Executive Functions Do Not Mediate Prospective Relations between Indices of Physical Activity and Academic Performance: The Active Smarter Kids (ASK) Study

Katrine N Aadland, Yngvar Ommundsen, Eivind Aadland, Kolbjørn S Brønnick, Arne Lervåg, Geir K Resaland, Vegard F Moe, Katrine N Aadland, Yngvar Ommundsen, Eivind Aadland, Kolbjørn S Brønnick, Arne Lervåg, Geir K Resaland, Vegard F Moe

Abstract

Changes in cognitive function induced by physical activity have been proposed as a mechanism for the link between physical activity and academic performance. The aim of this study was to investigate if executive function mediated the prospective relations between indices of physical activity and academic performance in a sample of 10-year-old Norwegian children. The study included 1,129 children participating in the Active Smarter Kids (ASK) trial, followed over 7 months. Structural equation modeling (SEM) with a latent variable of executive function (measuring inhibition, working memory, and cognitive flexibility) was used in the analyses. Predictors were objectively measured physical activity, time spent sedentary, aerobic fitness, and motor skills. Outcomes were performance on national tests of numeracy, reading, and English (as a second language). Generally, indices of physical activity did not predict executive function and academic performance. A modest mediation effect of executive function was observed for the relation between motor skills and academic performance. Trial registration: Clinicaltrials.gov registry, trial registration number: NCT02132494.

Keywords: aerobic fitness; cognition; elementary school; motor skills; objectively measured physical activity; structural equation modeling.

Figures

Figure 1
Figure 1
The hypothesized model.
Figure 2
Figure 2
The half-longitudinal mediation model for executive function in the relation between Shuttle Run and numeracy. All path coefficients are significant and reported as standardized β-estimates. The covariates age, sex, tanner, body fat, socio economic status, and group allocation are adjusted for in the model, but not shown. t1, baseline; t2, follow-up; Stroop CW, Stroop Color Word; WISC-IV backward, Wechsler Intelligence Scale for children fourth edition backward; TMT-b, the Trail Making test part B.

References

    1. Aadland E., Johannessen K. (2015). Agreement of objectively measured physical activity and sedentary time in preschool children. Prev. Med. Rep. 2, 635–639. 10.1016/j.pmedr.2015.07.009
    1. Aadland E., Terum T., Mamen A., Andersen L. B., Resaland G. K. (2014). The andersen aerobic fitness test: reliability and validity in 10-year-old children. PLoS ONE 9:110492. 10.1371/journal.pone.0110492
    1. Aadland K. N., Moe V. F., Aadland E., Anderssen S. A., Resaland G. K., Ommundsen Y. (2017a). Relationships between physical activity, sedentary time, aerobic fitness, motor skills and executive function and academic performance in children. Ment. Health Phys. Act. 12, 10–18. 10.1016/j.mhpa.2017.01.001
    1. Aadland K. N., Ommundsen Y., Anderssen S. A., Brønnick K. S., Moe V. F., Resaland G. K., et al. (2017b). Effects of the active smarter kids (ASK) physical activity school-based intervention on executive functions: a cluster-randomized controlled trial. Scand. J. Educ. Res. 1–15. 10.1080/00313831.2017.1336477
    1. Aggio D., Smith L., Fisher A., Hamer M. (2016). Context-specific associations of physical activity and sedentary behavior with cognition in children. Am. J. Epidemiol. 183, 1075–1082. 10.1093/aje/kww031
    1. Andersen L. B., Andersen T. E., Andersen E., Anderssen S. A. (2008). An intermittent running test to estimate maximal oxygen uptake: the Andersen test. J. Sports Med. Phys. Fitness 48, 434–437.
    1. Ardila A., Ostrosky-Solís F., Bernal B. (2006). Cognitive testing toward the future: the example of Semantic Verbal Fluency (ANIMALS). Int. J. Psychol. 41, 324–332. 10.1080/00207590500345542
    1. Baron R. M., Kenny D. A. (1986). The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J. Person. Soc. Psychol. 51, 1173–1182. 10.1037/0022-3514.51.6.1173
    1. Best J. R. (2010). Effects of physical activity on children's executive function: contributions of experimental research on aerobic exercise. Dev. Rev. 30, 331–351. 10.1016/j.dr.2010.08.001
    1. Best J. R., Miller P. H. (2010). A developmental perspective on executive function. Child Dev. 81, 1641–1660. 10.1111/j.1467-8624.2010.01499.x
    1. Best J. R., Miller P. H., Naglieri J. A. (2011). Relations between executive function and academic achievement from ages 5 to 17 in a large, representative national sample. Learn. Individ. Differ. 21, 327–336. 10.1016/j.lindif.2011.01.007
    1. Bezold C. P., Konty K. J., Day S. E., Berger M., Harr L., Larkin M., et al. . (2014). The effects of changes in physical fitness on academic performance among New York City Youth. J. Adolesc. Health 55, 774–781. 10.1016/j.jadohealth.2014.06.006
    1. Booth J. N., Leary S. D., Joinson C., Ness A. R., Tomporowski P. D., Boyle J. M., et al. . (2014). Associations between objectively measured physical activity and academic attainment in adolescents from a UK cohort. Br. J. Sports Med. 48, 265–270. 10.1136/bjsports-2013-092334
    1. Booth J. N., Tomporowski P. D., Boyle J. M., Ness A. R., Joinson C., Leary S. D., et al. (2013). Associations between executive attention and objectively measured physical activity in adolescence: findings from ALSPAC, a UK cohort. Ment. Health Phys. Act. 6, 212–219. 10.1016/j.mhpa.2013.09.002
    1. Brocki K. C., Bohlin G. (2004). Executive functions in children aged 6 to 13: a dimensional and developmental study. Dev. Neuropsychol. 26, 571–593. 10.1207/s15326942dn2602_3
    1. Bull R., Lee K. (2014). Executive functioning and mathematics achievement. Child Dev. Perspect. 8, 36–41. 10.1111/cdep.12059
    1. Bull R., Scerif G. (2001). Executive functioning as a predictor of children's mathematics ability: inhibition, switching, and working memory. Dev. Neuropsychol. 19, 273–293. 10.1207/S15326942DN1903_3
    1. Bull R., Espy K. A., Wiebe S. A. (2008). Short-term memory, working memory, and executive functioning in preschoolers: longitudinal predictors of mathematical achievement at age 7 years. Dev. Neuropsychol. 33, 205–228. 10.1080/87565640801982312
    1. Cantin R. H., Gnaedinger E. K., Gallaway K. C., Hesson-McInnis M. S., Hund A. M. (2016). Executive functioning predicts reading, mathematics, and theory of mind during the elementary years. J. Exp. Child Psychol. 146, 66–78. 10.1016/j.jecp.2016.01.014
    1. Carel J. C., Leger J. (2008). Precocious puberty. New Eng. J. Med. 358, 2366–2377. 10.1056/NEJMcp0800459
    1. Cassidy A. R. (2016). Executive function and psychosocial adjustment in healthy children and adolescents: a latent variable modelling investigation. Child Neuropsychol. 22, 292–317. 10.1080/09297049.2014.994484
    1. Chaddock L., Hillman C. H., Pontifex M. B., Johnson C. R., Raine L. B., Kramer A. F. (2012). Childhood aerobic fitness predicts cognitive performance one year later. J. Sports Sci. 30, 421–430. 10.1080/02640414.2011.647706
    1. Chaddock L., Pontifex M. B., Hillman C. H., Kramer A. F. (2011). A review of the relation of aerobic fitness and physical activity to brain structure and function in children. J. Int. Neuropsychol. Soc. 17, 975–985. 10.1017/S1355617711000567
    1. Cliff D. P., Hesketh K. D., Vella S. A., Hinkley T., Tsiros M. D., Ridgers N. D., et al. . (2016). Objectively measured sedentary behaviour and health and development in children and adolescents: systematic review and meta-analysis. Obes. Rev. 17, 330–344. 10.1111/obr.12371
    1. Cole D. A., Maxwell S. E. (2003). Testing mediational models with longitudinal data: questions and tips in the use of structural equation modeling. J. Abnorm. Psychol. 112, 558–577. 10.1037/0021-843X.112.4.558
    1. Corder K., Ekelund U., Steele R. M., Wareham N. J., Brage S. (2008). Assessment of physical activity in youth. J. Appl. Physiol. 105, 977–987. 10.1152/japplphysiol.00094.2008
    1. Council of Europe (1993). Eurofit: Handbook for the Eurofit Test on Physical Fitness. Strasbourg: Council of Europe.
    1. Crova C., Struzzolino I., Marchetti R., Masci I., Vannozzi G., Forte R., et al. . (2013). Cognitively challenging physical activity benefits executive function in overweight children. J. Sports Sci. 32, 201–211. 10.1080/02640414.2013.828849
    1. Davis C. L., Cooper S. (2011). Fitness, fatness, cognition, behavior, and academic achievement among overweight children: do cross-sectional associations correspond to exercise trial outcomes? Prev. Med. 52, S65–S69. 10.1016/j.ypmed.2011.01.020
    1. Davis C. L., Tomporowski P. D., McDowell J. E., Austin B. P., Miller P. H., Yanasak N. E., et al. . (2011). Exercise improves executive function and achievement and alters brain activation in overweight children: a randomized, controlled trial. Health Psychol. 30, 91–98. 10.1037/a0021766
    1. De Vries S. I., Van Hirtum H., Bakker I., Hopman-Rock M., Hirasing R. A., Van Mechelen W. (2009). Validity and reproducibility of motion sensors in youth: a systematic update. Med. Sci. Sports Exerc. 41, 818–827. 10.1249/MSS.0b013e31818e5819
    1. Diamond A. (2000). Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 71, 44–56. 10.1111/1467-8624.00117
    1. Donnelly J. E., Hillman C. H., Castelli D., Etnier J. L., Lee S., Tomporowski P., et al. (2016). Physical activity, fitness, cognitive function, and academic achievement in children: a systematic review. Med. Sci. Sports Exerc. 48, 1197–1222. 10.1249/MSS.0000000000000901
    1. Ekelund U., Anderssen S. A., Froberg K., Sardinha L. B., Andersen L. B., Brage S., et al. . (2007). Independent associations of physical activity and cardiorespiratory fitness with metabolic risk factors in children: the European youth heart study. Diabetologia 50, 1832–1840. 10.1007/s00125-007-0762-5
    1. Esliger D. W., Copeland J. L., Barnes J. D., Tremblay M. S. (2005). Standardizing and optimizing the use of accelerometer data for free-living physical activity monitoring. J. Phys. Act. Health 2:366 10.1123/jpah.2.3.366
    1. Esteban-Cornejo I., Tejero-Gonzalez C. M., Sallis J. F., Veiga O. L. (2015). Physical activity and cognition in adolescents: a systematic review. J. Sci. Med. Sport 18, 534–539. 10.1016/j.jsams.2014.07.007
    1. Evenson K. R., Catellier D. J., Gill K., Ondrak K. S., McMurray R. G. (2008). Calibration of two objective measures of physical activity for children. J. Sports Sci. 26, 1557–1565. 10.1080/02640410802334196
    1. Geiser C. (2013). Data Analysis with Mplus. New York, NY: The Guildford Press.
    1. Golden C. J. (1978). Stroop Color and Word Test. Chicago: Stoelting.
    1. Hayes A. F. (2009). Beyond baron and kenny: statistical mediation analysis in the new millennium. Commun. Monogr. 76, 408–420. 10.1080/03637750903310360
    1. Henderson S. E., Sugden D. A., Barnett A. (2007). Movement Assessment Battery for Children, 2nd Edn. (Movement ABC-2). London: Pearson.
    1. Hillman C. H., Buck S. M., Themanson J. R., Pontifex M. B., Castelli D. M. (2009). Aerobic fitness and cognitive development: event-related brain potential and task performance indices of executive control in preadolescent children. Dev. Psychol. 45, 114–129. 10.1037/a0014437
    1. Hillman C. H., Pontifex M. B., Castelli D. M., Khan N. A., Raine L. B., Scudder M. R., et al. . (2014). Effects of the FITKids randomized controlled trial on executive control and brain function. Pediatrics 134, e1063–e1071. 10.1542/peds.2013-3219
    1. Howie E. K., Pate R. R. (2012). Physical activity and academic achievement in children: a historical perspective. J. Sport Health Sci. 1, 160–169. 10.1016/j.jshs.2012.09.003
    1. Howland R. H. (2011). What you see depends on where you're looking and how you look at it publication bias and outcome reporting bias. J. Psychosoc. Nurs. Mental Health Serv. 49, 13–15. 10.3928/02793695-20110705-06
    1. Huizinga M., Dolan C. V., van der Molen M. W. (2006). Age-related change in executive function: developmental trends and a latent variable analysis. Neuropsychologia 44, 2017–2036. 10.1016/j.neuropsychologia.2006.01.010
    1. Ioannidis J. P. (2005). Why most published research findings are false. PLoS Med. 2:e124. 10.1371/journal.pmed.0020124
    1. Jones R. A., Hinkley T., Okely A. D., Salmon J. (2013). Tracking physical activity and sedentary behavior in childhood: a systematic review. Am. J. Prev. Med. 44, 651–658. 10.1016/j.amepre.2013.03.001
    1. Kalkut E. L., Han S. D., Lansing A. E., Holdnack J. A., Delis D. C. (2009). Development of set-shifting ability from late childhood through early adulthood. Arch. Clin. Neuropsychol. 24, 565–574. 10.1093/arclin/acp048
    1. Kamijo K., Pontifex M. B., O'Leary K. C., Scudder M. R., Wu C. T., Castelli D. M., et al. . (2011). The effects of an afterschool physical activity program on working memory in preadolescent children. Dev. Sci. 14, 1046–1058. 10.1111/j.1467-7687.2011.01054.x
    1. Khan N. A., Hillman C. H. (2014). the relation of childhood physical activity and aerobic fitness to brain function and cognition: a review. Pediatr. Exerc. Sci. 26, 138–146. 10.1123/pes.2013-0125
    1. Kolle E., Steene-Johannessen J., Andersen L. B., Anderssen S. A. (2010). Objectively assessed physical activity and aerobic fitness in a population-based sample of Norwegian 9- and 15-year-olds. Scand. J. Med. Sci. Sports 20, e41–e47. 10.1111/j.1600-0838.2009.00892.x
    1. Koziol L. F., Budding D. E., Chidekel D. (2012). From movement to thought: executive function, embodied cognition, and the cerebellum. Cerebellum 11, 505–525. 10.1007/s12311-011-0321-y
    1. Lambourne K., Hansen D. M., Szabo A. N., Lee J., Herrmann S. D., Donnelly J. E. (2013). Indirect and direct relations between aerobic fitness, physical activity, and academic achievement in elementary school students. Ment. Health Phys. Act. 6, 165–171. 10.1016/j.mhpa.2013.06.002
    1. Lee K., Bull R., Ho R. M. (2013). Developmental changes in executive functioning. Child Dev. 84, 1933–1953. 10.1111/cdev.12096
    1. Lehto J. E., Juujarvi P., Kooistra L., Pulkkinen L. (2003). Dimensions of executive functioning: Evidence from children. Br. J. Dev. Psychol. 21, 59–80. 10.1348/026151003321164627
    1. Lezak M. D., Howieson D. B., Bigler E. D., Tranel D. (2012). Neuropsychological Assessment. New York, NY: Oxford University Press.
    1. Little T. D. (2013). Longitudinal Structural Equation Modeling. New York, NY: The Guilford Press.
    1. Lohman T. G., Roche A. F. M., Martorell R. (1991). Anthropometric Standardization Reference Manual. Champaign, IL: Human Kinetics Books.
    1. London R. A., Castrechini S. (2011). A longitudinal examination of the link between youth physical fitness and academic achievement. J. School Health 81, 400–408. 10.1111/j.1746-1561.2011.00608.x
    1. Miyake A., Friedman N. P., Emerson M. J., Witzki A. H., Howerter A., Wager T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn. Psychol. 41, 49–100. 10.1006/cogp.1999.0734
    1. Mullender-Wijnsma M. J., Hartman E., de Greeff J. W., Doolaard S., Bosker R. J., Visscher C. (2016). Physically active math and language lessons improve academic achievement: a cluster randomized controlled trial. Pediatrics 137:9. 10.1542/peds.2015-2743
    1. Mura G., Vellante M., Nardi A. E., Machado S., Carta M. G. (2015). Effects of school-based physical activity interventions on cognition and academic achievement: a systematic review. CNS Neurol. Disord. Drug Targets 14, 1194–1208. 10.2174/1871527315666151111121536
    1. Niederer I., Kriemler S., Gut J., Hartmann T., Schindler C., Barral J., et al. . (2011). Relationship of aerobic fitness and motor skills with memory and attention in preschoolers (Ballabeina): a cross-sectional and longitudinal study. BMC Pediatr. 11:34. 10.1186/1471-2431-11-34
    1. Peru A., Faccioli C., Tassinari G. (2006). Stroop effects from 3 to 10 years: the critical role of reading acquisition. Arch. Ital. Biol. 144, 45–62.
    1. Pesce C., Ben-Soussan T. D. (2016). “Cognito ergo sum” or “ambulo ergo sum”? New perspectives in developmental exercise and cognition research, in Exercise-Cognition Interaction. Neuroscience Perspectives, ed McMorris T. (San Diego, CA: Academic Press Elsevier; ), 251–282.
    1. Pesce C., Masci I., Marchetti R., Vazou S., Saakslahti A., Tomporowski P. D. (2016). Deliberate play and preparation jointly benefit motor and cognitive development: mediated and moderated effects. Front. Psychol. 7:349. 10.3389/fpsyg.2016.00349
    1. Putnick D. L., Bornstein M. H. (2016). Measurement invariance conventions and reporting: the state of the art and future directions for psychological research. Dev. Rev. 41, 71–90. 10.1016/j.dr.2016.06.004
    1. Reitan R. M., Wolfson D. (2004). The Trail Making Test as an initial screening procedure for neuropsychological impairment in older children. Arch. Clin. Neuropsychol. 19, 281–288. 10.1016/S0887-6177(03)00042-8
    1. Resaland G. K., Aadland E., Moe V. F., Aadland K. N., Skrede T., Stavnsbo M., et al. . (2016). Effects of physical activity on schoolchildren's academic performance: the Active Smarter Kids (ASK) cluster-randomized controlled trial. Prev. Med. 91, 322–328. 10.1016/j.ypmed.2016.09.005
    1. Resaland G. K., Moe V. F., Aadland E., Steene-Johannessen J., Glosvik O., Andersen J. R., et al. . (2015). Active Smarter Kids (ASK): rationale and design of a cluster-randomized controlled trial investigating the effects of daily physical activity on children's academic performance and risk factors for non-communicable diseases. BMC Public Health 15:709. 10.1186/s12889-015-2049-y
    1. Rigoli D., Piek J. P., Kane R., Oosterlaan J. (2012). Motor coordination, working memory, and academic achievement in a normative adolescent sample: testing a mediation model. Arch. Clin. Neuropsychol. 27, 766–780. 10.1093/arclin/acs061
    1. Riva D., Nichelli F., Devoti M. (2000). Developmental aspects of verbal fluency and confrontation naming in children. Brain Lang. 71, 267–284. 10.1006/brln.1999.2166
    1. Roebers C. M., Röthlisberger M., Neuenschwander R., Cimeli P., Michel E., Jäger K. (2014). The relation between cognitive and motor performance and their relevance for children's transition to school: a latent variable approach. Hum. Mov. Sci. 33, 284–297. 10.1016/j.humov.2013.08.011
    1. Samuels W. E., Tournaki N., Blackman S., Zilinski C. (2016). Executive functioning predicts academic achievement in middle school: a four-year longitudinal study. J. Educ. Res. 109, 478–490. 10.1080/00220671.2014.979913
    1. Schmidt M., Jager K., Egger F., Roebers C. M., Conzelmann A. (2015). Cognitively engaging chronic physical activity, but not aerobic exercise, affects executive functions in primary school children: a group-randomized controlled trial. J. Sport Exerc. Psychol. 37, 575–591. 10.1123/jsep.2015-0069
    1. Sedentary Behaviour Research Network (2012). letter to the editor: standardized use of the terms “sedentary” and “sedentary behaviours”. Appl. Physiol. Nutr. Metab. 37, 540–542. 10.1139/h2012-024
    1. Singh A., Uijtdewilligen L., Twisk J. W., van Mechelen W., Chinapaw M. J. (2012). Physical activity and performance at school a systematic review of the literature including a methodological quality assessment. Arch. Pediatr. Adoles. Med. 166, 49–55. 10.1001/archpediatrics.2011.716
    1. Spreen O., Strauss E. (1998). A Compendium of Neuropsychological Tests, 2nd Edn. New York, NY: Oxford University Press.
    1. St Clair-Thompson H. L., Gathercole S. E. (2006). Executive functions and achievements in school: shifting, updating, inhibition, and working memory. Q. J. Exp. Psychol. 59, 745–759. 10.1080/17470210500162854
    1. Syvaoja H. J., Tammelin T. H., Ahonen T., Kankaanpaa A., Kantomaa M. T. (2014). The associations of objectively measured physical activity and sedentary time with cognitive functions in school-aged children. PLoS ONE 9:e103559. 10.1371/journal.pone.0103559
    1. Tanner J. M. (1962). Growth at Adolescence. Oxford: Blackwell.
    1. Tarp J., Domazet S. L., Froberg K., Hillman C. H., Andersen L. B., Bugge A. (2016). Effectiveness of a school-based physical activity intervention on cognitive performance in danish adolescents: lcomotion-learning, cognition and motion - a cluster randomized controlled trial. PLoS ONE 11:158087. 10.1371/journal.pone.0158087
    1. Tomporowski P. D., Lambourne K., Okumura M. S. (2011). Physical activity interventions and children's mental function: an introduction and overview. Prev. Med. 52, S3–S9. 10.1016/j.ypmed.2011.01.028
    1. Tomporowski P. D., McCullick B., Pendleton D. M., Pesce C. (2015). Exercise and children's cognition: the role of exercise characteristics and a place for metacognition. J. Sport Health Sci. 4, 47–55. 10.1016/j.jshs.2014.09.003
    1. Trost S. G., Loprinzi P. D., Moore R., Pfeiffer K. A. (2011). Comparison of accelerometer cut points for predicting activity intensity in youth. Med. Sci. Sports Exerc. 43, 1360–1368. 10.1249/MSS.0b013e318206476e
    1. Utdanningsdirektoratet (2013). Available online at:
    1. Vazou S., Pesce C., Lakes K., Smiley-Oyen A. (2016). More than one road leads to Rome: a narrative review and meta-analysis of physical activity intervention effects on cognition in youth. Int. J. Sport Exerc. Psychol. 1–26. 10.1080/1612197x.2016.1223423
    1. Wechsler D. (2003). Wechsler Intelligence Scale for Children®;, Fourth Edn. (WISC®;-IV; ).
    1. Wittberg R. A., Northrup K. L., Cottrell L. A. (2012). Children's aerobic fitness and academic achievement: a longitudinal examination of students during their fifth and seventh grade years. Am. J. Public Health 102, 2303–2307. 10.2105/AJPH.2011.300515
    1. WMA (2013). World medical association declaration of helsinki: ethical principles for medical research involving human subjects. JAMA 310, 2191–2194. 10.1001/jama.2013.281053
    1. Yeung D. C., Hui S. S. (2010). Validity and reliability of skinfold measurement in assessing body fatness of Chinese children. Asia Pac. J. Clin. Nutr. 19, 350–357.

Source: PubMed

Подписаться