. Psychol. 41 49–100. 10.1006/cogp.1999.0734
    1. Morgan P. J., Young M. D., Smith J. J., Lubans D. R. (2016). Targeted health behavior interventions promoting physical activity: a conceptual model. Exerc. Sport Sci. Rev. 44 71–80. 10.1249/jes.0000000000000075
    1. Mullender-Wijnsma M. J., Hartman E., de Greeff J. W., Doolaard S., Bosker R. J., Visscher C. (2016). Physically active math and language lessons improve academic achievement: a cluster randomized controlled trial. Pediatrics 137:20152743. 10.1542/peds.2015-2743
    1. Neyens L. G. J., Aldenkamp A. P. (1997). Stability of cognitive measures in children of average ability. Child Neuropsychol. 3 161–170. 10.1080/09297049708400639
    1. Norris E., Shelton N., Dunsmuir S., Duke-Williams O., Stamatakis E. (2015). Physically active lessons as physical activity and educational interventions: a systematic review of methods and results. Prev. Med. 72 116–125. 10.1016/j.ypmed.2014.12.027
    1. Norris R., Carroll D., Cochrane R. (1992). The effects of physical activity and exercise training on psychological stress and well-being in an adolescent population. J. Psychosom. Res. 36 55–65. 10.1016/0022-3999(92)90114-H
    1. Orkibi H., Ronen T. (2017). Basic psychological needs satisfaction mediates the association between self-control skills and subjective well-being. Front. Psychol. 8:936. 10.3389/fpsyg.2017.00936
    1. Peru A., Faccioli C., Tassinari G. (2006). Stroop effects from 3 to 10 years: the critical role of reading acquisition. Arch. Ital. Biol. 144 45–62.
    1. Pesce C. (2012). Shifting the focus from quantitative to qualitative exercise characteristics in exercise and cognition research. J. Sport Exerc. Psychol. 34 766–786. 10.1123/jsep.34.6.766
    1. Pesce C., Crova C., Marchetti R., Struzzolino I., Masci I., Vannozzi G., et al. (2013). Searching for cognitively optimal challenge point in physical activity for children with typical and atypical motor development. Ment. Health Phys. Act. 6 172–180. 10.1016/j.mhpa.2013.07.001
    1. Pesce C., Masci I., Marchetti R., Vazou S., Saakslahti A., Tomporowski P. D. (2016). Deliberate play and preparation jointly benefit motor and cognitive development: mediated and moderated effects. Front. Psychol. 7:349. 10.3389/fpsyg.2015.00349
    1. Ravens-Sieberer U., Auquier P., Erhart M., Gosch A., Rajmil L., Bruil J., et al. (2007). The KIDSCREEN-27 quality of life measure for children and adolescents: psychometric results from a cross-cultural survey in 13 European countries. Qual. Life Res. 16 1347–1356. 10.1007/s11136-007-9240-2
    1. Reitan R. M., Wolfson D. (2004). The trail making test as an initial screening procedure for neuropsychological impairment in older children. Arch. Clin. Neuropsychol. 19 281–288. 10.1016/S0887-6177(03)00042-8
    1. Resaland G. K., Aadland E., Moe V. F., Aadland K. N., Skrede T., Stavnsbo M., et al. (2016). Effects of physical activity on schoolchildren’s academic performance: the active smarter kids (ASK) cluster-randomized controlled trial. Prev. Med. 91 322–328. 10.1016/j.ypmed.2016.09.005
    1. Resaland G. K., Moe V. F., Aadland E., Steene-Johannessen J., Glosvik O., Andersen J. R., et al. (2015). Active Smarter Kids (ASK): rationale and design of a cluster-randomized controlled trial investigating the effects of daily physical activity on children’s academic performance and risk factors for non-communicable diseases. BMC Public Health 15:709. 10.1186/s12889-015-2049-y
    1. Riley N., Lubans D. R., Holmes K., Morgan P. J. (2016). Findings from the easy minds cluster randomized controlled trial: evaluation of a physical activity integration program for mathematics in primary schools. J. Phys. Act. Health 13 198–206. 10.1123/jpah.2015-0046
    1. Ryan R. M., Moller A. C. (2017). “Competence as central, but not sufficient, for high-quality motivation,” in Handbook of Competence and Motivation, 2nd Edn, eds Elliot A. J., Dweck C. S., Yeager D. S. (New York, NY: The Guildford Press; ).
    1. Sanchez-Perez N., Fuentesu L. J., Pine V., Lopez-Lopez J. A., Gonzalez-Salinas C. (2015). How do different components of effortful control contribute to children’s mathematics achievement? Front. Psychol. 6:1383. 10.3389/fpsyg.2015.01383
    1. Schmidt M., Jager K., Egger F., Roebers C. M., Conzelmann A. (2015). Cognitively engaging chronic physical activity, but not aerobic exercise, affects executive functions in primary school children: a group-randomized controlled trial. J. Sport Exerc. Psychol. 37 575–591. 10.1123/jsep.2015-0069
    1. Schmitt S. A., Pratt M. E., McClelland M. M. (2014). Examining the validity of behavioral self-regulation tools in predicting preschoolers’ academic achievement. Early Educ. Dev. 25 641–660. 10.1080/10409289.2014.850397
    1. Sibley B. A., Etnier J. L. (2003). The relationship between physical activity and cognition in children: a meta-analysis. Pediatr. Exerc. Sci. 15 243–256. 10.1123/pes.15.3.243
    1. Sirin S. R. (2005). Socioeconomic status and academic achievement: a meta-analytic review of research. Rev. Educ. Res. 75 417–453. 10.3102/00346543075003417
    1. Spreen O., Strauss E. (1998). A Compendium of Neuropsychological Tests, 2nd Edn. New York, NY: Oxford University Press.
    1. Tanner J. M. (1962). Growth at Adolescence. Oxford: Blackwell.
    1. Tomporowski P. D., McCullick B., Pendleton D. M., Pesce C. (2015). Exercise and children’s cognition: the role of exercise characteristics and a place for metacognition. J. Sport Health Sci. 4 47–55. 10.1016/j.jshs.2014.09.003
    1. Valente M. J., MacKinnon D. P. (2017). Comparing models of change to estimate the mediated effect in the pretest–posttest control group design. Struct. Equ. Modeling 24 428–450. 10.1080/10705511.2016.1274657
    1. Vazou S., Pesce C., Lakes K., Smiley-Oyen A. (2016). More than one road leads to Rome: a narrative review and meta-analysis of physical activity intervention effects on cognition in youth. Int. J. Sport Exerc. Psychol. 10.1080/1612197X.2016.1223423 [Epub ahead of print].
    1. Vazou S., Smiley-Oyen A. (2014). Moving and academic learning are not antagonists: acute effects on executive function and enjoyment. J. Sport Exerc. Psychol. 36 474–485. 10.1123/jsep.2014-0035
    1. von Suchodoletz A., Gestsdottir S., Wanless S. B., McClelland M. M., Birgisdottir F., Gunzenhauser C., et al. (2013). Behavioral self-regulation and relations to emergent academic skills among children in Germany and Iceland. Early Child. Res. Q. 28 62–73. 10.1016/j.ecresq.2012.05.003
    1. Wechsler D. (2003). Wechsler Intelligence Scale for Children, 4th Edn. San Antonia, TX: PsychCorp.
    1. Wentzel K. R. (2017). “Peer relationships, motivation, and academic performance at school,” in Handbook of Competence and Motivation, 2nd Edn, eds Elliot A. J., Dweck C. S., Yeager D. S. (New York, NY: The Guildford Press; ).
    1. WMA (2013). World medical association declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310 2191–2194. 10.1001/jama.2013.281053
    1. Yeung D. C., Hui S. S. (2010). Validity and reliability of skin fold measurement in assessing body fatness of Chinese children. Asia Pac. J. Clin. Nutr. 19 350–357.

Source: PubMed

Подписаться